
Houston Journal of Mathematics
c© 2006 University of Houston

Volume 32, No. 1, 2006

UNIVERSAL MATRIX TRANSFORMS OF HOLOMORPHIC
FUNCTIONS
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Abstract. The phenomenon of overconvergence is related with the con-

vergence of subsequences of the sequence of partial sums of Taylor series

at points outside their disk of convergence. During the seventies Chui and

Parnes and the third author provided a holomorphic function in the unit

disk which is universal with respect to overconvergence. The generic nature

of this kind of universality has been recently shown by Nestoridis. In this

paper, we connect the overconvergence with the summability theory. We

show that there are “many” holomorphic functions in the unit disk such

that their sequences of A-transforms have the overconvergence property, A

being an infinite matrix. This strengthens Nestoridis’ result.

1. Introduction

A century ago Porter discovered that certain Taylor series with radius of conver-
gence 1 enjoy the property that some subsequences {snk

(z)}∞k=0 of their sequences
of partial sums {sn(z)}∞n=0 converge at some points outside the closed unit disk
{z : |z| ≤ 1} of the complex plane C. This phenomenon is called overconvergence.
This idea was developed by the third author in 1970 [7] and by Chui and Parnes in
1971 [3]. They proved the existence of holomorphic functions f(z) =

∑∞
ν=0 aνzν

in the open unit disk D with the property that, given a compact set K having
connected complement and satisfying K ∩ {z : |z| ≤ 1} = ∅, and given g ∈ A(K)
–that is, g is continuous in K and holomorphic in its interior K0– there exists a
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subsequence {snk
(f, z)}∞k=0 of the sequence {sn(f, z) =

∑n
ν=0 aνzν}∞n=0 of partial

sums such that

snk
(f, z) → g(z) uniformly on K (k →∞). (1)

Let us denote, as usual, by H(D) the space of holomorphic functions in the unit
disk, endowed with the topology of uniform convergence on compact subsets. It is
well known that H(D) is a Fréchet space (= completely metrizable locally convex
space), so it is a Baire space. In a Baire space X, a subset A is residual whenever
its complement is of first category (= a countable union of sets whose closures
have empty interior) or, equivalently, whenever A contains some dense Gδ subset.
Hence, topologically speaking, a residual set is “very large” in X.

In 1996 Nestoridis [10] gave a new impulse to the idea of overconvergence.
He was able to prove that this is in fact a generic phenomenon, in the sense that
“most” holomorphic functions in D are universal with respect to overconvergence,
even in a stronger way than before: There exists a residual set of functions f ∈
H(D) satisfying that for each compact set K with K ∩ D = ∅ and connected
complement, and for given g ∈ A(K), the approximation property (1) holds for
some {nk} [10, Theorem 2.6]. Observe that this time K is allowed to intersect
the boundary ∂D.

The results of Luh-Chui-Parnes-Nestoridis have been recently continued in
many ways, for instance with properties of non-continuation, covering the plane,
holomorphic monsters, and others (see [5, Section 4d] or [6, Section 4] for refer-
ences). In this paper we want to provide a new way, connecting with summability
methods given by infinite matrices. Specifically, we produce generic universal-
ity with respect to overconvergence, but this time the sequence of partial sums

sn(f, z) =
n

∑

ν=0

aνzν of the Taylor series f(z) =
∞
∑

ν=0

aνzν is replaced to the se-

quence σn(f, z) :=
∞
∑

ν=0

αnνsν(f, z) of their A-transforms, A = [αnν ]∞n,ν=0 being

an adequate infinite matrix with complex entries, see Theorem 2.2 below.

2. Preliminaries and statement of the main result

We will make use later of the following purely topological auxiliary assertion.
Its special case R0 = +∞ can be found in [10, Lemma 2.1], which in turn is
also a special instance of [9, Lemma 2.1]; see also [2, Lemma 2.9] for an earlier,
similar property on general domains of the plane. The proof of Lemma 2.1 can
be achieved by modifying suitably the proof of [10, Lemma 2.1]. As usual, C
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is the same as {|z| < +∞}, N will stand for the set of positive integers, and
N0 := N ∪ {0}.

Lemma 2.1. Let us fix R0 with 1 < R0 ≤ +∞. Then there exists a sequence
{Kn : n ∈ N} of compact sets in {1 ≤ |z| < R0} which have connected com-
plement, such that given a compact set K ⊂ {1 ≤ |z| < R0} with connected
complement there exists an m ∈ N with K ⊂ Km.

The preceding lemma is useful in order to “enumerate” the adequate compact
sets.

In other order of ideas, let R0 ∈ (1, +∞] and let A = [αnν ]∞n,ν=0 be an infinite
matrix with complex entries, and consider the following five properties which may
or may not be satisfied by A:

(a) For all n ∈ N0, lim sup
ν→∞

|αnν |1/ν ≤ 1
R0

.

(b) For all ν ∈ N0, lim
n→∞

αnν = 0.

(b’) For all finite subsets F ⊂ N0, lim inf
n→∞

(max
ν∈F

|αnν |) = 0.

(c) For every n ∈ N0, the series
∞
∑

ν=0

αnν converges, and there exists an α ∈

C \ {0} such that lim
n→∞

∞
∑

ν=0

αnν = α.

(c’) For every n ∈ N0, the series
∞
∑

ν=0

αnν converges, and some oscillation limit

of the sequence

{∣

∣

∣

∣

∣

∞
∑

ν=0

αnν

∣

∣

∣

∣

∣

}∞

n=0

is positive but finite.

Observe that (b) implies (b’), that (c) implies (c’), and that (a) implies the first
part of (c)–(c’). Note also that the second part of (c’) is equivalent to the existence
of a strictly increasing sequence {nj} of natural numbers and some α ∈ C \ {0}

with lim
j→∞

∞
∑

ν=0

αnjν = α. Finally, we observe that, trivially, any row-finite matrix

–and so any triangular matrix– satisfies (a) and the first part of (c)–(c’). We
recall that A is said to be triangular if αnν = 0 for ν > n, while A is row-finite
whenever for each n there is ν(n) such that αnν = 0 for ν > ν(n).

Our main statement, which can be labelled as a “matrix overconvergence
generic phenomenon result”, reads as follows.

Theorem 2.2. Suppose that 1 < R0 ≤ +∞ and that A = [αnν ] is an infinite ma-
trix which satisfies at least one of the sets of properties [(a), (b), (c′)], [(a), (b′), (c)].
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Let us denote by M the subset of all functions f ∈ H(D) such that the sequence
{σn(f, ·)}∞n=1 of their A-transforms has the following property:
For every compact set K ⊂ {1 ≤ |z| < R0} with connected complement and every
function g ∈ A(K) there exists a sequence {nk} with

σnk
(f, z) → g(z) uniformly on K (k →∞).

Then M is residual in H(D).

The implication (i) ⇒ (ii) of the following elementary lemma will be used in
the proof of Theorem 2.2. But note that the lemma tells us that property (a)
for a matrix A is sharp in order that the A-transforms are well defined in that
theorem.

Lemma 2.3. Let be provided R0 with 1 < R0 ≤ +∞. Assume that {αν}∞ν=0 is a
sequence of complex numbers. Then the following properties are equivalent:

(i) lim sup
ν→∞

|αν |1/ν ≤ 1
R0

.

(ii) The series
∞
∑

ν=0

ανsν(f, z) converges uniformly on K for every f(z) =

∞
∑

ν=0

aνzν ∈ H(D) and every compact subset K ⊂ {|z| < R0}.

(iii) The series
∑∞

ν=0 ανsν(f, z) converges for every f ∈ H(D) and every point
z with 1 < |z| < R0.

Proof. It is trivial that (ii) implies (iii). Assume now that (i) holds and fix a
compact subset K ⊂ {|z| < R0}. Then there exists a constant R ∈ (1, R0) such
that |z| ≤ R for all z ∈ K. Fix a function f(z) =

∑∞
ν=0 aνzν ∈ H(D). Since

R/R0 < 1, we can select (and fix) an ε > 0 such that β := (
1

R0
+ ε)(1 + ε) < 1.

But lim supn→∞(ν|αν |)1/ν ≤ 1/R0 and lim supν→∞ |aν |1/ν ≤ 1, so (ν + 1)|αν | <
( 1

R0
+ ε)ν · C ′ and |aν | < (1 + ε)ν · C ′′ for adequate constants C ′, C ′′ and all

ν ∈ N0. Then

|ανsν(f, z)| ≤ |αν | ·

∣

∣

∣

∣

∣

ν
∑

µ=0

aµzµ

∣

∣

∣

∣

∣

≤ |αν | ·
ν

∑

µ=0

|aµ|Rµ

≤ |αν | ·Rν ·
ν

∑

µ=0

(1 + ε)µC ′′

≤ (ν + 1)|αν |Rν(1 + ε)νC ′′

< C ′C ′′ ·
[(

1
R0

+ ε

)

(1 + ε)R
]ν

= Cβν (z ∈ K, ν ∈ N)
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for some constant C. Then Weierstrass’ M-test yields (ii).
Finally, suppose that (iii) is true and that, by way of contradiction,

lim sup
ν→∞

|αν |1/ν > 1/R0.

Let us choose the point z0 = γ, where max
{

1,
1

lim supν→∞ |αν |1/ν

}

< γ < R0.

Then 1 < |z0| < R and |αν |γν > 1 for infinitely many ν ∈ N. Consider the
function f(z) := 1

1−z ∈ H(D). Then |sν(f, z0)| = |1+γ+γ2+· · ·+γν | ≥ γν for all

ν, therefore |ανsν(f, z0)| > 1 for infinitely many ν. Consequently,
∞
∑

ν=0

ανsν(f, z0)

cannot converge, which is a contradiction. £

Corollary 2.4. Under the assumption of Lemma 2.3 we assume that (i) of such
lemma is satisfied. We consider the operator T : H(D) → H({|z| < R0}) given by
(Tf)(z) =

∑∞
ν=0 ανsν(f, z). Then T is continuous, if H(D) and H({|z| < R0})

are endowed with the topologies of uniform convergence in compacta.

Proof. We observe that by (i) the series
∑∞

ν=0 αν converges and (Tf)(z) =
∞
∑

k=0

[ ∞
∑

ν=k

αν

]

f (k)(0)

k!
zk. The linearity of Tn together with the Closed Graph The-

orem (see [13]) applied to the Fréchet spaces H(D) and H({|z| < R0}) yield the
continuity of T . £

3. Proof of the main result

We assume during the whole proof that properties (a), (b), (c’) are satisfied
by the matrix A. The proof under the set of conditions [(a), (b’), (c)] is similar
and left to the interested reader.

Due to (a), Lemma 2.3 shows that for each n ∈ N and each f ∈ H(D) the
A-transform σn(f, z) not only makes sense for z ∈ K, but also defines a function
belonging to A(K), whenever K is a compact subset of {|z| < R0}.

Now, from Mergelyan’s theorem (see [4] or [12]), each g ∈ A(K) can be uni-
formly approximated by polynomials on K, where the compact K ⊂ {1 ≤ |z| <

R0} has connected complement. Let {Kn} be the sequence given by Lemma
2.1. There is m ∈ N with K ⊂ Km. Thus, it is not difficult to realize that if
the sequence {pj}∞j=1 is an enumeration of all polynomials with rational real and
imaginary parts then

M =
⋂

n∈N

⋂

j∈N

⋂

k∈N
G(Kn, pj ,

1
k

). (2)
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We have denoted

G(K, p, ε) := {f ∈ H(D) : there exists n ∈ N such that
|σn(f, z)− p(z)| < ε for all z ∈ K},

where K is a compact subset of {1 ≤ |z| < R0} with connected complement, p is
a polynomial and ε > 0.

Fix K, p, ε as before. For each n ∈ N consider the mapping

Tn : f ∈ H(D) 7→ σn(f, ·)|K ∈ A(K).

We have already shown that Tn is well defined. But note also that every Tn is
continuous by Corollary 2.4. On the other hand, we can write

G(K, p, ε) =
⋃

n∈N
T−1

n (BK(p, ε))

where BK(p, ε) = {g ∈ A(K) : |g(z)− f(z)| < ε for all z ∈ K}, the open ball in
A(K) with center p and radius ε. Hence G(K, p, ε) is an open subset of H(D), so
by (2) M is a Gδ subset. Since H(D) is a Baire space, it is enough to show that
each G(K, p, ε) is dense in H(D).

For this, fix a basic open subset of H(D), of the shape

D(h, r, δ) = {f ∈ H(D) : |f(z)− h(z)| < δ for all z with |z| ≤ r}

(h ∈ H(D), 0 < r < 1, δ > 0). Our goal is to prove that

G(K, p, ε) ∩D(h, r, δ) 6= ∅. (3)

Due to (c’), there are a sequence n1 < n2 < · · · of positive integers and a value
α ∈ C \ {0} satisfying

lim
j→∞

∞
∑

ν=0

αnjν = α. (4)

Since that set {|z| ≤ r} ∪ K is a compact set with connected complement,
Mergelyan’s theorem guarantees the existence of a polynomial f such that

|f(z)− h(z)| < δ on {|z| ≤ r} (5)

and
∣

∣

∣

∣

f(z)− p(z)
α

∣

∣

∣

∣

<
ε

3|α|
for all z ∈ K. (6)

Choose R > 0 with K ⊂ {|z| ≤ R}. Set d := degree(f), in such a way that
f(z) =

∑d
ν=0 aνzν . Then |f(z)| ≤ β := max

|t|≤R
|f(t)| on K and, by Cauchy’s
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inequalities, |aνzν | ≤ β for all ν ∈ {0, 1, . . . , d} and all z ∈ K. Hence,

|sν(f, z)− f(z)| =

∣

∣

∣

∣

∣

d
∑

µ=ν+1

aµzµ

∣

∣

∣

∣

∣

≤
d

∑

µ=0

|aµzµ| ≤ (d + 1) · β (7)

for every z ∈ K and every ν ∈ {0, 1, . . . , d− 1}. On the other hand, sν(f, ·) = f

for every ν ≥ d.
In order to get (3), we should verify that f ∈ G(K, p, ε). By (b) and (4), there

exists a positive integer N ≥ d satisfying the following properties:
∣

∣

∣

∣

∣

α−
∞
∑

ν=0

αNν

∣

∣

∣

∣

∣

≤ ε

3(β + 1)
, (8)

d−1
∑

ν=0

|αNν | ≤
ε

3(d + 1)(β + 1)
. (9)

Therefore, for all z ∈ K,

σN (f, z)− p(z) =
∞
∑

ν=0

αNνsν(f, z)− p(z)

=

d−1
∑

ν=0

αNνsν(f, z) +
∞
∑

ν=d

αNνf(z)− p(z)

=

d−1
∑

ν=0

αNν(sν(f, z)− f(z)) +
∞
∑

ν=0

αNνf(z)− p(z)

=

d−1
∑

ν=0

αNν(sν(f, z)− f(z)) +

(

∞
∑

ν=0

αNν − α

)

f(z) + αf(z)− p(z).

From (6), (7), (8), (9) and the triangle inequality we obtain

|σN (f, z)−p(z)| ≤ (d+1)β
ε

3(d + 1)(β + 1)
+

ε

3(β + 1)
·β+|α|· ε

3|α|
< ε (z ∈ K),

that is, f ∈ G(K, p, ε). This and (5) give us (3). The proof is finished.

4. Final Remarks

(1) If we consider A = the identity and R0 = +∞ in Theorem 2.2, then we
obtain, as a particular case, the Nestoridis result about overconvergence
of Taylor series.

(2) Recently, the authors have proved –by using a constructive way– the exis-
tence of one function f whose sequence of A-transforms is universal in the
sense of Theorem 2.2, but on the weaker framework of any compact set
K ⊂ ∂D, K 6= ∂D (see [1, Theorem 4]). The matrix A is this time triangu-
lar and satisfies (b)–(c). From this f , they also provided a trigonometric
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series
∑∞

ν=0 aν(cos νt + i sin νt) whose sequence of A-transforms {σn(t)}
is universal in the following sense:

For any two real-valued measurable functions ϕ and ψ on
[0, 2π], there exists a sequence {nk} such that

Re{σnk
(t)} → ϕ(t)

Im{σnk
(t)} → ψ(t)

almost everywhere on [0, 2π].

Analogously, we can obtain from our theorem the existence of “many”
trigonometric series with the above universal behaviour.

(3) Under the hypotheses of Theorem 2.2, “most” functions in H(D) satisfy
its statement and, simultaneously, have power series expansions with ra-
dius of convergence 1. Indeed, the set N of functions in H(D) such that
∂D is a natural boundary is residual (see [6, Section 3]), hence M ∩N is
also residual.

(4) By using Baire categories, Melas and Nestoridis have recently shown [9,
Theorem 3.4] a strong overconvergence-universality result which also cov-
ers that in [10]. They even consider a simply connected domain Ω instead
of D and their matrices A (which they called “admissible”) have entries
αnν(z) that are holomorphic functions on a certain connected open neigh-
bourhood of C\Ω. Nevertheless, these matrices were row-finite and, even
in the case that their entries were just numbers, they were allowed to
satisfy conditions stronger than (b’) and (c’). We also point out that
the third author had constructed in [7] a function f ∈ H(D) whose A-
transforms exhibited universality on every bounded simply connected do-
main G with G∩{|z| ≤ 1} = ∅, where this time the matrix A = [αnν ]∞n,ν=0

was triangular and satisfied (b) and (c) with α = 1.
(5) By following the proof of Theorem 2.2 it is not difficult to realize that if

conditions (a), (b), (c) are imposed on A, then one would in fact obtain
that for any subsequence {mj} of N there is a residual set of functions M

such that, for every compact set K ⊂ {1 ≤ |z| < R0} with connected com-
plement and every f ∈ M , the set {σmj (f, ·) : j ∈ N} is dense in A(K).
In the terminology of [5], the sequence {Tn} of operators considered in
the proof would be densely hereditarily hypercyclic in this case.

(6) Finally, we recall that Toeplitz–Silverman’s theorem (see [11]) asserts
that an infinite matrix A = [αnν ]∞n,ν=0 is regular –that is, it preserves
convergence and limits of sequences– if and only if
(A) limn→∞ αnν = 0 for all ν ∈ N0,
(B) limn→∞

∑∞
ν=0 αnν = 1, and
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(C) supn

∑∞
ν=0 |αnν | < +∞.

As for a weaker property, the third author proved in [8] that A is P-regular
–that is, regular for power series– if and only if (A), (B) and (C’) hold,

where (C’) is the condition

[

sup
n

∞
∑

ν=0

|αnν |ρν < +∞ for all ρ ∈ (0, 1)

]

. We

observe that (B) is (c) with α = 1. Thus, our matrix in Theorem 2.2 may
be far from being regular, even far from being P-regular. In the opposite
direction, regular matrices generate dense hereditary hypercyclicity in the
sense of the preceding remark.
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