
Houston Journal of Mathematics
c© 1999 University of Houston

Volume 25, No. 2, 1999

ON A RESULT OF W. A. KIRK

RAFAEL ESPÍNOLA AND GENARO LÓPEZ

Communicated by Gilles Pisier

Abstract. W. A. Kirk has recently proved a constructive fixed point theo-

rem for continuous mappings in compact hyperconvex metric spaces [6]. In

the present work we use the concept of hyperconvex hull of a metric space

to obtain a noncompact counterpart of Kirk’s result.

1. Introduction

A metric space (M,d) is said to be hyperconvex if
⋂

α∈A

B(xα, rα) 6= ∅

for any indexed class of closed balls {B(xα, rα) : α ∈ A} in M such that
d(xα, xβ) ≤ rα + rβ for all α and β in A.

N. Aronszajn and P. Panitchpakdi [1] proved that a metric space M is hyper-
convex if and only if every nonexpansive mapping T from any metric space D into
M has, for any metric space Y containing D metrically, a nonexpansive extension
T̂ from Y into M .

The intersection of two hyperconvex spaces may not be hyperconvex. But
if (Xi) is a decreasing chain of nonempty spaces, then the intersection is also
hyperconvex. Baillon [3] has shown that if M is a hyperconvex metric space and
(Xi) is a decreasing chain of nonempty bounded hyperconvex subsets of X, then
∩iXi is nonempty and hyperconvex.

For a bounded subset D of a metric space set:

cov(D) = ∩{B : B is a closed ball andD ⊂ B}.
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Let A(M) = {B ⊂ M : B = cov(B)}. Thus A(M) denotes the collection of all
ball intersection sets of M .

The following abstraction of an interval analysis result appeared in [10] has
been proved by W. A. Kirk in [6].

Theorem 1.1. Let M be a compact hyperconvex space, and let f : M →M be a
continuous mapping. Define the mapping f from A(M) to itself by

f : A(M) −→ A(M)
D 7−→ cov(f(D))

Set D0 = M , Dn = f(Dn−1) = f
n
(M), and suppose D =

⋂

n∈N
Dn. Then

f(D) = D 6= ∅ and D = limn→∞Dn,

where the limit is taken with respect to the Hausdorff metric H in A(M). In
particular, if f(x) = x then x ∈ D.

Our aim is to give a counterpart of this theorem for the noncompact case.
For a bounded subset A of a metric space M the Kuratowski measure of non-

compactness of A, α(A), is defined by

α(A) = inf{ε : A ⊂ ∪ni=1Ai with diamAi ≤ ε}.

The Hausdorff measure of noncompactness of A, χ(A), is defined by

χ(A) = inf{r : A ⊂ ∪ni=1B(xi, r) withxi ∈M}.

Henceforth, φ denotes either the Kuratowski or the Hausdorff measure of non-
compactness.

Given a metric space M and D ⊂M , a continuous map T : D →M is said to
be k − φ-condensing if φ(T (A)) ≤ kφ(A) for every bounded subset A of D.

In order to define the hyperconvex hull of a subset of a hyperconvex space we
will need the concept of injective envelope introduced by Isbell in [4].

Definition 1. A mapping of metric spaces e : X −→M is called an injective en-
velope of X if M is hyperconvex, e is an isometric embedding, and no hyperconvex
proper subspace of X contains e(X).

Lemma 1.2. Let e : X −→ M and f : X −→ N be injective envelopes of X.
Then, there exists an isometry i : N −→M .
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Given a hyperconvex metric space M , we will denote by F the family of all
the hyperconvex subsets of M . From Zorn’s lemma it is easy to deduce that the
set F(A) = {B ∈ F ;A ⊂ B} has minimal elements.

Definition 2. Let M be a hyperconvex metric space and A ⊂ M . We will say
that a set, h(A), is a hyperconvex hull of A if h(A) is a minimal element of the
set F(A).

Remark. From Lemma 1.2 and the previous observation every subset of a hyper-
convex space has a hyperconvex hull and all its hyperconvex hulls are related by
isometries.

2. Main Results

We begin this section with the following proposition where we summarize the
main properties of hyperconvex hulls.

Proposition 2.1. Let M be a hyperconvex metric space and A a bounded subset
of M . Then

1. If B ⊂ A there exists h(A) and h(B) such that h(B) ⊂ h(A).
2. α(A) = 2χ(A).
3. φ(A) = φ(h(A)).
4. If h1(A) and h2(A) are hyperconvex hulls of A then there exists an isometry
i : h1(A) −→ h2(A) such that i(x) = x for all x ∈ A.

Proof. The proof of statements 1., 2. and 3. can be found in [5]. So it suffices
to prove 4.

If h1(A) and h2(A) are hyperconvex hulls of A, by the properties of extension
for hyperconvex spaces, there exist two nonexpansive mappings r : h1(A) −→
h2(A) and s : h2(A) −→ h1(A) such that r(x) = s(x) = x for all x ∈ A. We will
complete this proof by proving that r is an isometry.

Consider r ◦ s : h2(A) −→ h2(A). This mapping is a nonexpansive mapping
such that the set of its fixed points, Fix(r ◦ s), contains A and is hyperconvex
(see [3] Theorem 5.). Then, by minimality of h2(A), we have Fix(r ◦ s) = h2(A)
and so r ◦ s is the identity. Now bearing in mind that r and s are nonexpansive
we may deduce that r is an isometry and the proof is complete.

From now on, if M is a metric space, Nρ(D) will denote the set

Nρ(D) = {z ∈M : dist(z,D) ≤ ρ},
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where D ⊆ M y ρ ≥ 0. The Hausdorff metric between two subsets A and B of
M , may be described as follows:

H(A,B) = inf{ρ ≥ 0 : A ⊆ Nρ(B) and B ⊆ Nρ(A)}.

Throughout this work we will understand that a sequence of closed subsets of a
metric space converges to another subset of this metric space if the convergence
is with respect to the Hausdorff metric.

We begin by introducing some technical lemmas.

Lemma 2.2. Let M be a hyperconvex metric space, and suppose A is a hyper-
convex subset of M . Then, given ε > 0 there exists a hyperconvex subset of M ,
A(ε), such that Nε(A) ⊆ A(ε) ⊆ N2ε(A).

Proof. Since A is a hyperconvex set there exists a nonexpansive retraction

r : M −→ A.

Let us fix A(ε) = {x ∈ M : d(r(x), x) ≤ 2ε}. This set A(ε) is called the
2ε-fixed point set of r and is hyperconvex (see [9]). We are going to show that

Nε(A) ⊆ A(ε) ⊆ N2ε(A).

It is clear A(ε) ⊆ N2ε(A).
Given η > 0 and x ∈ Nε(A) we fix y ∈ A such that d(x, y) ≤ ε+ η. Now since

r(y) = y,

d (x, r(x)) ≤ d(x, y) + d (y, r(x)) ≤
≤ ε+ η + d (r(y), r(x)) ≤ ε+ η + d(y, x) ≤ 2ε+ 2η.

Finally, since η is arbitrary the conclusion follows.

Lemma 2.3. Suppose (Dn) is a nonincreasing sequence of nonempty bounded
closed subsets of a metric space M such that limn→∞ φ(Dn) = 0. Then

lim
n→∞

Dn =
⋂

n∈N
Dn 6= ∅.

Proof. Let D =
⋂

n∈NDn. Since limn→∞ φ(Dn) = 0, D is nonempty and
compact (see [2]).

Suppose D is not the limit of Dn. Then, since D ⊂ Dn for all n ∈ N and
(Dn) is a decreasing sequence, given ε > 0 there exists xn ∈ Dn \ Nε(D) for
all n ∈ N . Since φ({xk : k ≥ n}) ≤ φ(Dn), the sequence is precompact and
so has a convergent subsequence to a point which is necessarily in D. This is a
contradiction with the fact that xn ∈ Dn \Nε(D).
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We omit the proof of the following lemma.

Lemma 2.4. Let (Dn) be the sequence of the previous lemma and D its limit. If
f : M → M is a continuous mapping, then the sequence

(

f(Dn)
)

converges to
f(D).

Definition 3. Let M be a hyperconvex space, and f : M −→M a mapping. We
say that a sequence of subsets of M , (Dn), is a proper sequence of hyperconvex
hulls of M relative to the mapping f , if (Dn) is defined in the following way

1. D0 = M ,
2. Dn = h (f(Dn−1)) ,

where h (f(Dn−1)) is a hyperconvex hull of f(Dn−1) contained in Dn−1.

Remark. From the properties of the hyperconvex hulls one can easily deduce that
such sequences always exist under the conditions of the definition.

Theorem 2.5. Let M be a bounded hyperconvex space and f : M → M a k −
φ−condensing mapping with k < 1. Let (Dn) be a proper sequence of hyperconvex
hulls of M relative to f , and suppose D =

⋂

n∈NDn. Then D is a hyperconvex
hull of f(D). In particular, if f(x) = x then x ∈ D.

Proof. Since φ is k − φ−condensing with k < 1 and

φ(Dn) = φ(h(f(Dn−1))) = φ(f(Dn−1)) < kφ(Dn−1),

the sequence satisfies the hypothesis of Lemma 2.3. So D is a compact hypercon-
vex set and D = lim

n→∞
Dn. It is also clear that, by definition of D, D contains the

set of the fixed points of f .
Now we want to prove that D = h(f(D)). Since D is hyperconvex and, by

definition of Dn, D ⊇ f(D) there exists a hyperconvex hull of f(D), h(f(D)),
contained in D. We will prove that D = h(f(D)).

It is clear that

ε0 = inf{δ ≥ 0 : f(D0) ⊆ Nδ(h(f(D)))} ≤ H(f(D0), f(D))

and

f(D0) ⊆ Nε0(h(f(D))).

By Lemma 2.2, there exists a hyperconvex set A(ε0) such that

Nε0(h(f(D))) ⊆ A(ε0) ⊆ N2ε0(h(f(D))).
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Therefore we can choose a hyperconvex hull of f(D0), denoted by h̃(f(D0)),
such that

h̃(f(D0)) ⊆ A(ε0) ⊆ N2ε0(h(f(D))).

We continue in this fashion obtaining a sequence (h̃(f(Dn))) of hyperconvex
hulls of (f(Dn)) such that

h̃(f(Dn)) ⊆ N2εn(h(f(D))),

where

εn ≤ H(f(Dn), f(D))

for all n ∈ N .
But from Lemma 2.4, (f(Dn)) converges to f(D). Hence limn→∞ εn = 0.
Consequently, we have just proved that if (xn) is a convergent sequence such

that xn ∈ h̃(f(Dn)) for all n ∈ N, then its limit must belong to h(f(D)).
According to Proposition 2.1, for each n ∈ N there exists an isometry

in : h(f(Dn))→ h̃(f(Dn))

such that its restriction to f(Dn) coincides with the identity and hence, so does
its restriction to f(D).

Since D is a compact set we can fix a dense sequence in D, (xm) . From the
compactness of D we can follow a diagonalization argument so that we obtain a
subsequence of (in), which for the sake of simplicity we denote as (in), such that
the sequence{in(xm)}∞n=1 is convergent for all m ∈ N. Since D ⊆ h(f(Dn)) for
all n ∈ N their limits are in h(f(D)). Therefore we can define

i : {xm}∞m=1 −→ h(f(D))
xm 7−→ limn→∞ in(xm)

Since (xm) is dense in D, we can extend this mapping to the whole D in such
a way that i restricted to h(f(D)) is the identity.

On the other hand, since h(f(D)) ⊆ D, it is defined the natural embedding

j : h(f(D)) −→ D.

Consider now the isometry

i ◦ j : h(f(D)) −→ H ⊆ h(f(D)),

where H stands for the range of i ◦ j. Since H is hyperconvex and f(D) ⊂ H we
have H = h(f(D)). Consequently i(D) = h(f(D)) and, hence, D is a hyperconvex
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hull of h(f(D)). Finally, by minimality of the hyperconvex hull, we obtain that
D = h(f(D)).

The following corollary is the compact version of this result.

Corollary 2.6. Let M be a compact hyperconvex space, and suppose f : M →M

is continuous. Let (Dn) be a proper sequence of hyperconvex hulls of M relative
to f , and suppose D =

⋂

n∈N

Dn,then D = lim
n→∞

Dn and D is a hyperconvex hull

of f(D). In particular, if f(x) = x then x ∈ D.

Remark. We may state this result in a more similar way to Kirk’s result. Let M
be a compact hyperconvex space and H(M) the set of all hyperconvex subsets of
M . Suppose f : M → M is continuous. We may fix a hyperconvex hull for all
subset of M , A,

f : P(M) −→ H(M)
A 7−→ h(f(A))

in such a way that we obtain a proper sequence of hyperconvex hulls for the
mapping f . Assuming (Dn) is a sequence as in Kirk’s theorem (hence, it coincides
with our proper sequence), we have

D =
⋂

n∈N
Dn = lim

n→∞
Dn

and D = f(D).
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