
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 14, No. 2, pp. 541-559, April 2010

This paper is available online at http://www.tjm.nsysu.edu.tw/

ITERATIVE ALGORITHMS FOR NONEXPANSIVE MAPPINGS

ON HADAMARD MANIFOLDS

Chong Li1,∗, Genaro López2 and Victoria Mart́ ln-Márquez3

Abstract. Two iterative algorithms for nonexpansive mappings on Hadamard

manifolds, which are extensions of the well-known Halpern’s and Mann’s

algorithms in Euclidean spaces, are proposed and proved to be convergent to

a fixed point of the mapping. Some numerical examples are provided.

1. INTRODUCTION

Many practical problems can be formulated as a fixed point problem

(1.1) x = Tx,

where T is a nonlinear operator. The solutions of this equation are called fixed

points of T . If T is a self-contraction defined on a complete metric space X ,
Banach contraction principle sets up that, for any x ∈ X , the sequence of iterates
{Tnx} converges strongly to a solution to (1.1). If the mapping T is nonexpansive

we must assume additional conditions to assure the existence of fixed point of T and,
even when a fixed point exists, the sequence of iterates in general does not converge

to a fixed point. This fact has motivated that the study of the asymptotic behavior

of nonexpansive mappings is one of the most active research areas in nonlinear

analysis. Most of the research have focused on the case when T is a self-mapping

defined on a convex subset K of a normed linear space and basically two types of

algorithms has been considered: Halpern’s and Mann’s algorithms.
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Let u, x0 ∈ K and a sequence {αn} ⊂ (0, 1) be given. Halpern’s algorithm
presented in [12] generates a sequence via the formula

(1.2) xn+1 = αnu + (1− αn)Txn, n ≥ 0.

A strong effort has been dedicated to the study of the convergence of this

sequence, see [12, 18, 30, 24, 31, 3, 27] and references therein, but the full picture

is still not clear (cf.[32]).

Mann’s algorithm generates a sequence via the following iteration

(1.3) xn+1 = αnxn + (1 − αn)Txn, n ≥ 0.

In the case when a fixed point exists, while Halpern iteration converges strongly,

we just get weak convergence for Mann iteration. See [9] for example. Conditions

for the convergence of the algorithm can be found in [19, 13, 23, 8, 31]. Some

modifications have been proposed in [20, 14] to get strong convergence.

Because of the convex structure of both algorithms, few results have been ob-

tained out of the setting of linear spaces. Our interest here is to develop a theory of

fixed point approximation for nonexpansive mappings in Hadamard manifolds (i.e.

complete simply connected Riemannian manifolds of nonpositive curvature). Exten-

sions to Riemannian manifolds of concepts and techniques which fit in Euclidean

spaces are natural. Actually, in the recent years, some algorithms for solving vari-

ational inequalities and minimization problems which involves monotone operators

have been extended from the Hilbert space framework to the more general setting

of Riemannian manifolds (cf. [28, 5, 21, 6, 7]).

For Mann’s algorithm, some results had been obtained previously in Hyperbolic

metric spaces, see [15, 10, 11, 25]. This class of spaces includes Hadamard mani-

folds and the Hilbert ball equipped with the hyperbolic metric as special cases. For

Halpern’s algorithm the only precedent, as far as we know, is a result in [16] by

W. A. Kirk of convergence for an implicit algorithm in the more abstract setting of

geodesic spaces.

The organization of the paper is as follows. In section 2 we introduce some

basic concepts, results and notations on Riemannian manifolds. In sections 3 and

4, we prove some properties of the metric defined on Hadamard manifolds and

convergence results for Halpern’s and Mann’s algorithms. Finally, section 5 is

devoted to some numerical examples to illustrate applications of the results in the

present paper.

2. PRELIMINARIES

In this section we introduce some fundamental definitions, properties and nota-

tions of Riemannian manifolds, which can be found in any textbook, for example,

[4, 26].
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Let M be a connected m-dimensional manifold and let p ∈ M . We use TpM

to denote the tangent space of M at p. We always assume that M can be endowed

with a Riemannian metric 〈., .〉, with the corresponding norm denoted by ‖.‖, to
become a Riemannian manifold. Given a piecewise smooth curve c : [a, b] → M
joining p to q (i.e. c(a) = p and c(b) = q), we define the length of c by using the

metric as L(c) =
∫ b
a ‖c′(t)‖dt. Then the Riemannian distance d(p, q) is defined to

be the minimal length over the set of all such curves joining p to q, which induces
the original topology on M .

Let ∇ be the Levi-Civita connection associated to (M, 〈, 〉). Let c be a smooth
curve. A smooth vector field X along c is said to be parallel if ∇c′X = 0. If
c′ itself is parallel, we say that c is a geodesic, and in this case ‖c′‖ is constant.
Furthermore, if ‖c′‖ = 1, c is called normalized. A geodesic joining p to q in M is

said to be a minimal geodesic if its length equals d(p, q).
A Riemannian manifold is complete if for any p ∈ M all geodesics emanating

from p are defined for all −∞ < t < ∞. By the Hopf-Rinow Theorem we know
that if M is complete then any pair of points in M can be joined by a minimizing

geodesic. Moreover, (M, d) is a complete metric space, and bounded closed subsets
are compact.

Assuming thatm is complete, the exponential map expp : TpM →M at p∈M is

defined by expp v=γv(1, p) for each v∈TpM , where γ(.)=γv(., p) is the geodesic
starting at p with velocity v. Then expp tv = γv(t, p) for each real number t.

A complete simply connected Riemannian manifold of nonpositive sectional

curvature is called a Hadamard manifold. Throughout the remainder of the paper, we

will always assume that M is a m-dimensional Hadamard manifold. The following

result is well-known and will be useful.

Proposition 2.1. [26]. Let p ∈ M . Then expp : TpM → M is a diffeomor-

phism, and for any two points p, q ∈ M there exists a unique normalized geodesic

joining p to q, which is in fact a minimal geodesic.

This proposition says thatM is diffeomorphic to the Euclidean space Rm. Then,

M has the same topology and differential structure as Rm. Moreover, Hadamard

manifolds and Euclidean spaces have some similar geometrical properties. Some of

them are described in the following propositions.

A geodesic triangle ∆(p1, p2, p3) of a Riemannian manifold is a set consisting
of three points p1, p2 and p3, and three minimal geodesics γi joining pi to pi+1,

with i = 1, 2, 3 (mod 3).

Proposition 2.2. [26] (Comparison theorem for triangles). Let ∆(p1, p2, p3) be
a geodesic triangle. Denote, for each i = 1, 2, 3 (mod 3), by γi : [0, li] → M the

geodesic joining pi to pi+1, and set li :=L(γi), αi := ∠(γ ′
i(0),−γ ′

i−1(li−1)). Then
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(2.1) α1 + α2 + α3 ≤ π,

(2.2) l2i + l2i+1 − 2lili+1 cosαi+1 ≤ l2i−1.

In terms of the distance and the exponential map, the inequality (2.2) can be

rewritten as

(2.3) d2(pi, pi+1) + d2(pi+1, pi+2) − 2〈exp−1
pi+1

pi, exp−1
pi+1

pi+2〉 ≤ d2(pi−1, pi),

since

〈exp−1
pi+1

pi, exp−1
pi+1

pi+2〉 = d(pi, pi+1)d(pi+1, pi+2) cosαi+1.

A subset K ⊆ M is said to be convex if for any two points p and q in K, the
geodesic joining p to q is contained in K, that is, if γ : [a, b] → M is a geodesic

such that p = γ(a) and q = γ(b), then γ((1− t)a+ tb) ∈ K for all t ∈ [0, 1]. From
now K will denote a nonempty, closed and convex set in M .

A real-valued function f defined on M is said to be convex if for any geodesic

γ of M , the composition function f ◦ γ : R → R is convex, that is,

(f ◦ γ)(ta + (1− t)b) ≤ t(f ◦ γ)(a) + (1− t)(f ◦ γ)(b)

for any a, b ∈ R, and 0 ≤ t ≤ 1.

Proposition 2.3. [26]. Let d : M × M → R be the distance function. Then d
is a convex function with respect to the product Riemannian metric, i.e. given any

pair of geodesics γ1 : [0, 1] → M and γ2 : [0, 1] → M the following inequality

holds for all t ∈ [0, 1]:

d(γ1(t), γ2(t)) ≤ (1− t)d(γ1(0), γ2(0)) + td(γ1(1), γ2(1)).

In particular, for each p ∈ M , the function d(·, p) : M → R is a convex function.

Let PK denote the projection onto K defined by

PK(p) = {p0 ∈ K : d(p, p0) ≤ d(p, q) for all q ∈ K}, ∀p ∈ M.

Proposition 2.4. [29]. For any point p ∈ M , PK(p) is a singleton and the
following inequality holds for all q ∈ K:

〈exp−1
PK(p) p, exp−1

PK(p) q〉 ≤ 0.

3. HALPERN’S ALGORITHM IN HADAMARD MANIFOLDS

Let K be a closed convex subset ofM and T : K→K a mapping. We say that
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T is nonexpansive if for any two points x, y ∈ K the following inequality holds:

d(T (x), T (y))≤ d(x, y).

In order to solve the important problem of finding a fixed point of T , Kirk pro-
vided in [16] an implicit algorithm for approximating fixed points of nonexpansive

mappings in more general metric spaces called geodesic spaces which contain the

class of Hadamard manifolds. Applying the general result by Kirk to Hadamard

manifolds, one has the following result. Let Fix(T ) denote the set of all fixed
points of T .

Theorem 3.1. [16]. Suppose that K is a bounded closed convex subset of M
and T : K → K is nonexpansive. Let x ∈ K, and for each t ∈ [0, 1) let xt be the

unique point such that

xt ∈ [x, T (xt)] and d(x, xt) = td(x, T (xt))

(which exists by Banach contraction principle). Then limt→1− xt = x, the unique

nearest point to x in Fix(T ).

In an Euclidean space Rn, this iteration scheme turns into xt = (1−t)x+tT (xt),
which coincides with the implicit Browder’s iteration:

xt = tx + (1− t)T (xt),

which, as t → 0+, converges strongly to the fixed point of T which is the nearest to

x in Fix(T ), even in any uniformly smooth space (except that the limit is a certain
retraction different from the projection). See [2] and [24] for more details.

There exists a lot of research about the convergence of the explicit Halpern’s

iteration (1.2) in a Banach spaceX . Below we present an analogue of this algorithm

for approximating fixed point for nonexpansive mappings on Hadamard manifolds,

which coincides with the Halpern’s one in the particular case of an Euclidean space.

Let x0, u ∈ M and let {αn} ⊂ (0, 1). Consider the iteration scheme

(3.1) xn+1 = expu(1− αn) exp−1
u T (xn), ∀n ≥ 0;

or equivalently,

xn+1 = γn(1 − αn), ∀n ≥ 0,

where γn : [0, 1] → M is the geodesic joining u to T (xn) (i.e. γ(0) = u and

γ(1) = T (xn)).
In order to prove the convergence of the sequence generated by the algorithm

(3.1) we first need some lemmas.
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Lemma 3.2. [31]. Let {βn} and {bn} be the sequences satisfying the following
conditions.

(i) {βn} ⊂ [0, 1],
∑

n βn = ∞;

(ii) lim supn→∞ bn ≤ 0.

Let {an} be a sequence of non-negative real numbers such that

an+1 ≤ (1 − βn)an + βnbn, n ≥ 0.

Then limn→∞ an = 0.

Lemma 3.3. [1, p. 24]. Let ∆(p, q, r) be a geodesic triangle in M Hadamard

manifold. Then, there exists p′, q′, r′ ∈ R2 such that

d(p, q) = ‖p′ − q′‖, d(q, r) = ‖q′ − r′‖, d(r, p) = ‖r′ − p′‖

The triangle∆(p′, q′, r′) is called the comparison triangle of the geodesic triangle
∆(p, q, r), which is unique up to isometry of M . The following lemma can be

proved from element geometry. This is also a direct application of the Alexandrov’s

Lemma in R2 (see [1, p. 25]).

Lemma 3.4. Consider four distinct points p, q, r, z ∈ R2. Suppose that p and q
lie on opposite sides of the line through r and z. Consider the triangles ∆(r, p, z)
and ∆(r, q, z). Let β be the angle of ∆(r, q, z) at the vertex q, and let θ1 and θ2

be the angles of ∆(r, p, z) and ∆(r, q, z) at the vertex z, respectively. Let q′ be

the point such that d(r, q′) = d(r, q) and d(p, q′) = d(p, z)+ d(z, q). Let β′ be the
angles of ∆(r, p, q′) at the vertex q′ (see Figure 3.1). If θ1 + θ2 ≥ π, then

β ≤ β′.

Fig. 3.1
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The next result shows the relation between a geodesic triangle and its comparison

triangle involving angles and distances between points.

Lemma 3.5. Let ∆(p, q, r) be a geodesic triangle in a Hadamard manifoldM

and ∆(p′, q′, r′) be its comparison triangle.

(1) Let α, β, γ (resp. α′, β′, γ ′) be the angles of ∆(p, q, r) (resp. ∆(p′, q′, r′)) at
the vertices p, q, r (resp. p′, q′, r′). Then, the following inequalities hold:

(3.2) α′ ≥ α, β′ ≥ β, γ ′ ≥ γ.

(2) Let z be a point in the geodesic joining p to q and z′ its comparison point in

the interval [p′, q′]. Suppose that d(z, p) = ‖z′− p′‖ and d(z, q) = ‖z′− q′‖,
see Figure 3.2. Then the following inequality holds:

(3.3) d(z, r) ≤ ‖z′ − r′‖.

Fig. 3.2

Proof.

(1) We only prove the inequality β′ ≥ β. To do this, consider the triangle

∆(p′, q′, r′) in R2. Then, by the law of cosines we have that

‖r′ − q′‖2 + ‖q′ − p′‖2 − 2‖r′ − q′‖‖q′ − p′‖ cosβ′ = ‖r′ − p′‖2.

By (2.2), one has that

d2(r, q) + d2(q, p)− 2d(r, q)d(q, p) cosβ ≤ d2(r, p).

It follows from Lemma 3.3 that

cosβ ≤ cos β′,

and β′ > β because β, β′ ∈ [0, π].
(2) We fix a geodesic joining z to r. Let θ1 and θ2 denote respectively the angles

of ∆(r, p, z) and ∆(r, q, z) at the vertex z. Let β and β′ be the angles of

∆(r, p, q) and ∆(r′, p′, q′) at the vertex q and q′ respectively. See Figure 3.2.
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Consider comparison triangles ∆(r̄, p̄, z̄) and ∆(r̄, q̄, z̄) for the geodesic trian-
gles ∆(r, p, z) and ∆(r, q, z) respectively, such that they share the same edge [r̄, z̄],
and p̄, q̄ lie on opposite sides of the line which passes through r̄ and z̄. Let θ̄1 and

θ̄2 be the angles of ∆(r̄, p̄, z̄) and ∆(r̄, q̄, z̄) at the vertex z̄, respectively. Denote β̄
the angle at the vertex q̄. From the inequalities (3.2) we deduce that

θ̄1 + θ̄2 ≥ θ1 + θ2 = π.

Thus Lemma 3.4 is applicable to getting that β̄ ≤ β′. Therefore, using the law of
cosines, we have d(z, r) ≤ ‖z′ − r′‖.

For the main theorem of this section, we consider the following hypothesis:

(H1) limn→∞ αn = 0;
(H2)

∑
n≥0 αn = ∞;

(H3)
∑

n≥0 |αn+1 − αn| < ∞;
(H4) limn→∞(αn − αn−1)/αn = 0.

Theorem 3.6. Let K be a closed convex subset of M and T : K → K a

nonexpansive mapping with F := Fix(T ) 6= ∅. Let u, x0 ∈ M . Suppose that

{αn} ∈ (0, 1) satisfies (H1), (H2) and, (H3) or (H4). Then the sequence {xn}
generated by the algorithm (3.1) converges to PF (u).

Proof. Let n ≥ 0 and let γn : [0, 1] → M denote the geodesic joining u to
T (xn). We divide the proof into four steps.

Step 1. {xn} and {T (xn)} are bounded.
Since the boundedness of {T (xn)} is a direct consequence of that of {xn},

below we only prove the boundedness of {xn}. For this purpose, take x ∈ F and

fix n. Then, by the convexity of the distance function and the nonexpansivity of T ,
we have that

d(xn+1, x) = d(γn(1 − αn), x)

≤ αnd(γn(0), x) + (1 − αn)d(γn(1), x)

= αnd(u, x) + (1 − αn)d(T (xn), x)

≤ αnd(u, x) + (1 − αn)d(xn, x).

Then the boundness of {xn} is seen to hold by mathematical induction.

Step 2. limn→∞ d(xn+1, xn) = 0.
By Step 1, we can find a constant C such that

(3.4) d(xn, xn−1) ≤ C and d(u, T (xn)) ≤ C, ∀n ≥ 0.
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Using the convexity of the distance function, we have that, for each n ≥ 0,

(3.5)

d(xn+1, xn) = d(γn(1 − αn), γn−1(1− αn−1))

≤ d(γn(1 − αn), γn−1(1− αn))

+d(γn−1(1− αn), γn−1(1 − αn−1))

≤ (1−αn)d(T (xn), T (xn−1))+|αn−αn−1|d(u, T (xn−1)).

This together with (3.4) and the nonexpansivity of T implies that

(3.6) d(xn+1, xn) ≤ (1− αn)d(xn, xn−1) + C|αn − αn−1|, ∀n ≥ 0.

Thus, if (H4) holds, we apply Lemma 3.2 (with βn = αn and bn = C|αn−αn−1|/αn

for each n) to conclude that limn→∞ d(xn+1, xn) = 0. As to the case when (H3)
holds, let k ≤ n. By (3.6), one gets that

d(xn+1, xn) ≤
n∏

i=k

(1− αi)d(xk, xk−1) + C

n∑

i=k

|αi − αi−1|

≤ C

n∏

i=k

(1− αi) + C

n∑

i=k

|αi − αi−1|.

Letting n → ∞ implies that,

(3.7) lim
n→∞

d(xn+1, xn) ≤ C

∞∏

i=k

(1− αi) + C

∞∑

i=k

|αi − αi−1|.

Condition (H2) implies that limk→∞
∏∞

i=k(1 − αi) = 0; while condition (H3)
implies that limk→∞

∑∞
i=k |αi −αi−1| = 0. Hence, letting k → ∞ in (3.7), we get

limn→∞ d(xn+1, xn) = 0 in the case when (H3) holds.

Step 3. lim supn→∞〈exp−1
PF (u) u, exp−1

PF (u) T (xn)〉 ≤ 0.
By Step 1, {〈exp−1

PF (u)
u, exp−1

PF (u)
T (xn)〉} is bounded; hence its upper limit

exists. Thus we can find a subsequence {nk} of {n} such that

(3.8) lim sup
n→∞

〈exp−1
PF (u) u, exp−1

PF (u)T (xn)〉= lim
k→∞

〈exp−1
PF (u) u, exp−1

PF (u)T (xnk
)〉.

Without loss of generality, we may assume that xnk
→ x̄ for some x̄ ∈ M because

{xn} is bounded by Step 1. By the convexity of the distance function and the
definition of the algorithm,

d(xnk+1, T (xnk
)) ≤ αnk

d(u, T (xnk
)).
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Since{d(u, T (xnk
))}is bounded by Step 1,it follows thatlimk→∞d(xnk+1,T (xnk

))=0
asαnk

→ 0 by (H1). Noting that

d(xnk
, T (xnk

)) ≤ d(xnk+1, xnk
) + d(xnk+1, T (xnk

)),

one sees that limn→∞ d(xnk
, T (xnk

)) = 0. Therefore

d(x̄, T (x̄)) ≤ d(x̄, xnk
) + d(xnk

, T (xnk
)) + d(T (xnk

), T (x̄)) → 0,

which means that x̄∈F . Then, Proposition 2.4 implies that 〈exp−1
PF (u)

u,exp−1
PF (u)

x̄〉≤0
and so

lim
k→∞

〈exp−1
PF (u) u, exp−1

PF (u) T (xnk
)〉 = 〈exp−1

PF (u) u, exp−1
PF (u) x̄〉 ≤ 0.

Combining this with (3.8), we complete the proof of Step 3.

Step 4. limn→∞ d(xn, PFu) = 0.
Write

bn = αnd(u, PFu) + 〈exp−1
PF (u) u, exp−1

PF (u) T (xn)〉, ∀n ≥ 0.

Then limn→∞ bn ≤ 0 by Step 3. Thus, by Lemma 3.2, it suffices to verify that

(3.9) d2(xn+1, PF u) ≤ (1− αn)d2(xn, PFu) + αnbn, ∀n ≥ 0.

To this end, we fix n ≥ 0 and set p = T (xn), q = PF u. Consider the geodesic
triangle ∆(u, p, q) and its comparison triangle ∆(u′, p′, q′). Then

d(u, PFu) = d(u, q) = ‖u′ − q′‖ and d(T (xn), PF u) = d(p, q) = ‖p′ − q′‖.

Recall from (3.1) that xn+1 = expu(1−αn) exp−1
u T (xn) = expu(1−αn) exp−1

u p.
The comparison point of xn+1 is x′

n+1 = αnu′ + (1− αn)p′. Let β and β′ denote
the angles at q and q′, respectively. Then β ≤ β′ by Lemma 3.5 (1) and so

cos β′ ≤ cosβ. Then, by Lemma 3.5 (2) we have

d2(xn+1, PFu)
≤ ‖x′

n+1 − q′‖2

= ‖αn(u′ − q′) + (1− αn)(p′ − q′)‖2

= α2
n‖u′ − q′‖2 + (1 − αn)2‖p′ − q′‖2 + 2αn(1− αn)‖u′ − q′‖‖p′ − q′‖ cosβ′

≤ α2
nd2(u, PFu) + (1 − αn)2d2(T (xn), PF u)

+2αn(1− αn)d(u, PFu)d(T (xn), PFu) cosβ

≤ (1− αn)d2(xn, PFu) + αn

(
αnd(u, PFu) + 〈exp−1

PF (u) u, exp−1
PF (u) T (xn)〉

)
.

Hence (3.9) is proved and the proof is complete.
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4. MANN’S ALGORITHM IN HADAMARD MANIFOLDS

In the case when K is a closed convex subset of a normed linear space X and

T : K → K a nonexpansive mapping, for {αn} ⊂ [0, 1], the iteration process {xn}
defined by the algorithm

(4.1) xn+1 = αnxn + (1− αn)T (xn), ∀n ≥ 0

was introduced by Mann in [19] and is known as Mann’s iteration for finding fixed

points of nonexpansive mappings. Ishikawa proved in [13] that if 0 < a ≤ αn < 1
and

∑∞
n=1 αn = ∞, then ‖xn − T (xn)‖ → 0 as n → ∞, which implies the

convergence of {xn} to a fixed point of T if the range of T lies in a compact subset
of X . In 1979, Reich obtained in [23] the weak convergence of the sequence in

a uniformly convex space with a Fréchet differentiable norm under the assumption

that {αn} ⊂ (0, 1) and
∑∞

n=1 αn(1 − αn) = ∞. For further results see [8] and
references therein.

An extension of Mann’s iteration (4.1) and its convergence results to the frame-

work of metric spaces (X, d) is due to Goebel and Kirk [15, 10] and Reich-Shafrir
[25], who provided an iterative method for finding fixed points of nonexpansive

mappings on spaces of hyperbolic type, which include Hadamard manifolds as spe-

cial cases. The iteration algorithm is defined by

(4.2) xn+1 ∈ [xn, T (xn)] such that d(xn, T (xn)) = (1 − αn)d(xn, xn+1),

where {αn} ⊂ (0, 1). In particular, under the assumption that {αn} is bounded
away from 0 and 1, Reich and Shafrir proved the convergence of this iteration to
a fixed point of T . Goebel and Reich [11] studied the behavior of the sequence

of the iterates xn+1 = T (xn) in Hyperbolic metric spaces for firmly nonexpansive
mappings.

Motivated by these results, we continue to consider Mann’s iteration (4.2) in

Hadamard manifolds M , which has the following form

(4.3) xn+1 = expxn
(1 − αn) exp−1

xn
T (xn), ∀n ≥ 0,

and study the convergence of Mann’s iteration (4.2) for nonexpansive mappings

T : M → M but without assuming that {αn} is bounded away from 0 and 1. In
fact, we will prove in Theorem 4.3 that the sequence {xn} generated by Mann’s
iteration (4.2) in Hadamard manifolds converges to a fixed point of T only if {αn}
satisfies the following condition:

(4.4)

∞∑

n=0

αn(1− αn) = ∞.

For this purpose, some definitions and results are necessary at first.
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Definition 4.1. Let X be a complete metric space and F ⊂ X be a nonempty

set. A sequence {xn} ⊂ X is called Fejér convergent to F if

d(xn+1, y) ≤ d(xn, y)

for all y ∈ F and n ≥ 0.

Lemma 4.2. [7]. Let X be a complete metric space. If {xn} ⊂ X is Fejér

convergent to a nonempty set F ⊂ X , then {xn} is bounded. Moreover, if a cluster
point x of {xn} belongs to F , then {xn} converges to x.

Now we are ready to prove the main theorem of this section.

Theorem 4.3. Let K be a closed convex subset of M and T : K → K a

nonexpansive mapping with F := Fix(T ) 6= ∅. Suppose that {αn} ⊂ (0, 1) satisfy
the condition (4.4). Let x0 ∈ M and let {xn} be the sequence generated by the
algorithm (4.3). Then {xn} converges to a fixed point of T .

Proof. Note that K itself is a complete metric space. Thus, by Lemma

4.2, it suffices to verify that {xn} is Fejér convergent to F and that all cluster

points of {xn} belong to F . For this purpose, let n ≥ 0 and p ∈ F be fixed. Let

γ : [0, 1] → M denote the geodesic joining xn to T (xn). Then xn+1 = γ(1− αn).
By the convexity of the distance function and the nonexpansivity of T , we have

d(xn+1, p) = d(γ(1− αn), p) ≤ αnd(xn, p) + (1 − αn)d(T (xn), p) ≤ d(xn, p).

Hence {xn} is Fejér convergent to F . Now let x be a cluster point of {xn}. Then
there exists a subsequence {nk} of {n} such that xnk

→ x. Below we prove that

(4.5) lim
n→∞

d(xn, T (xn)) = 0.

Granting this, one has that

d(x, T (x)) ≤ d(x, xnk
) + d(xnk

, T (xnk
)) + d(T (xnk

), T (x))

≤ 2d(xnk
, x) + d(xnk

, T (xnk
)),

Taking limit, we obtain that d(x, Tx) = 0, which means that x ∈ F , and completes

the proof.

To show (4.5), let p ∈ F and n ≥ 0. Let ∆(xn, q, p) be the geodesic
triangle with vertices xn, q := T (xn) and p. From Lemma 3.3 there exists a

comparison triangle ∆(x′
n, q′, p′) which conserve the length of the edge. Recall



Iterative Algorithms for Nonexpansive Mappings on Hadamard Manifolds 553

that xn+1 = γ(1−αn). Set x′
n+1 := (1−αn)x′

n +αnT (xn)′ = (1−αn)x′
n +αnq′

be its comparison point. By Lemma 3.5 (2),

d2(xn+1, p) ≤ ‖x′
n+1 − p′‖2

= ‖αn(x′
n − p′) + (1− αn)(q′ − p′)‖2

= αn‖x′
n − p′‖2 + (1− αn)‖q′ − p′‖2 − αn(1 − αn)‖x′

n − q′‖2

= αnd2(xn, p) + (1 − αn)d2(T (xn), p)− αn(1 − αn)d2(xn, T (xn))

≤ d2(xn, p)− αn(1 − αn)d2(xn, T (xn)).

It follows that

αn(1 − αn)d2(xn, T (xn)) ≤ d2(xn, p)− d2(xn+1, p)

and

(4.6)

∞∑

n=1

αn(1− αn)d2(xn, T (xn)) < ∞,

which implies that

(4.7) lim inf
n→∞

d(xn, T (xn)) = 0

because otherwise, d(xn, T (xn)) ≥ a ∀n ≥ 0 for some a > 0, and then,

∞∑

n=1

αn(1− αn)d(xn, T (xn)) ≥ a

∞∑

n=1

αn(1− αn) = ∞

which is a contradiction with (4.6).

On the other hand, using the nonexpansivity of T and the convexity of the

distance function,

d(xn+1, T (xn+1)) ≤ d(xn+1, T (xn)) + d(T (xn), T (xn+1))

≤ d(xn+1, T (xn)) + d(xn, xn+1)

≤ αnd(xn, T (xn)) + (1− αn)d(xn, T (xn))

= d(xn, T (xn)).

This means that {d(xn, T (xn))} is a monotone sequence. Combining this and (4.7)
completes the proof of (4.5).



554 Chong Li, Genaro López and Victoria Mart́ln-Márquez

5. NUMERICAL EXAMPLE

Let Em,1 denote the vector space Rm+1 endowed with the symmetric bilinear

form (which is called the Lorentz metric) defined by

〈x, y〉 =
m∑

i=1

xiyi − xm+1ym+1, ∀x = (xi), y = (yi) ∈ Rm+1.

The hyperbolic m-space Hm is defined by

{x = (x1, ..., xm+1) ∈ Em,1 : 〈x, x〉 = −1, xm+1 > 0},

that is the upper sheet of the hyperboloid {x ∈ Em,1 : 〈x, x〉 = −1}. Note that
xm+1 ≥ 1 for any x ∈ Hm, with equality if and only if xi = 0 for all i = 1, ..., m.

The metric of Hm is induced from the Lorentz metric 〈·, ·〉 and it will be denoted
by the same symbol. Then Hm is a Hadamard manifold with sectional curvature

−1 (cf. [1] and [6]). Furthermore, the normalized geodesic γ : R → Hmstarting

from x ∈ Hm is given by

(5.1) γ(t) = (cosh t)x + (sinh t)v, ∀t ∈ R,

where v ∈ TxHm is a unit vector; while the distance d on Hm is

(5.2) d(x, y) = arccosh(−〈x, y〉), ∀x, y ∈ Hm.

Then, the exponential map can be expressed as

expx(rv) = (cosh r)x + (sinh r)v,

for any r ∈ R+, x ∈ Hm and any unit vector v ∈ TxHm. To get the expression of

the inverse exponential map, we write for any x, y ∈ Hm,

y = expx

(
d(x, y)

exp−1
x y

d(x, y)
)

= (coshd(x, y))x + (sinh d(x, y))
exp−1

x y

d(x, y)
.

Therefore, by definition of the distance (5.2), we obtain

exp−1
x y = arccosh(−〈x, y〉) y + 〈x, y〉x√

〈x, y〉2 − 1
, ∀x, y ∈ Hm.

Thus, using these expressions, both algorithms in previous sections can be formu-

lated in a simple way in the hyperbolic space Hm. Write

r(x, y) = arccosh(−〈x, T (y)〉)
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and

V (x, y) =
T (y) + 〈x, T (y)〉x√

〈x, T (y)〉2 − 1
.

Then Halpern’s algorithm (3.1) has the form

xn+1 = (cosh(1 − αn)r(u, xn))u + (sinh(1 − αn)r)V (u, xn), ∀n ≥ 0;

while Mann’s algorithm (4.3) has the form

xn+1 = (cosh(1 − αn)r(xn, xn)xn + (sinh(1 − αn)r)V (xn, xn), ∀n ≥ 0.

We end this paper with an example of H3, where these methods are implemented

for two concrete operators.
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Example 5.1. Let M = H3 and let T1, T2 : M → M be the nonexpansive

mappings respectively defined by

T1(x) = (−x1,−x2,−x3, x4)

and

T2(x) = (−x1, x2, x3, x4),

for any x = (x1, x2, x3, x4) ∈ H3. Then Fix(T1) = {(0, 0, 0, 1)} and

Fix(T2) = {(x1, x2, x3, x4) ∈ H3 : x1 = 0, x2
2 + x2

3 = x2
4 − 1}.

For both algorithms we are going to consider the sequence of parameters αn =
1

n+3 for each n = 0, 1, · · · , and the point
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u = (0.60379247919382, 0.27218792496996, 0.19881426776106,1.21580374135624)

for Halpern’s iteration. We consider three random initial points x0:

x1
0 = (0.69445440978475,1.01382609280137,0.99360871330745, 1.87012527625153);

x2
0 = (0.82054041398189,1.78729906182707,0.11578260956854, 2.20932797928782);

x3
0 = (0.93181457846166,0.46599434167542,0.41864946772751, 1.50356127641534).

The numerical results are listed in the following tables, where dn = d(xn, x∗)
denote the error of the nth step with the unique fixed point x∗ = (0, 0, 0, 1) in
the first table for T1; while, in the second one for T2, dn = d(xn+1, xn) denote
the distance between two consecutive iterates xn+1 and xn. In both tables we first

compute, for both algorithm, the errors in the steps 1-10 of the iteration and later

we provide the step where the errors get the lower bounds 10−2, 10−3, 10−4 and

10−5, respectively.

From the numerical results, one can observe that Mann’s algorithm is much

quicker than Halpern’s algorithm. Moreover, as it is predicted by the theoretical

results, the measure of the errors for the steps 1-10 in the first table show that the

sequence of iterates is Fejer monotone just in the case of Mann algorithm.
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