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Abstract

Because of Minty’s classical correspondence between firmly nonexpansive mappings
and maximally monotone operators, the notion of a firmly nonexpansive mapping
has proven to be of basic importance in fixed point theory, monotone operator
theory, and convex optimization. In this note, we show that if finitely many firmly
nonexpansive mappings defined on a real Hilbert space are given and each of these
mappings is asymptotically regular, which is equivalent to saying that they have or
“almost have” fixed points, then the same is true for their composition. This
significantly generalizes the result by Bauschke from 2003 for the case of projectors
(nearest point mappings). The proof resides in a Hilbert product space and it relies
upon the Brezis-Haraux range approximation result. By working in a suitably scaled
Hilbert product space, we also establish the asymptotic regularity of convex
combinations.
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90C25.
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1 Introduction and standing assumptions
Throughout this article,

X is a real Hilbert spacewith inner product 〈·, ·〉 (1)

and induced norm || ⋅ ||. We assume that

m ∈ {2, 3, 4, . . .} and I := {1, 2, . . . ,m}. (2)

Recall that an operator T: X ® X is firmly nonexpansive (see, e.g., [1-3] for further

information) if (∀x Î X)(∀y Î X) ||Tx - Ty||2 ≤ 〈x - y, Tx - Ty〉 and that a set-valued

operator A: X ⇉ X is maximally monotone if it is monotone, i.e., for all (x, x*) and (y,

y*) in the graph of A, we have 〈x - y, x* - y*〉 ≥ 0 and if the graph of A cannot be prop-

erly enlarged without destroying monotonicity (We shall write dom A = { x Î X | Ax ≠

Ø} for the domain of A, ran A = A(X) = ∪xÎXAx for the range of A, and gr A for the

graph of A.) These notions are equivalent (see [4,5]) in the sense that if A is maximally

monotone, then its resolvent JA : = (Id + A)-1 is firmly nonexpansive, and if T is firmly
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nonexpansive, then T-1- Id is maximally monotone. (Here and elsewhere, Id denotes

the identity operator on X.) The Minty parametrization (see [4] and also [[1], Remark

23.22(ii)]) states that if A is maximally monotone, then

grA = {(JAx, x − JAx)|x ∈ X}. (3)

In optimization, one main problem is to find zeros of maximally monotone opera-

tors– these zeros may correspond to critical points or solutions to optimization pro-

blems. In terms of resolvents, the corresponding problem is that of finding fixed

points. For background material in fixed point theory and monotone operator theory,

we refer the reader to [1-3,6-16].

The aim of this note is to provide approximate fixed point results for compositions

and convex combinations of finitely many firmly nonexpansive operators.

The first main result (Theorem 4.6) substantially extends a result by Bauschke [17]

on the compositions of projectors to the composition of firmly nonexpansive map-

pings. The second main result (Theorem 5.5) extends a result by Bauschke, Moffat and

Wang [18] on the convex combination of firmly nonexpansive operators from Eucli-

dean to Hilbert space.

The remainder of this section provides the standing assumptions used throughout

the article.

Even though the main results are formulated in the given Hilbert space X, it will turn

out that the key space to work in is the product space

Xm := {x = (xi)i∈I|(∀i ∈ I) xi ∈ X}. (4)

This product space contains an embedding of the original space X via the diagonal

subspace

� := {x = (x)i∈I|x ∈ X}. (5)

We also assume that we are given m firmly nonexpansive operators T1,..., Tm; equiva-

lently, m resolvents of maximally monotone operators A1,..., Am:

(∀i ∈ I) Ti = JAi = (Id + Ai)−1 is firmly nonexpansive. (6)

We now define various pertinent operators acting on Xm. We start with the Carte-

sian product operators

T: Xm → Xm : (xi)i∈I �→ (Tixi)i∈I (7)

and

A: Xm ⇒ Xm : (xi)i∈I �→ (Aixi)i∈I. (8)

Denoting the identity on Xm by Id, we observe that

JA = (Id + A)−1 = T1 × · · · × Tm = T. (9)

Of central importance will be the cyclic right-shift operator

R: Xm → Xm : (x1, x2 . . . , xm) �→ (xm, x1, . . . , xm−1) (10)

and for convenience we set

M = Id − R. (11)
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We also fix strictly positive convex coefficients (or weights) (li)iÎI, i.e.,

(∀i ∈ I) λi ∈ ]0, 1[ and
∑
i∈I

λi = 1. (12)

Let us make Xm into the Hilbert product space

X: = Xm, with 〈x, y〉 =
∑
i∈I

〈xi, yi〉. (13)

The orthogonal complement of Δ with respect to this standard inner product is

known (see, e.g., [[1], Proposition 25.4(i)]) to be

�⊥ =

{
x = (xi)i∈I|

∑
i∈I

xi = 0

}
. (14)

Finally, given a nonempty closed convex subset C of X, the projector (nearest point

mapping) onto C is denoted by PC. It is well known to be firmly nonexpansive.

2 Properties of the operator M
In this section, we collect several useful properties of the operator M, including its

Moore-Penrose inverse (see [19] and e.g., [[1], Section 3.2] for further information.).

To that end, the following result–which is probably part of the folklore–will turn out

to be useful.

Proposition 2.1 Let Y be a real Hilbert space and let B be a continuous linear opera-

tor from X to Y with adjoint B* and such that ran B is closed. Then the Moore-Penrose

inverse of B satisfies

B† = Pran B∗ ◦ B−1 ◦ Pran B. (15)

Proof Take y Î Y. Define the corresponding set of least squares solutions (see, e.g.,

[[1], Proposition 3.25]) by C : = B-1(Pran By). Since ran B is closed, so is ran B* (see, e.

g., [[1], Corollary 15.34]); hence,a U: = (Ker B)⊥ = ran B∗ = ran B∗. Thus, C = B†y + ker

B = B†y + U┴. Therefore, since ran B† = ran B* (see, e.g., [[1], Proposition 3.28(v)]), PU
(C) = PUB

†y = B†y, as claimed.

Before we present various useful properties of M, let us recall the notion of a rectangular

(which is also known as star or 3* monotone, see [20]) operator. A monotone operator

B: X ⇉ X is rectangular if (∀(x, y∗) ∈ domB × ranB)sup(z,z∗)∈grB〈x − z, z∗ − y〉 < +∞.

Theorem 2.2 Defineb

L : �⊥ → X : y �→
m−1∑
i=1

m − i
m

Ri−1y. (16)

Then the following hold.

(i) M is continuous, linear, and maximally monotone with dom M = X.

(ii) M is rectangular.

(iii) ker M = ker M* = Δ.

(iv) ran M = ran M* = Δ┴ is closed.

(v) ran L = Δ┴.

(vi) M ◦ L = Id|�⊥.
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(vii) M−1 : X ⇒ X : y �→
{
Ly + �, if y ∈ �⊥;
∅, otherwise.

(viii) M† = P�⊥ ◦ L ◦ P�⊥ = L ◦ P�⊥.

(ix) M† =
m∑
k=1

m − (2k − 1)
2m

Rk−1.

Proof. (i): Clearly, dom M = X and (∀x Î X) ||Rx|| = ||x||. Thus, R is nonexpansive

and therefore M = Id -R is maximally monotone (see, e.g., [[1], Example 20.27]).

(ii): See [[1], Example 24.14] and [[17], Step 3 in the proof of Theorem 3.1] for two

different proofs of the rectangularity of M.

(iii): The definitions of M and R and the fact that R* is the cyclic left shift operator

readily imply that ker M = ker M* = Δ.

(iv), (vi), and (vii): Let y = (y1, ..., ym) Î X. Assume first that y Î ran M. Then there

exists x = (x1, ..., xm) such that y1 = x1 - xm, y2 = x2 - x1, ..., and ym = xm - xm-1. It

follows that ∑iÎI yi = 0, i.e, y Î Δ┴by [[1], Proposition 25.4(i)]. Thus,

ran M ⊆ �⊥. (17)

Conversely, assume now that y Î Δ┴. Now set

x := Ly =
m−1∑
i=1

m − i
m

Ri−1y. (18)

It will be notationally convenient to wrap indices around, i.e., ym + 1 = y1, y0= ym and

likewise. We then get

(∀i ∈ I) xi =
m − 1
m

yi +
m − 2
m

yi−1 + · · · + 1
m
yi+2. (19)

Therefore,∑
i∈I

xi =
m − 1
m

∑
i∈I

yi +
m − 2
m

∑
i∈I

yi + · · · + 1
m

∑
i∈I

yi =
m − 1

2

∑
i∈I

yi = 0. (20)

Thus x Î Δ┴ and

ran L ⊆ �⊥. (21)

Furthermore,

(∀i ∈ I) xi − xi−1 =
m − 1
m

yi − 1
m
yi−1 − 1

m
yi−2 − · · · − 1

m
yi+1 (22a)

= yi −1
m

∑
j∈I

yj = yi. (22b)

Hence Mx = x - Rx = y and thus y Î ran M. Moreover, in view of (iii),

M−1y = x + kerM = x + �. (23)

We thus have shown

�⊥ ⊆ ran M. (24)
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Combining (17) and (24), we obtain ran M = Δ┴. We thus have verified (vi), and (vii).

Since ran M is closed, so is ran M* (by, e.g., [[1], Corollary 15.34]). Thus (iv) holds.

(viii)&(v): We have seen in Proposition 2.1 that

M† = Pran M∗ ◦ M−1 ◦ Pran M. (25)

Now let z Î X. Then, by (iv), y := PranMZ = P�⊥Z ∈ �⊥. By (vii), M-1y = Ly + Δ. So

M†z = Pran M∗M−1Pran Mz = Pran M*M−1y = P�⊥(Ly + �) = P�⊥Ly = Ly = (L ◦ P�⊥)z because

ran L ⊆ Δ┴ by (21). Hence (viii) holds. Furthermore, by (iv) and e.g., [[1], Proposition

3.28(v)],ran L = ran L ◦ P�⊥ = ran M† = ran M∗ = �⊥ and so (v) holds.

(ix): Note that P�⊥ = Id − P� and that PΔ = m-1∑jÎI R
j. Hence

P�⊥ = Id − 1
m

∑
j∈I

Rj. (26)

Thus, by (viii) and (16),

M† = L ◦ P�⊥ =
1
m

m−1∑
i=1

(m − i)Ri−1 ◦
⎛⎝Id − 1

m

∑
j∈I

Rj

⎞⎠ (27)

=
1
m

m−1∑
i=1

(m − i)Ri−1 − 1
m2

m−1∑
i=1

(m − i)
∑
j∈I

Ri+j−1. (28)

Re-arranging this expression in terms of powers of R and simplifying leads to

M† = (Id − R)† =
m∑
k=1

m − (2k − 1)
2m

Rk−1. (29)

Remark 2.3 Suppose that L̃ : �⊥ → X satisfies M ◦ L̃ = Id|�⊥ Then

M−1 : X ⇒ X : y �→
{
L̃y + �, if y ∈ �⊥;
∅, otherwise.

(30)

One may show that M† = P�⊥ ◦ L̃ ◦ P�⊥ and that P�⊥ ◦ L̃ = L (see (16)). Concrete

choices for L̃ and L are

�⊥ → X : (y1, y2, . . . , ym) �→ (y1, y1 + y2, . . . , y1 + y2 + y3 + . . . + ym); (31)

however, the range of the latter operator is not equal Δ┴ whenever X ≠ {0}.

Remark 2.4 Denoting the symmetric part of M by M+ =
1
2
M +

1
2
M∗ and defining

the quadratic form associated with M by qM : x → 1
2

〈x, Mx〉, we note that [[17], Propo-

sition 2.3] implies thatc ran M+ = domq∗
M = �⊥.

Fact 2.5 (Brezis-Haraux) (See [20] and also, e.g., [[1], Theorem 24.20].) Suppose A

and B are monotone operators on X such that A + B is maximally monotone, dom A ⊆
dom B, and B is rectangular. Then int ran(A + B) = int(ran A + ran B) and

ran(A + B) = ran A + ran B .

Bauschke et al. Fixed Point Theory and Applications 2012, 2012:53
http://www.fixedpointtheoryandapplications.com/content/2012/1/53

Page 5 of 11



Applying the Brezis-Haraux result to our given operators A and M, we obtain the

following.

Corollary 2.6 The operator A + M is maximally monotone and

ran(A + M) = �⊥ + ran A
Proof. Since each Ai is maximally monotone and recalling Theorem 2.2(i), we see that

A and M are maximally monotone. On the other hand, dom M = X. Thus, by the well

known sum theorem for maximally monotone operators (see, e.g., [[1], Corollary 24.4

(i)]), A + M is maximally monotone. Furthermore, by Theorem 2.2(ii) and (iv), M is

rectangular and ran M = Δ┴. The result therefore follows from Fact 2.5.

3 Composition
We now use Corollary 2.6 to study the composition. When m = 2, then Theorem 3.1

(v) also follows from [[21], p. 124].

Theorem 3.1 Suppose that (∀i ∈ I)0 ∈ ran(Id − Ti). Then the following hold.

(i) 0 ∈ ran(A + M).

(ii) (∀ε > 0) (∃(b, x) Î X × X) ||b|| ≤ ε and x = T(b + Rx).

(iii) (∀ε > 0) (∃(c, x) Î X × X) ||c|| ≤ ε and x = c + T(Rx).

(iv) (∀ε > 0) (∃x Î X) (∀i Î I) ||Ti-1 · · · T1xm - TiTi-1 · · · T1xm - xi-1 + xi || ≤ (2i -

1)ε, where x0 = xm.

(v) (∀ε > 0) (∃x Î X) ||x - TmTm-1 · · · T1x|| ≤ m2ε.

Proof. (i): The assumptions and (3) imply that (∀i ∈ I)0 ∈ ran Ai. Hence, 0 ∈ ran A.

Obviously, 0 Î Δ┴. It follows that 0 ∈ �⊥ + ran A. Thus, by Corollary 2.6,

0 ∈ ran(A + M).

(ii): Fix ε >0. In view of (i), there exists x Î X and b Î X such that ||b|| ≤ ε and b

Î Ax + Mx. Hence b + Rx Î (Id + A)x and thus x = JA(b + Rx) = T(b + Rx).

(iii): Let ε >0. By (ii), there exists (b, x) Î X × X such that ||b|| ≤ ε and x = T(b +

Rx). Set c = x - T(Rx) = T(b + Rx) - T(Rx). Then, since T is nonexpansive, ||c|| =

||T(b + Rx) - T(Rx)|| ≤ ||b|| ≤ ε.

(iv): Take ε >0. Then, by (iii), there exists x Î X and c Î X such that ||c|| ≤ ε and

x = c + T(Rx). Let i Î I. Then xi = ci + Tixi-1. Since ||ci|| ≤ ||c|| ≤ ε and Ti is non-

expansive, we have

‖TiTi−1 · · ·T1x0 − xi‖ ≤ ‖TiTi−1 · · ·T1x0 − Tixi−1‖ + ‖Tixi−1 − xi‖ (32a)

≤ ‖TiTi−1 · · ·T1x0 − Tixi−1‖ + ε. (32b)

We thus obtain inductively

‖TiTi−1 · · ·T1x0 − xi‖ ≤ iε. (33)

Hence,

‖Ti−1 · · ·T1x0 − xi−1‖ ≤ (i − 1)ε. (34)
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The conclusion now follows from adding (33) and (34), and recalling the triangle

inequality

(v): Let ε >0. In view of (iv), there exists x Î X such that

(∀i ∈ I) ‖Ti−1 · · ·T1xm − TiTi−1 · · ·T1xm − xi−1 + xi‖ ≤ (2i − 1)ε (35)

where x0= xm. Now set (∀i Î I) ei = Ti-1 · · · T1xm - TiTi-1 · · · T1xm - xi-1 + xi. Then

(∀i Î I)||ei|| ≤ (2i-1)ε. Set x = xm. Then

m∑
i=1

ei =
m∑
i=1

Ti−1 . . . T1xm − TiTi−1 . . . T1xm−xi−1 + xi (36)

= x − TmTm−1 . . . T1x. (37)

This, (35), and the triangle inequality imply that

‖x − TmTm−1 · · ·T1x‖ ≤
m∑
i=1

‖ei‖ ≤
m∑
i=1

(2i − 1)ε = m2ε. (38)

This completes the proof.

Corollary 3.2 Suppose that (∀i ∈ I)0 ∈ ran(Id − Ti). Then

0 ∈ ran(Id − TmTm−1 · · ·T1).
Proof. This follows from Theorem 3.1(v).

Remark 3.3 The converse implication in Corollary 3.2 fails in general: indeed, con-

sider the case when X ≠ {0}, m = 2, and v Î X \ {0}. Now set T1X ® X: x ↦ x + v and

set T2X ® X: x ↦ x - v. Then 0 /∈ ran(Id − T1) = {−v} and 0 /∈ ran(Id − T2) = {v} how-
ever, T2T1 = Id and ran(Id − T2T1) = {0}.
Remark 3.4 Corollary 3.2 is optimal in the sense that even if (∀i Î I) we have 0 Î

ran(Id - Ti), we cannot deduce that 0 Î ran(Id - TmTm-1 · · · T1): indeed, suppose that

X = R
2 and m = 2. Set C1 : = epi exp and C2 := R × {0}. Suppose further that T1 = PC1

and T2 = PC2. Then (∀i Î I) 0 Î ran(Id - Ti); however,

0 ∈ ran(Id − T2T1)\ran(Id − T2T1).

4 Asymptotic regularity
The following notions (taken from Bruck and Reich’s seminal article [22]) will be very

useful to obtain stronger results.

Definition 4.1 ((strong) nonexpansiveness and asymptotic regularity) Let S: X ®
X. Then:

(i) S is nonexpansive if (∀x Î X)(∀y Î X) ||Sx - Sy|| ≤ ||x - y||.

(ii) S is strongly nonexpansive if S is nonexpansive and whenever (xn)nÎN and (yn)

nÎN are sequences in X such that (xn - yn)nÎN is bounded and ||xn - yn||- ||Sxn -

Syn|| ® 0, it follows that (xn - yn) - (Sxn - Syn) ® 0.

(iii) S is asymptotically regular if (∀x Î X) Sn x - Sn+1x ® 0.

The following result illustrates that strongly nonexpansive mappings generalize the

notion of a firmly nonexpansive mapping. In addition, the class of strongly
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nonexpansive mappings is closed under compositions. (In contrast, the composition of

two (necessarily firmly nonexpansive) projectors may fail to be firmly nonexpansive.)

Fact 4.2 (Bruck and Reich) The following hold.

(i) Every firmly nonexpansive mapping is strongly nonexpansive.

(ii) The composition of finitely many strongly nonexpansive mappings is also strongly

nonexpansive.

Proof. (i): See [[22], Proposition 2.1]. (ii): See [[22], Proposition 1.1].

The sequences of iterates and of differences of iterates have striking convergence

properties as we shall see now. In passing, we note that Fact 4.3(i) also appears in

[[21], Theorem 3.7(b)] even in certain Banach spaces.

Fact 4.3 (Bruck and Reich) Let S: X ® X be strongly nonexpansive and let x Î X.

Then the following hold.

(i) The sequence (Sn x - Sn+1x)nÎN converges strongly to the unique element of least

norm in ran(Id − S).

(ii) If Fix S = Ø, then ||Snx||® + ∞.

(iii) If Fix S ≠ Ø, then (Snx)nÎN converges weakly to a fixed point of S.

Proof (i): See [[22], Corollary 1.5]. (ii): See [[22], Corollary 1.4]. (iii): See [[22], Corol-

lary 1.3].

Suppose S: X ® X is asymptotically regular. Then, for every x Î X, 0 ¬ Sn x - Sn+1x

= (Id - S)Sn x Î ran(Id - S ) and hence 0 ∈ ran(Id − S). The opposite implication fails

in general (consider S = - Id), but it is true for strongly nonexpansive mappings. Under

the assumption that S is firmly nonexpansive, the following result also follows from

[[23], Corollary 2].

Corollary 4.4 Let S: X ® X be strongly nonexpansive. Then S is asymptotically regu-

lar if and only if 0 ∈ ran(Id − S).

Proof. “⇒": Clear. “⇐": Fact 4.3(i).

Corollary 4.5 Set S = TmTm - 1 · · ·T1. Then S is asymptotically regular if and only if

0 ∈ ran(Id − S).

Proof Since each Ti is firmly nonexpansive, it is also strongly nonexpansiveby Fact 4.2

(i). By Fact 4.2(ii), S is strongly nonexpansive. Now apply Corollary 4.4. Alternatively,

0 ∈ ran(Id − S) by Corollary 3.2 and again Corollary 4.4 applies.

We are now ready for our first main result. When m = 2, then the conclusion also

follows from [[21], p. 124].

Theorem 4.6 Suppose that each Ti is asymptotically regular. Then TmTm - 1 · · · T1 is

asymptotically regular as well.

Proof. Theorem 3.1(v) implies that 0 ∈ ran(Id − TmTm−1 · · ·T1). The conclusion thus

follows from Corollary 4.5.

As an application of Theorem 4.6, we obtain the main result of [17].

Example 4.7 Let C1, ..., Cm be nonempty closed convex subsets of X. Then the com-

position of the corresponding projectors, PCmPCm−1 . . . PC1 is asymptotically regular.
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Proof. For every i Î I, the projector PCi is firmly nonexpansive, hence strongly nonex-

pansive, and Fix PCi = Ci �= ∅. Suppose that (∀i ∈ I)Ti = PCi, which is thus asymptoti-

cally regular by Corollary 4.4. Now apply Theorem 4.6.

5 Convex combination
In this section, we use our fixed weights (li)iÎI (see (12)) to turn Xm into a Hilbert pro-

duct space different from X considered in the previous sections. Specifically, we set

Y: = Xm with
〈
x,y

〉
=

∑
i∈I

λi
〈
xi, yi

〉
(39)

so that ||x||2 = ∑iÎI li||xi||
2. We also set

Q: Xm → Xm : x �→ (x̄)i ∈ I, where x̄ :=
∑
i∈I

λixi. (40)

Fact 5.1 (See [[1], Proposition 28.13].) In the Hilbert product space Y we have PΔ =

Q.

Corollary 5.2 In the Hilbert product space Y the operator Q is firmly nonexpansive

and strongly nonexpansive. Furthermore, Fix Q = Δ ≠ Ø, 0 Î ran(Id -Q), and Q is

asymptotically regular.

Proof By Fact 5.1, the operator Q is equal to the projector PΔ and hence firmly non-

expansive. Now apply Fact 4.2(i) to deduce that Q is strongly nonexpansive. It is clear

that Fix Q = Δ and that 0 Î ran(Id - Q). Finally, recall Corollary 4.4 to see that Q is

asymptotically regular.

Proposition 5.3 In the Hilbert product space Y the operator T is firmly

nonexpansive.

Proof. Since each Ti is firmly nonexpansive, we have (∀x = (xi)iÎI Î Y)(∀y = (yi)iÎI Î
Y) ||Tixi - Tiyi||

2 ≤ 〈xi - yi, Tixi - Tiyi〉 ⇒ ||Tx - Ty||2 = ∑iÎI li||Tixi - Tiyi||
2 ≤ ∑iÎI li〈xi

- yi, Tixi - Tiyi〉 = 〈x - y, Tx - Ty〉.

Theorem 5.4 Suppose that (∀i ∈ I)0 ∈ ran(Id − Ti). Then the following hold in the

Hilbert product space Y.

(i) 0 ∈ ran(Id − T).

(ii) T is asymptotically regular.

(iii) Q ○ T is asymptotically regular.

Proof. (i): This follows because (∀x = (xi)iÎI) ||x - Tx||2 = ∑iÎI li||xi - Tixi||
2.

(ii): Combine Fact 4.2(i) with Corollary 4.4.

(iii): On the one hand, Q is firmly nonexpansive and asymptotically regular by Cor-

ollary 5.2. On the other hand, T is firmly nonexpansive and asymptotically regular

by Proposition 5.3 and Theorem 5.4(ii). Altogether, the result follows from Theo-

rem 4.6.

We are now ready for our second main result, which concerns convex combinations

of firmly nonexpansive mappings. For further results in this direction-namely convex
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combinations of strongly nonexpansive mappings in Banach spaces-we refer the reader

also to [24].

Theorem 5.5 Suppose that each Ti is asymptotically regular. Then ∑iÎI liTi is asymp-

totically regular as well.

Proof. Set S : = ∑iÎI liTi. Fix x0 Î X and set (∀n Î N) xn + 1 = Sxn. Set x0 = (x0)iÎI Î
Xmand (∀n Î N) xn + 1 = (Q ○ T)xn. Then (∀n Î N) xn = (xn)iÎI. Now Q ○ T is

asymptotically regular by Theorem 5.4(iii); hence, xn - xn + 1 = (xn - xn + 1)iÎI ® 0.

Thus, xn - xn + 1 ® 0 and therefore S is asymptotically regular.

Remark 5.6 Theorem 5.5 extends [[18], Theorem 4.11] from Euclidean to Hilbert

space. One may also prove Theorem 5.5 along the lines of the article [18]; however,

that route takes longer.

Remark 5.7 Similarly to Remark 3.4, one cannot deduce that if each Ti has fixed

points, then ∑iÎI liTi has fixed points as well: indeed, consider the setting described in

Remark 3.4 for an example.

We conclude this article by showing that we truly had to work in Y and not in X;

indeed, viewed in X, the operator Q is generally not even nonexpansive.

Theorem 5.8 Suppose that X ≠ {0}. Then the following are equivalent in the Hilbert

product space X.

(i) (∀i Î I) li = 1/m.

(ii) Q coincides with the projector PΔ.

(iii) Q is firmly nonexpansive.

(iv) Q is nonexpansive.

Proof. “(i)⇒(ii)": [[1], Proposition 25.4(iii)]. “(ii)⇒(iii)": Clear. “(iii)⇒(iv)": Clear.

“(iv)⇒(i)": Take e Î X such that ||e|| = 1. Set x : = (lie)iÎI and y :=
∑

i∈Iλ2
i e. Then Qx =

(y)iÎI. We compute ‖Qx‖2 = m
∥∥y∥∥2 = m

(∑
i∈Iλ2

i

)2 and ‖x‖2 =
∑

i∈Iλ2
i . Since Q is non-

expansive, we must have that ||Qx||2 ≤ ||x||2, which is equivalent to

m

(∑
i∈I

λ2
i

)2

≤
∑
i∈I

λ2
i (41)

and to

m
∑
i∈I

λ2
i ≤ 1. (42)

On the other hand, applying the Cauchy-Schwarz inequality to the vectors (li)iÎI and
(1)iÎI in ℝm yields

1 = 12 =

(∑
i∈I

λi · 1
)2

≤ ∥∥(λi)i∈I
∥∥2∥∥(1)i∈I∥∥2 = m

∑
i∈I

λ2
i . (43)

In view of (42), the Cauchy-Schwarz inequality (43) is actually an equality which

implies that (li)iÎI is a multiple of (1)iÎI. We deduce that (∀i Î I) li = 1/m.

Endnotes
aker B = B-1 0 = {x Î X | Bx = 0 } denotes the kernel (or nullspace) of B.

Bauschke et al. Fixed Point Theory and Applications 2012, 2012:53
http://www.fixedpointtheoryandapplications.com/content/2012/1/53

Page 10 of 11



bHere and elsewhere we write Sn for the n-fold composition of an operator S.
cRecall that the Fenchel conjugate of a function f defined on X is given by f * : x* ®

supxÎX (〈x, x*〉-f(x)).
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