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ITERATIVE ALGORITHMS FOR NONEXPANSIVE MAPPINGS
ON HADAMARD MANIFOLDS

Chong Lil*, Genaro Lopez? and Victoria Martin-Marquez®

Abstract. Two iterative algorithms for nonexpansive mappings on Hadamard
manifolds, which are extensions of the well-known Halpern’s and Mann’s
algorithms in Euclidean spaces, are proposed and proved to be convergent to
a fixed point of the mapping. Some numerical examples are provided.

1. INTRODUCTION

Many practical problems can be formulated as a fixed point problem
(1.1 z="Tux,

where 7" is a nonlinear operator. The solutions of this equation are called fixed
points of T'. If T is a self-contraction defined on a complete metric space X,
Banach contraction principle sets up that, for any x € X, the sequence of iterates
{T"x} converges strongly to a solution to (1.1). If the mapping 7" is nonexpansive
we must assume additional conditions to assure the existence of fixed point of 7" and,
even when a fixed point exists, the sequence of iterates in general does not converge
to a fixed point. This fact has motivated that the study of the asymptotic behavior
of nonexpansive mappings is one of the most active research areas in nonlinear
analysis. Most of the research have focused on the case when 7' is a self-mapping
defined on a convex subset K of a normed linear space and basically two types of
algorithms has been considered: Halpern’s and Mann’s algorithms.
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Let u,zp € K and a sequence {a,} C (0,1) be given. Halpern’s algorithm
presented in [12] generates a sequence via the formula

(1.2) Tpy1 = apu+ (1 — ap)Tzy, n>0.

A strong effort has been dedicated to the study of the convergence of this
sequence, see [12, 18, 30, 24, 31, 3, 27] and references therein, but the full picture
is still not clear (cf.[32]).

Mann’s algorithm generates a sequence via the following iteration

(1.3) Tptl = @&y + (1 —ap)Txy, n>0.

In the case when a fixed point exists, while Halpern iteration converges strongly,
we just get weak convergence for Mann iteration. See [9] for example. Conditions
for the convergence of the algorithm can be found in [19, 13, 23, 8, 31]. Some
modifications have been proposed in [20, 14] to get strong convergence.

Because of the convex structure of both algorithms, few results have been ob-
tained out of the setting of linear spaces. Our interest here is to develop a theory of
fixed point approximation for nonexpansive mappings in Hadamard manifolds (i.e.
complete simply connected Riemannian manifolds of nonpositive curvature). Exten-
sions to Riemannian manifolds of concepts and techniques which fit in Euclidean
spaces are natural. Actually, in the recent years, some algorithms for solving vari-
ational inequalities and minimization problems which involves monotone operators
have been extended from the Hilbert space framework to the more general setting
of Riemannian manifolds (cf. [28, 5, 21, 6, 7]).

For Mann’s algorithm, some results had been obtained previously in Hyperbolic
metric spaces, see [15, 10, 11, 25]. This class of spaces includes Hadamard mani-
folds and the Hilbert ball equipped with the hyperbolic metric as special cases. For
Halpern’s algorithm the only precedent, as far as we know, is a result in [16] by
W. A. Kirk of convergence for an implicit algorithm in the more abstract setting of
geodesic spaces.

The organization of the paper is as follows. In section 2 we introduce some
basic concepts, results and notations on Riemannian manifolds. In sections 3 and
4, we prove some properties of the metric defined on Hadamard manifolds and
convergence results for Halpern’s and Mann’s algorithms. Finally, section 5 is
devoted to some numerical examples to illustrate applications of the results in the
present paper.

2. PRELIMINARIES

In this section we introduce some fundamental definitions, properties and nota-
tions of Riemannian manifolds, which can be found in any textbook, for example,
[4, 26].
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Let M be a connected m-dimensional manifold and let p € M. We use T, M
to denote the tangent space of M at p. We always assume that M can be endowed
with a Riemannian metric (.,.), with the corresponding norm denoted by ||.||, to
become a Riemannian manifold. Given a piecewise smooth curve ¢ : [a,b] — M
joining p to ¢ (i.e. c(a) = p and ¢(b) = ¢), we define the length of ¢ by using the
metric as L(c) = fab ||/(t)||dt. Then the Riemannian distance d(p, ¢) is defined to
be the minimal length over the set of all such curves joining p to ¢, which induces
the original topology on M.

Let V be the Levi-Civita connection associated to (M, (,)). Let ¢ be a smooth
curve. A smooth vector field X along c is said to be parallel if Vo X = 0. If
¢ itself is parallel, we say that ¢ is a geodesic, and in this case ||c/|| is constant.
Furthermore, if ||/|| = 1, ¢ is called normalized. A geodesic joining p to ¢ in M is
said to be a minimal geodesic if its length equals d(p, q).

A Riemannian manifold is complete if for any p € M all geodesics emanating
from p are defined for all —co < t < oo. By the Hopf-Rinow Theorem we know
that if M is complete then any pair of points in M can be joined by a minimizing
geodesic. Moreover, (M, d) is a complete metric space, and bounded closed subsets
are compact.

Assuming that m is complete, the exponential map exp,, : T,M — M atpe M is
defined by exp,, v=",(1, p) for each v €T}, M, where v(.) =7,(., p) is the geodesic
starting at p with velocity v. Then exp,, tv = (¢, p) for each real number ¢.

A complete simply connected Riemannian manifold of nonpositive sectional
curvature is called a Hadamard manifold. Throughout the remainder of the paper, we
will always assume that M is a m-dimensional Hadamard manifold. The following
result is well-known and will be useful.

Proposition 2.1. [26]. Let p € M. Then exp, : T,)M — M is a diffeomor-
phism, and for any two points p,q € M there exists a unique normalized geodesic
Jjoining p to q, which is in fact a minimal geodesic.

This proposition says that M is diffeomorphic to the Euclidean space R™. Then,
M has the same topology and differential structure as R™. Moreover, Hadamard
manifolds and Euclidean spaces have some similar geometrical properties. Some of
them are described in the following propositions.

A geodesic triangle A(p1, p2, p3) of a Riemannian manifold is a set consisting
of three points pj, p2 and p3, and three minimal geodesics ~; joining p; to p;y1,
with ¢ = 1,2, 3 (mod 3).

Proposition 2.2. [26] (Comparison theorem for triangles). Let A(p1, p2, p3) be
a geodesic triangle. Denote, for each i=1,2,3 (mod 3), by ~; : [0,l;] — M the
geodesic joining p; to piy1, and set l; =L(v;), og := Z(v](0), —v/_1(li—1)). Then
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(21) a1 + ag + Qg Sﬂ_v

2.2) 1741700 — 2l cos oy <17y

In terms of the distance and the exponential map, the inequality (2.2) can be
rewritten as

2.3) d*(pi,piv1) + d*(Pis1, piva) — 2{exp, | pirexp,’ | pive) < d*(pic1, pi),

since
(exp,,., pirexpy,t | piva) = d(pi, pis1)d(pit1, Pita) COS iy

A subset K C M is said to be convex if for any two points p and g in K, the
geodesic joining p to ¢ is contained in K, that is, if v : [a,b] — M is a geodesic
such that p = y(a) and ¢ = v(b), then v((1 —t)a+tb) € K for all ¢ € [0, 1]. From
now K will denote a nonempty, closed and convex set in M.

A real-valued function f defined on M is said to be convex if for any geodesic
~ of M, the composition function f o~ : R — R is convex, that is,

(foy)(ta+ (1 —=1)b) <t(fory)(a)+ (1—t)(fo)(b)
forany a,b e R, and 0 < ¢ < 1.

Proposition 2.3. [26]. Let d : M x M — R be the distance function. Then d
is a convex function with respect to the product Riemannian metric, i.e. given any
pair of geodesics v1 : [0,1] — M and vy, : [0,1] — M the following inequality
holds for all t € [0, 1]:

d(y1(t), v2(t)) < (1 = 1)d(v1(0), v2(0)) 4 td(v1(1), 72(1)).

In particular, for each p € M, the function d(-,p) : M — R is a convex function.
Let Px denote the projection onto K defined by

Pr(p) ={po € K : d(p,po) < d(p,q) forallg € K}, Vpe M.

Proposition 2.4. [29]. For any point p € M, Pk (p) is a singleton and the
following inequality holds for all q € K:

<eXp1_3;1< ® P eXpl_ﬂi (») a9 =0

3. HALPERN’S ALGORITHM IN HADAMARD MANIFOLDS

Let K be a closed convex subset of M and T : K — K a mapping. We say that
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T is nonexpansive if for any two points x,y € K the following inequality holds:

d(T(z), T(y)) < d(z,y).

In order to solve the important problem of finding a fixed point of 7', Kirk pro-
vided in [16] an implicit algorithm for approximating fixed points of nonexpansive
mappings in more general metric spaces called geodesic spaces which contain the
class of Hadamard manifolds. Applying the general result by Kirk to Hadamard
manifolds, one has the following result. Let Fix(7T") denote the set of all fixed
points of 7.

Theorem 3.1. [16]. Suppose that K is a bounded closed convex subset of M
and T : K — K is nonexpansive. Let x € K, and for each t € [0,1) let x; be the
unique point such that

xy € [x, T(xy)] and d(x,z¢) = td(z, T(xy))

(which exists by Banach contraction principle). Then lim,_,,- xy = T, the unique
nearest point to x in Fix(T).

In an Euclidean space R™, this iteration scheme turns into x; = (1—¢)z+tT'(xy),
which coincides with the implicit Browder’s iteration:

xp =tx + (1 — )T (zy),

which, as ¢ — 0T, converges strongly to the fixed point of 7" which is the nearest to
x in Fix(T), even in any uniformly smooth space (except that the limit is a certain
retraction different from the projection). See [2] and [24] for more details.

There exists a lot of research about the convergence of the explicit Halpern’s
iteration (1.2) in a Banach space X . Below we present an analogue of this algorithm
for approximating fixed point for nonexpansive mappings on Hadamard manifolds,
which coincides with the Halpern’s one in the particular case of an Euclidean space.
Let xg, u € M and let {c,} C (0,1). Consider the iteration scheme

(3.1 Tni1 = exp, (1 — ay) exp,  T(x,), Vn >0;
or equivalently,
Tnt1 =M(l — o), Vn =0,

where 7, : [0,1] — M is the geodesic joining u to T'(x,) (i.e. v(0) = w and
7(1) = T(xa)).

In order to prove the convergence of the sequence generated by the algorithm
(3.1) we first need some lemmas.
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Lemma 3.2. [31]. Let {3,} and {b,} be the sequences satisfying the following
conditions.

(i) {Ba} € [0.1], X, B = o0
(4i) limsup,,_,. by < 0.
Let {a,} be a sequence of non-negative real numbers such that
apt1 < (1 - ﬁn)an + Bnbn, n > 0.

Then lim,, .o an, = 0.

Lemma 3.3. [1, p. 24]. Let A(p, q,r) be a geodesic triangle in M Hadamard
manifold. Then, there exists p', q',r" € R? such that

d(p,q) =lp' = dll, dlg.r)=Id =7, dr,p)=Ir"—p|

The triangle A(p’, ¢, r’) is called the comparison triangle of the geodesic triangle
A(p,q,r), which is unique up to isometry of M. The following lemma can be
proved from element geometry. This is also a direct application of the Alexandrov’s
Lemma in R? (see [1, p. 25]).

Lemma 3.4. Consider four distinct points p, q,r, 2 € R%. Suppose that p and q
lie on opposite sides of the line through r and z. Consider the triangles A(r,p, z)
and A(r,q, z). Let 3 be the angle of A(r,q, z) at the vertex g, and let 61 and 0o
be the angles of A(r,p, z) and A(r,q, z) at the vertex z, respectively. Let q' be
the point such that d(r,q") = d(r,q) and d(p,q') = d(p, 2) + d(z, q). Let 3’ be the
angles of A(r,p,q') at the vertex q' (see Figure 3.1). If 61 + 63 > 7, then

B<pg.

Fig. 3.1
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The next result shows the relation between a geodesic triangle and its comparison
triangle involving angles and distances between points.

Lemma 3.5. Let A(p, q,r) be a geodesic triangle in a Hadamard manifold M
and A(p', ', r') be its comparison triangle.

(1) Let o, B,y (resp. o, 3',') be the angles of A(p,q,r) (resp. A(p',q',r")) at
the vertices p,q,r (resp. p',q',r"). Then, the following inequalities hold:
(3.2) o>a, F208 A2

(2) Let z be a point in the geodesic joining p to q and 2’ its comparison point in
the interval [p', ¢'|. Suppose that d(z,p) = ||z —p'| and d(z,q) = ||z’ — ¢
see Figure 3.2. Then the following inequality holds:

>

(3.3) d(z,7) < |2 = ||
r r'
LI , B ,
p z T Nq P > q
Fig. 3.2
Proof.

(1) We only prove the inequality 3° > (3. To do this, consider the triangle
A(p',q',7") in R2. Then, by the law of cosines we have that

Ir" = ¢'II* +1ld" = P'II> = 2l = ¢'[ll¢' = o'l cos 8" = [|' = ¥/|*.
By (2.2), one has that
d*(r,q) + d*(q, p) — 2d(r, q)d(q,p) cos } < d*(r, p).
It follows from Lemma 3.3 that
cos 3 < cos

and ' > 3 because 3, 3’ € [0, 7.

(2) We fix a geodesic joining z to r. Let 6; and 05 denote respectively the angles
of A(r,p, z) and A(r,q, z) at the vertex z. Let § and 3’ be the angles of
A(r,p,q) and A(r',p/, ¢') at the vertex ¢ and ¢’ respectively. See Figure 3.2.
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Consider comparison triangles A(7, p, z) and A(7, g, z) for the geodesic trian-
gles A(r, p, z) and A(r, g, z) respectively, such that they share the same edge [7, z],
and p, ¢ lie on opposite sides of the line which passes through 7 and z. Let 64 and
0, be the angles of A(7, p, z) and A(7, g, ) at the vertex z, respectively. Denote 3
the angle at the vertex ¢g. From the inequalities (3.2) we deduce that

0140 > 01 + 05 = 7.

Thus Lemma 3.4 is applicable to getting that 5 < (3. Therefore, using the law of
cosines, we have d(z,r) < |2/ — /. |
For the main theorem of this section, we consider the following hypothesis:

H1) limy, 00 oy = 0;

H2) ano Oy = 00

H?)) ano ‘an—I—l - Oén‘ < o0

H4) limy, oo (y, — ap—1)/a, = 0.

(
(
(
(

Theorem 3.6. Let K be a closed convex subset of M and T : K — K a
nonexpansive mapping with F := Fix(T) # 0. Let u,z9 € M. Suppose that
{an} € (0,1) satisfies (H1), (H2) and, (H3) or (H4). Then the sequence {x}
generated by the algorithm (3.1) converges to Pp(u).

Proof.  Letn > 0 and let , : [0,1] — M denote the geodesic joining u to
T(z,). We divide the proof into four steps.

Step 1. {z,} and {T'(z,,)} are bounded.

Since the boundedness of {7T'(z,)} is a direct consequence of that of {z,},
below we only prove the boundedness of {x,}. For this purpose, take z € F' and
fix n. Then, by the convexity of the distance function and the nonexpansivity of 7',
we have that

d(Tpt1,7) = d(y(l — an), v)
< and(1a(0), 2) + (1 — an)d( (1), )
= apd(u,z) + (1 — ap)d(T(zy), )
< apd(u, ) + (1 — ay)d(zp, ).

Then the boundness of {z,} is seen to hold by mathematical induction.

Step 2. limy, o0 d(zp41,2,) = 0.
By Step 1, we can find a constant C' such that

(3.4) d(xp, Tp—1) < C and d(u,T(z,)) <C, ¥n>0.
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Using the convexity of the distance function, we have that, for each n > 0,
d(Tp11,7n) = d(Yn(l — an), Yn-1(1 — ap-1))

< d(Yn(1 = an), Y11 — ay))

(3.9)
+d(7n—1(1 - Oén)v Vn—l(l - an—l))

< (1=ap)d(T(xy), T(xp1))+|an—an—1|d(u, T(xn-1)).
This together with (3.4) and the nonexpansivity of T implies that
(3.6) d(Tpi1, Tn) < (1 — ap)d(xn, Tp—1) + Clay, — ap—1|, ¥n >0.

Thus, if (H4) holds, we apply Lemma 3.2 (with 3,, = o, and b,, = C|a,—avp—1|/ o,
for each n) to conclude that lim,, o d(Zp11, n) = 0. As to the case when (H3)
holds, let £ < n. By (3.6), one gets that

d(Tni1, Tn) < H(1 — ag)d(xg, TR_1) + CZ | — i1

i=k i=k
n n

< CH(l — Oéz‘) —|—CZ ‘Oéz‘ — Oéz‘—l‘-
i=k i=k

Letting n — oo implies that,

o0 o0
(3.7) Jim. d(ZTny1,Tn) < CH(1 — ;) + CZ | — a1

i=k i=k
Condition (H2) implies that limj . [[;2,(1 — ;) = 0; while condition (H3)
implies that limy o Y .o, | —i—1| = 0. Hence, letting k — oo in (3.7), we get
lim,, 00 d(@p41, ) = 0 in the case when (H3) holds.

Step 3. limsup,,_, <exp;i(u) u, eXp;;(u) T(z,)) <0.
By Step 1, {(exp;; () Yo exp;; () T(z,))} is bounded; hence its upper limit
exists. Thus we can find a subsequence {ny} of {n} such that

(3.8) lim sup(exp;;(u) u, exp;;(u)T(xn» :kli_)r]cr)lO(eXp;;(u) u, exp;;(u)T(xnk)>.

n—oo

Without loss of generality, we may assume that x,,, — 7 for some € M because
{z,,} is bounded by Step 1. By the convexity of the distance function and the
definition of the algorithm,

d(xnk-l—lv T(xnk)) < O‘nkd(uv T(xnk))
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Since{d(u, T'(xy,))}is bounded by Step 1, it follows thatlimy, ..o d(zn, 41,1 (2n,))=0
as o, — 0 by (H1). Noting that

d(2ny, T(2n,)) < d(Tnyi1, Tny) + (@1, T(2ny,)),
one sees that lim,, .o d(zy, , T'(zy,)) = 0. Therefore
d(z,T(z)) < d(T, zp,) + d(Tn,, T(xp,)) + d(T(zp,), T(Z)) — 0,
which means that Z€F. Then, Proposition 2.4 implies that (exp;;(u) u,eXp;;(u) z)<0
and so
Jim (expp )t expp ) T(wn,)) = (eXPp, () U eXDp, () T) 0.
Combining this with (3.8), we complete the proof of Step 3.

Step 4. limy,_,o d(zy, Pru) = 0.
Write

by, = apd(u, Ppu) + <exp;i(u) u, eXp;;(u) T(zy)), Vn>0.
Then lim,_,, b, < 0 by Step 3. Thus, by Lemma 3.2, it suffices to verify that
(3.9 d*(zp11, Pru) < (1 — ay)d*(zn, Pru) + apb,, ¥n > 0.

To this end, we fix n > 0 and set p = T'(x,,), ¢ = Ppu. Consider the geodesic
triangle A(u, p, ¢) and its comparison triangle A(u/, p’, ¢’). Then

d(u, Ppu) = d(u,q) = |u' = ¢'|| and d(T(xn), Pru) = d(p,q) = [[p" = ¢'ll

Recall from (3.1) that z,, .1 = exp, (1 —ay,) exp, ! T'(x,) = exp, (1 —ay) expy ! p.
The comparison point of z,,41 is 2], = a,u’ 4+ (1 — ay,)p’. Let 3 and 3’ denote
the angles at ¢ and ¢/, respectively. Then 3 < (3 by Lemma 3.5 (1) and so
cos 3’ < cos 3. Then, by Lemma 3.5 (2) we have

d*(2p 41, Pru)
< ||ty — d'II?
= flan(u' —¢') + (1 —an) (@' — )|
= apllu = ¢'[* + (1 = an)?llp = ¢|” + 200 (1 = a)l|u’ = ¢ ||[[p’ = ¢'|| cos &'
< 2d*(u, Ppu) + (1 — a,)?d*(T(x,,), Pru)
+2a, (1 — ap)d(u, Pru)d(T(xy,), Pru) cos 3
< (1= ap)d*(zn, Pru) + oy (and(u, Pru) + <exp;i(u) u, eXp;;(u) T(zn))).

Hence (3.9) is proved and the proof is complete. ]
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4. MANN’S ALGORITHM IN HADAMARD MANIFOLDS

In the case when K is a closed convex subset of a normed linear space X and
T : K — K a nonexpansive mapping, for {c,,} C [0, 1], the iteration process {z,, }
defined by the algorithm

(4.1) Tptl = ATy + (1 — )T (zy), YR >0

was introduced by Mann in [19] and is known as Mann’s iteration for finding fixed
points of nonexpansive mappings. Ishikawa proved in [13] thatif 0 < a < oy, < 1
and > >, o, = oo, then |z, — T'(x,)|| — 0 as n — oo, which implies the
convergence of {xz,,} to a fixed point of 7" if the range of 7" lies in a compact subset
of X. In 1979, Reich obtained in [23] the weak convergence of the sequence in
a uniformly convex space with a Fréchet differentiable norm under the assumption
that {a,} C (0,1) and >°>7; (1 — ) = oo. For further results see [8] and
references therein.

An extension of Mann’s iteration (4.1) and its convergence results to the frame-
work of metric spaces (X, d) is due to Goebel and Kirk [15, 10] and Reich-Shafrir
[25], who provided an iterative method for finding fixed points of nonexpansive
mappings on spaces of hyperbolic type, which include Hadamard manifolds as spe-
cial cases. The iteration algorithm is defined by

(42)  wzp41 € [zn, T(zy)] such that d(z,, T(z,)) = (1 — ap)d(@n, Tni1),

where {a,} C (0,1). In particular, under the assumption that {a,,} is bounded
away from 0 and 1, Reich and Shafrir proved the convergence of this iteration to
a fixed point of 7. Goebel and Reich [11] studied the behavior of the sequence
of the iterates x,+1 = T'(x,) in Hyperbolic metric spaces for firmly nonexpansive
mappings.

Motivated by these results, we continue to consider Mann’s iteration (4.2) in
Hadamard manifolds M, which has the following form

(4.3) Tpy1 = exp,, (1 —ay) exp;n1 T(zy,), Vn >0,

and study the convergence of Mann’s iteration (4.2) for nonexpansive mappings
T : M — M but without assuming that {c,,} is bounded away from 0 and 1. In
fact, we will prove in Theorem 4.3 that the sequence {z,} generated by Mann’s
iteration (4.2) in Hadamard manifolds converges to a fixed point of 7" only if {c, }
satisfies the following condition:

(4.4) > an(l-ay) = oo
n=0

For this purpose, some definitions and results are necessary at first.
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Definition 4.1. Let X be a complete metric space and F' C X be a nonempty
set. A sequence {z,,} C X is called Fejér convergent to F if

d(xn-f—lv y) S d(fI,'n, y)

for all y € F'and n > 0.

Lemma 4.2. [7]. Let X be a complete metric space. If {x,} C X is Fejér
convergent to a nonempty set F' C X, then {x,,} is bounded. Moreover, if a cluster
point x of {x,,} belongs to F, then {x,} converges to .

Now we are ready to prove the main theorem of this section.

Theorem 4.3. Let K be a closed convex subset of M and T : K — K a
nonexpansive mapping with F := Fix(T) # (. Suppose that {a,} C (0,1) satisfy
the condition (4.4). Let xo € M and let {x,} be the sequence generated by the
algorithm (4.3). Then {x,} converges to a fixed point of T.

Proof. Note that K itself is a complete metric space. Thus, by Lemma
4.2, it suffices to verify that {x,} is Fejér convergent to F' and that all cluster
points of {z,,} belong to F. For this purpose, let n > 0 and p € F be fixed. Let
v :[0,1] — M denote the geodesic joining z;, to T'(x,). Then x,4+1 = Y(1 — ).
By the convexity of the distance function and the nonexpansivity of 7', we have

d(Tp11,p) = d(V(1 = an), p) < and(zn, p) + (1 — an)d(T(2,), p) < d(2n,p).

Hence {z,} is Fejér convergent to . Now let  be a cluster point of {x,}. Then
there exists a subsequence {n} of {n} such that z,,, — z. Below we prove that

4.5) lim d(x,, T(x,)) = 0.

n—oo

Granting this, one has that

d(z,T(x))

IN

d(@, o, ) + d(zn,, T(2n,)) + d(T(2n,), T (2))
< 2d(zp,,z) + d(zp,, T(zy,)),

Taking limit, we obtain that d(x, T'z) = 0, which means that = € F', and completes
the proof.

To show (4.5), let p € F and n > 0. Let A(xy,,q,p) be the geodesic
triangle with vertices x,,, ¢ := T(z,) and p. From Lemma 3.3 there exists a
comparison triangle A(z),,q’,p’) which conserve the length of the edge. Recall
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that @11 = y(1—ay). Seta], | = (1—ap)x), +a,T(z,) = (1 —an)z;, +ond
be its comparison point. By Lemma 3.5 (2),
P(rns1.p) < s — 2P
= llan(zy, —p') + (1 = an)(d' = )|
= agllzl, = P[P+ (1= an) g’ =PI = an(l = an)llz}, — ¢'|I?
= and?*(zn,p) + (1 — an)d*(T(22),p) — an(1 — an)d? (2, T(z1,))
< d*(xp, p) — an(1 — an)d* (2, T(zy)).

It follows that

an(l — an)d2(xn, T(z,)) < d2(xn,p) — d2(xn+1,p)

and
(4.6) > an(1 = ap)d? (2, T(wn)) < oo,

which implies that

(4.7) lim inf d(zy,, T(zy)) =0

n—oo

because otherwise, d(zy, T(x,)) > a Vn > 0 for some a > 0, and then,

Zan — d(xp, T(xy)) >aZan1—an):oo
n=1

which is a contradiction with (4.6).
On the other hand, using the nonexpansivity of 7' and the convexity of the
distance function,

d(@nt1, T(2n41)) T(xp)) + d(T(zn), T (2n+1))
d(wp41, T(2n)) + d(Tn, Tni1)
< apd(xn, T(z,)) + (1 — ap)d(xn, T(xn))

= d(zp, T(xy)).

S (xn+17
<

This means that {d(x,, T (x,))} is a monotone sequence. Combining this and (4.7)
completes the proof of (4.5). ]
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5. NUMERICAL EXAMPLE

Let E™! denote the vector space R™*! endowed with the symmetric bilinear
form (which is called the Lorentz metric) defined by

m
(@, 0) = Tl — Tm1Ymir, Vo= (), y = (y;) € R™H.
i=1
The hyperbolic m-space H™ is defined by
{z = (21,0, Tmy1) € E™ s (z,2) = =1, 241 > 0},

that is the upper sheet of the hyperboloid {z € E"™! : (x,z) = —1}. Note that
Tm+1 > 1 for any x € H'™, with equality if and only if ; =0 for all v =1, ..., m.
The metric of H™ is induced from the Lorentz metric (-, -) and it will be denoted
by the same symbol. Then H™ is a Hadamard manifold with sectional curvature
—1 (cf. [1] and [6]). Furthermore, the normalized geodesic v : R — H'"starting
from x € H™ is given by

(5.1) v(t) = (cosht)z + (sinht)v, VteR,
where v € T, H™ is a unit vector; while the distance d on H'™ is
(5.2) d(x,y) = arccosh(—(z,y)), Vx,ye€ H™.
Then, the exponential map can be expressed as

exp,(rv) = (coshr)z + (sinhr)v,

for any r € RT, € H™ and any unit vector v € T,JH™. To get the expression of
the inverse exponential map, we write for any =,y € H'™,

—1 —1
exp; " ¥ . Xby Y
y = exp, (d(z,y)———) = (coshd(z,y))x+ (sinhd(z,y)) ———.
2 (0. 9) G2 = (cosha(a, ) + (sinh d(o, ) T2
Therefore, by definition of the distance (5.2), we obtain
exp, ! y = arccosh(—(z, y>)w, Vo, y e H™.

<(L‘, y>2 -1

Thus, using these expressions, both algorithms in previous sections can be formu-
lated in a simple way in the hyperbolic space H"*. Write

r(x,y) = arccosh(—(z, T'(y)))
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and
T(y) + (. T(y))z

<(I,', T(y)>2 -1 '
Then Halpern’s algorithm (3.1) has the form

V((L‘, y) -

ZTny1 = (cosh(1 — ap)r(u, ) )u + (sinh(1 — o))V (u, ), Vn > 0;
while Mann’s algorithm (4.3) has the form
ZTpy1 = (cosh(1 — ap)r(zn, Tp)xy + (sinh(1l — a,)r)V(zy, z,), Vn > 0.

We end this paper with an example of H?, where these methods are implemented
for two concrete operators.

Table 5.1
T x(l) mg :vg
Step Error
dp 1.23849936794859 | 1.43016443780138 |0.96560216993144
dy 0.61924968397430 | 0.71508221890069 | 0.48280108496572
do 0.37154981038458 | 0.42904933134041 | 0.28968065097943
d3 0.24769987358972 | 0.28603288756028 | 0.19312043398629
dy 0.17692848113551 | 0.20430920540020 |0.13794316713307
ds 0.13269636085164 | 0.15323190405015 |0.10345737534980
dg 0.10320828066239 | 0.11918036981678 | 0.08046684749429
MANN d7 0.08256662452991 | 0.09534429585343 | 0.06437347799544
dg 0.06755451097902 | 0.07800896933462 | 0.05266920926899
dg 0.05629542581585 | 0.06500747444552 | 0.04389100772417
dio 0.04763459107495 | 0.05500632453083 | 0.03713854499737
Error Step
10—2 di7 d1g d1s
10=° dsg dea ds2
10~ dig1 d2os di6s
10—° dsos des4 dsar
Step Error
dp 1.23849936794859 | 1.43016443780138 |0.96560216993144
dy 0.79109087958575 | 0.94324711126741 | 0.56347787068548
do 0.72937999179719 | 0.83691943183081 | 0.57904469220055
d3 0.51644150342379 | 0.61225961625570 | 0.37537998889839
dy 0.51460518499467 | 0.58768625280562 | 0.41346210869283
ds 0.38173470848514 | 0.45056824179018 | 0.28140064643068
ds 0.39667994376475 | 0.45136530320607 | 0.32150418565275
HALPERN d7 0.30206081644163 | 0.35527907593590 | 0.22504211840976
dg 0.32231407126604 | 0.36567764790811 | 0.26300078945845
dg 0.24953770871435 | 0.29265581960747 | 0.18748437135137
dio 0.27120338594617 | 0.30694720797307 | 0.22250671712339
Error Step
1074 di62 d176 dig1
1077 d1593 di710 d1439
10~* d15652 d16630 d14421
10—° d123278 d132268 d111932
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Example 5.1. Let M = H? and let 77,7y : M — M be the nonexpansive

mappings respectively defined by

and

Tl(fL') - (_‘Tlv —x2, —I3, ‘T4)

Ts(z) = (—x1, 2, T3, T4),

for any x = (1, 29, 73, 74) € H3. Then Fix(T}) = {(0,0,0,1)} and

Fix(Ty) = {(z1, x2, x3,24) € H3 : 2z = 0,22 + wg =2 — 1}.

Table 5.2
T zg | z3 z

Step Error

dy 1.85774905192289 | 2.14524665670207 | 1.44840325489716
do 0.99079949435887 | 1.14413155024110 |0.77248173594515
ds 0.61924968397430 | 0.71508221890069 | 0.48280108496572
dy 0.42462835472523 | 0.49034209296047 | 0.33106360111935
ds 0.30962484198715 | 0.35754110945034 | 0.24140054248286
dg 0.23590464151402 | 0.27241227386693 | 0.18392422284409

MANN d7 0.18577490519229 | 0.21452466567021 | 0.14484032548972

ds 0.15012113550892 | 0.17335326518805 [ 0.11704268726442
do 0.12384993679486 | 0.14301644378014 | 0.09656021699315
dio 0.10393001689079 | 0.12001379897634 |0.08102955272153

Error Step

10~2 das das das

1077 dss do1 drs

107 ¢ dan dag1 da3g

10—% dse2 dg2s dre1

Step Error
d1 0.99837317911716 | 1.16992727222576 |1.31340494917273
da 0.71833797458614 | 0.83426922900920 | 0.97908824565578
d3 0.59032246197087 | 0.67290452208375 |0.81786161285239
ds 0.47974944268260 | 0.54618472938029 |0.67524807759001
ds 0.42202799259708 | 0.47635447878610 |0.59506375226788
dg 0.36239751805204 | 0.40927663184813 |0.51596963770002

HALPERN dr 0.32928308480446 | 0.37005540327231 | 0.46796492723635

dg 0.29184728056858 | 0.32831699473056 |0.41767189977732
dg 0.27026706878293 | 0.30305136210601 |0.38570372433189
d1g 0.24453550260074 | 0.27450025725934 | 0.35090005098115

Error Step

102 di51 digs d21g

103 d1524 d1702 d2198

10~% d15266 d17o50 da2o01

10—° d152673 d170513 d220033

For both algorithms we are going to consider the sequence of parameters «,, =

1 .
733 foreach n =0,1,- -, and the point
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u = (0.60379247919382, 0.27218792496996, 0.19881426776106, 1.21580374135624)
for Halpern’s iteration. We consider three random initial points z:
Jcé = (0.69445440978475,1.01382609280137,0.99360871330745, 1.87012527625153);

x2 = (0.82054041398189, 1.78729906182707, 0.11578260956854, 2.20932797928782);
xg = (0.93181457846166,0.46599434167542,0.41864946772751, 1.50356127641534).

The numerical results are listed in the following tables, where d,, = d(x,, z*)
denote the error of the nth step with the unique fixed point z* = (0,0,0,1) in
the first table for 7%; while, in the second one for T, d,, = d(zp41,x,) denote
the distance between two consecutive iterates z,11 and x,. In both tables we first
compute, for both algorithm, the errors in the steps 1-10 of the iteration and later
we provide the step where the errors get the lower bounds 1072,1073, 10~ and
107?, respectively.

From the numerical results, one can observe that Mann’s algorithm is much
quicker than Halpern’s algorithm. Moreover, as it is predicted by the theoretical
results, the measure of the errors for the steps 1-10 in the first table show that the
sequence of iterates is Fejer monotone just in the case of Mann algorithm.
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