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Abstract

We study spectral properties of irreducible tridiagonal k−Toeplitz ma-
trices and certain matrices which arise as perturbations of them.
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1 Introduction

In this paper we focusing on the spectral properties of general irreducible tridi-
agonal k−Toeplitz matrices and certain perturbations of them. Recall that a
tridiagonal k−Toeplitz matrix is an irreducible tridiagonal matrix such that the
entries along the diagonals are sequences of period k (see M. J. C. Gover [15]).
Apart its own theoretical interest, the study of this type of matrices appears to
be useful, for instance, in the study of sound propagation problems [4, 16], as
well as in the description of several models of coupled quantum oscillators which
may be described by using appropriate perturbations of tridiagonal k−Toeplitz
matrices (see [1, 2]). We will focus on the localization of the eigenvalues of such
matrices, as well as on the distance between two consecutive eigenvalues. The
matrix perturbations to be considered here have the form

Jµ,λ
n :=




β0 + µ 1 0 . . . 0 0
γ1 β1 1 . . . 0 0
0 γ2 β2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . βn−2 1
0 0 0 . . . γn−1 βn−1 + λ




, (1.1)

where, by varying n, the sets of entries (βs)s and (γs)s are sequences of real
numbers such that γs > 0 for all s, and λ and µ are given real numbers (the
perturbation parameters). When (βs)s and (γs)s are k−periodic sequences, so
that

βs = aj+1 if s ≡ j (mod k) , γs+1 = b2
j+1 if s ≡ j (mod k) (1.2)
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for all s = 0, 1, 2, . . . , n − 1, with aj ∈ R and bj > 0 for all j = 1, 2, . . . , k, one
obtains the mentioned perturbed k−Toeplitz matrix. (The k−Toeplitz matrix
corresponds to the choice λ = µ = 0, subject to the periodicity conditions (1.2)).

Recently, these perturbed matrices Jµ,λ
n subject to the periodicity conditions

(1.2), i.e., the perturbed k−Toeplitz matrices, where investigated by several au-
thors for some special choices of the period k, among which we distinguish S.
Kouachi [20] for the case k = 2, and A. R. Willms [27] for the case k = 1 (notice
that in this case the entries along each diagonal are constant, up to the entries
in the left upper corn and in the lower right corn). These authors have studied
the eigenvalues of these matrices by considering a trigonometric equation whose
solution yields the eigenvalues, focusing their contributions in several special
cases corresponding to situations when these trigonometric equations have ex-
plicit solutions, and exact expressions for the eigenvalues and eigenvectors were
obtained. Regarding the case of a 2−Toeplitz matrix (hence, in particular, of
a 1−Toeplitz matrix) a trigonometric equation whose solution yields the eigen-
values was stated by F. Marcellán and J. Petronilho in [21]. This equation has
been deduced on the basis of the fact that the characteristic polynomial of a
2−Toeplitz matrix may be expressed in terms of Chebyshev polynomials of the
second kind (via a quadratic polynomial mapping) and, as it is well known,
these polynomials admit trigonometric representations. Notice, however, that
the explicit expressions for the eigenvalues of a tridiagonal 2−Toeplitz matrix
have been given previously by M. J. C. Gover [15], without using orthogonal
polynomial theory. Therefore, since, by making some basic operations on de-
terminants, the characteristic polynomial of the perturbed k−Toeplitz matrix
can be expressed in terms of the characteristic polynomial of the non-perturbed
k−Toeplitz matrix, it is clear that a trigonometric equation yielding the eigen-
values of the perturbed 2−Toeplitz matrix can be established. In fact, more
generally, by using similar arguments and the results in [10, 13, 18], a trigono-
metric equation whose solution yields the eigenvalues of the general perturbed
k−Toeplitz matrix defined by (1.1)-(1.2) can be easily established.

Concerning the mentioned works [20] and [27], Kouachi and Willms studied
the spectral properties of the perturbed 1−Toeplitz and 2−Toeplitz matrices
exhibiting explicit nice formulae for the eigenvalues and eigenvectors of such
matrices for appropriately choices of the parameters λ and µ. By contrast, our
study in the present paper will not be focused on the determination of explicit
formulae. Instead, our aim will be the location of the eigenvalues for general per-
turbed and non-perturbed k−Toeplitz matrices of large order. Roughly speak-
ing, we will state that, for large n, the eigenvalues of a perturbed k−Toeplitz
matrix of order nk + j − 1 (1 ≤ j ≤ k − 1) may be approximated by the eigen-
values of the corresponding non-perturbed k−Toeplitz matrix of order nk − 1,
up to a finite number of them, and we remark that this number depends on k
but it is independent of n.

The analytical study of infinite tridiagonal matrices (infinite Jacobi matrices,
regarded as operators acting in ℓ2, the space of the square summable sequences of
complex numbers) was considered before by several authors. For instance, in [8,
9, 11] in connection with the Theory of Toda Lattices, as well as in [14, 18, 19, 23,
25, 26], where the spectrum of the corresponding Jacobi operators was studied.
We also point out that a matrix theoretic approach to the problem concerning
the study of the spectral properties of k−Toeplitz matrices has been presented
in works by S. Serra Capizzano and D. Fasino [12, 24]. The computation of the
orthogonal polynomials corresponding to the k−Toeplitz matrices (hence of the
characteristic polynomials of such matrices) may be done by reducing the study
to a problem involving an appropriate polynomial mapping. Concerning the
spectral measure associated to such Jacobi matrices it is known [14] that it is
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given by a polynomial transformation on the Chebyshev measure of the second
kind, plus a finite number of mass points, and a connection with a polynomial
mapping have been done in [13, 21, 22] in order to describe the orthogonal
polynomials. This mapping is essential to describe the results in the work we
present here. Further, it allow us to give some interlacing properties from which
we deduce some upper bounds for the distance between consecutive eigenvalues
of the involved matrices.

The structure of the paper is as follows. In section 2 some mathematical
results concerning the spectral properties of tridiagonal k−Toeplitz matrices
are presented. In section 3 we apply the results in section 2 in order to obtain
interlacing properties for certain perturbed tridiagonal k−Toeplitz matrices.
Finally, in section 4 we include some numerical experiments.

2 Spectral properties of k−Toeplitz matrices

In this section we will present some properties of the eigenvalues of a tridiagonal
k−Toeplitz matrix, i.e., a matrix of the form

Jm :=




β0 1 0 . . . 0 0
γ1 β1 1 . . . 0 0
0 γ2 β2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . βm−2 1
0 0 0 . . . γm−1 βm−1




. (2.1)

where the entries (βs)s and (γs)s are k-periodic sequences, say

βs = aj+1 if s ≡ j (mod k) , γs+1 = b2
j+1 if s ≡ j (mod k) (2.2)

for all s = 0, 1, 2, . . . , m − 1, with aj ∈ R and bj > 0 for all j = 1, 2, . . . , k.

Theorem 2.1 Fix k ∈ N. Assume that Jm is a tridiagonal k−Toeplitz matrix
such that (2.2) holds, with aj ∈ R and bj > 0 for all j = 1, 2, . . . , k. If 1 ≤ i <
j ≤ k, define

∆i,j(x) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

x − ai 1 0 · · · 0 1
b2
i x − ai+1 1 · · · 0 0
0 b2

i+1 x − ai+2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · x − aj−1 1
0 0 0 · · · b2

j−1 x − aj

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

so that ∆i,j(x) is a polynomial of degree j − i + 1 in x; and if j ≤ i ≤ k, define

∆i,j(x) :=






0 if j < i − 1 ,

1 if j = i − 1 ,

x − ai if j = i .

Let πk and ∆k−1 be the polynomials of degrees k and k − 1 (resp.) defined by

πk(x) := ∆1,k(x) − b2
k∆2,k−1(x) , ∆k−1(x) := ∆1,k−1(x) .

Furthermore, set

Σk := π−1
k ([−α, α]) , α := 2b1b2 · · · bk .

Then the following holds:
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(i) The set Σk is an union of k intervals I1, · · · , Ik, such that any two of these
intervals intersect at most at a single point (i.e., Σk is indeed an union of
at most k disjoint intervals), so that

Σk = π−1
k ([−α, α]) = I1 ∪ · · · ∪ Ik . (2.3)

(ii) Except for at most k − 1 ones, all the eigenvalues of Jkn+k−1 are lo-
cated in the set Σk, for all n = 1, 2, · · · . More precisely, each interval
I1, . . . , Ik contains exactly n eigenvalues of Jkn+k−1 in its interior, and
the remaining k − 1 eigenvalues are located between these k intervals, so
that between Iℓ and Iℓ+1 (ℓ = 1, · · · , k − 1) there exists exactly one eigen-
value of Jkn+k−1. These k − 1 eigenvalues are the k − 1 solutions of the
algebraic equation ∆k−1(x) = 0.

(iii) For each j = 0, 1, · · · , k, all the eigenvalues of Jkn+j−1 (n = 1, 2, · · · )
are contained in the convex hull of the set Σk. Furthermore, between
two consecutive intervals Iℓ and Iℓ+1 (ℓ = 1, · · · , k − 1) the number of
eigenvalues of Jkn+j−1 is at most Nj, where

Nj :=

{
j + 1 if 0 ≤ j ≤ ⌊k/2⌋ ,

k − j + 1 if ⌊k/2⌋+ 1 ≤ j ≤ k .
(2.4)

For each ℓ = 1, · · · , k, let nj,n(ℓ) denote the number of eigenvalues of
Jnk+j−1 inside the interval Iℓ. Then

n − Lj ≤ nj,n(ℓ) ≤ n + Mj − 1 , j = 0, 1, · · · , k , (2.5)

where

Lj :=

{
j + 1 if 0 ≤ j ≤ ⌊k/2⌋ − 1 ,

k − j if ⌊k/2⌋ ≤ j ≤ k ,

and

Mj :=

{
j if 0 ≤ j ≤ ⌊k/2⌋ ,

k − j + 1 if ⌊k/2⌋+ 1 ≤ j ≤ k .

Proof. The sequences {βs}s≥0 and {γs}s≥1 satisfying the periodicity conditions
(2.2) generate a MOPS, (Pn)n, defined by the three-term recurrence relation

xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x) , n = 0, 1, 2, · · ·

with initial conditions P−1 = 0 and P0 = 1. It follows from very well known
facts in the Theory of Orthogonal Polynomials that the zeros of Pn are the
eigenvalues of the matrix Jn [6, Ex. 5.7], which are all real and simple [6, Th.
5.2], and the zeros of Pn interlace with those of Pn−1 [6, Th. 5.3]. Under
the given hypothesis, it is known (see e.g. [14, 18]) that the support of the
measure with respect to which the MOPS (Pn)n is orthogonal consists of an
union of k intervals such that any two of these intervals may intersect at a
single point, plus at most k−1 isolated points between them. Furthermore (see
e.g. [13, 18]) these k intervals are defined by the inverse polynomial mapping
[−α, α] 7→ π−1

k ([−α, α]) and they are separated by the points ξ1, · · · , ξk−1 which
are the solutions of the algebraic equation ∆k−1(x) = 0 (see Figure 1 for the
case k = 3, where the inverse polynomial mapping [−α, α] 7→ π−1

3 ([−α, α]) is
illustrated). This justifies statement (i) in the Proposition. In order to prove
(ii) notice first that (cf. e.g. [13])

Pnk+k−1(x) =
(

α
2

)n
∆k−1(x)Un

(
πk(x)

α

)
, n = 0, 1, 2, · · · (2.6)
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Figure 1: Inverse polynomial mapping

where Un is the Chebyshev polynomial of the second kind of degree n,

Un(x) :=
sin(n + 1)θ

sin θ
, x = cos θ. (2.7)

Thus the zeros of Pnk+k−1 (hence the eigenvalues of Jnk+k−1) are the above k−1
real numbers ξ1, · · · , ξk−1, which are located between the k intervals I1, · · · , Ik,

together with the kn real numbers x such that Un

(
πk(x)

α

)
= 0, i.e.,

πk(x) = α cos
jπ

n + 1
, j = 0, 1, · · · , k − 1 . (2.8)

Moreover, these nk eigenvalues lie inside the k intervals I1, · · · , Ik, and each
interval contains exactly n eigenvalues of Jkn+k−1 in its interior. This follows
from the fact that πk is monotone in each interval Iℓ (ℓ = 1, · · · , k), as follows
from the proof of [18, Theorem 5.1]. This proves statement (ii).

To prove (iii), notice first that for j = 0 or j = k (2.4) gives N0 = Nk = 1,
which is true by (ii), so we may assume 1 ≤ j ≤ k − 1. For the sake of
simplicity we assume that k is even (the case when k is odd can be treated in
a similar way). Denote by Γℓ the set between two consecutive intervals Iℓ and
Iℓ+1 (ℓ = 1, · · · , k−1). Notice that Γℓ may reduce to a single point in case that
the intervals Iℓ and Iℓ+1 toch each other. By (ii) we know that the polynomial
Pnk−1 has exactly one zero in each Γℓ. Then, by the interlacing property, Pnk

has at most two zeros in each Γℓ. Then, again by the interlacing property, Pnk+1

has at most three zeros in each Γℓ, and so one. Hence, at step k/2, we see that
in each Γℓ the polynomial Pnk+k/2−1 has at most k/2 + 1 zeros. This proves
that Pnk+j−1 has at most j + 1 zeros in each Γℓ if 1 ≤ j ≤ k/2. To prove that
Pnk+j−1 has at most k − j + 1 zeros in each Γℓ if k/2 < j ≤ k − 1, we argue
by contradiction. We know by (ii) that Pnk+k−1 has exactly one zero in each
Γℓ. Then, by the interlacing property, Pnk+k−2 should have no more than two
zeros in each Γℓ. Then, again by the interlacing property, Pnk+k−3 should have
no more than three zeros in each Γℓ, and so one. Continuing in this way, at
step k/2, we would conclude that Pnk+k/2 should have no more than k/2 zeros
in each Γℓ. We therefore proved that Jnk+j−1 has no more than Nj eigenvalues
in any set Γℓ, for every j = 0, 1, · · · , k. To prove the first inequality in (2.5)
notice that, by (ii), Jnk−1 has n − 1 eigenvalues on each interval Iℓ, and using
again the interlacing property (arguing in a similar way as before, by counting
successively the minimum possible number of eigenvalues of Jkn−1, Jkn, Jkn+1,
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..., Jkn+⌊k/2⌋−2 in an interval Iℓ, and then the minimum possible number of
eigenvalues of Jkn+k−1, Jkn+k−2, Jkn+k−3, ..., Jkn+⌊k/2⌋−1 in the same interval)
we may conclude that in each interval Iℓ the number of eigenvalues of Jkn+j−1

is at least n − Lj. The second inequality in (2.5) can be proved by a similar
reasoning, by counting successively the maximum possible number of eigenvalues
of Jkn−1, Jkn, Jkn+1, ..., Jkn+⌊k/2⌋−2 in an interval Iℓ, and then the maximum
possible number of eigenvalues of Jkn+k−1, Jkn+k−2, Jkn+k−3, ..., Jkn+⌊k/2⌋−1

in the same interval. This completes the proof. 2

Remark 2.2 Notice that when ℓ = 1 and ℓ = k (corresponding to the intervals
I1 and Ik) the following more precise estimates hold

n0,n(1) = n0,n(k) = n − 1 , nk,n(1) = nk,n(k) = n ,

n − 1 ≤ nj,n(1), nj,n(k) ≤ n for 2 ≤ j ≤ k − 1 ,

which are also a consequence of the interlacing properties.

3 Interlacing properties for certain perturbed

tridiagonal k−Toeplitz matrices

In what follows, we consider a set of numbers {βs, γs+1}s≥0, with γs+1 6= 0 for
all s = 0, 1, 2, . . . , and a pair of parameters µ and λ. For every integer number
n ≥ 2 we will denote by Jµ,λ

n the tridiagonal matrix of order n

Jµ,λ
n :=




β0 + µ 1 0 . . . 0 0
γ1 β1 1 . . . 0 0
0 γ2 β2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . βn−2 1
0 0 0 . . . γn−1 βn−1 + λ




.

By varying n we can associate to the matrices Jµ,λ
n a monic orthogonal poly-

nomial sequence (MOPS), which will be denoted by (Pµ,λ
n )n. In particular,

when λ = 0, to the family of tridiagonal matrices Jµ,0
n (by varying n) it can be

associated the MOPS (Pµ
n )n which is generated by the three-term recurrence

relation

xPµ
n (x) = Pµ

n+1(x) + βnPµ
n (x) + γnPµ

n−1(x) , n = 1, 2, 3, . . . (3.1)

with Pµ
0 (x) = 1 and Pµ

1 (x) = x − β0 − µ. Then [6, Ex. 4.12]

Pµ
n (x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x − β0 − µ 1 0 . . . 0 0
γ1 x − β1 1 . . . 0 0
0 γ2 x − β2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . x − βn−2 1
0 0 0 . . . γn−1 x − βn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

for all n = 2, 3, . . . , and each zero of Pµ
n is an eigenvalue of the corresponding

tridiagonal matrix Jµ,0
n . If λ = µ = 0 we write Jn ≡ J0,0

n and Pn ≡ P 0
n . The

MOPS (Pµ
n )n is called the co-recursive sequence with parameter µ associated to

the sequence (Pn)n. The co-recursive polynomials were introduced and studied
by T. S. Chihara [5].
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Proposition 3.1 Assume that βs ∈ R and γs+1 > 0 for all s = 0, 1, 2, · · · .
Then, for all µ, λ ∈ R and every integer number n ≥ 2, the following holds:

(i) The eigenvalues of Jµ,λ
n are real and simple.

(ii) If µ 6= 0, then the eigenvalues of the matrices Jµ,0
n and Jn interlace.

(iii) If λ 6= 0, then the eigenvalues of the matrices Jµ,λ
n and Jµ,0

n interlace.
More precisely, the following holds:

λ < 0 ⇒ xµ,λ
n,j < xµ,0

n,j < xµ,λ
n,j+1 < xµ,0

n,n (1 ≤ j ≤ n − 1)

λ > 0 ⇒ xµ,0
n,j < xµ,λ

n,j < xµ,0
n,j+1 < xµ,λ

n,n (1 ≤ j ≤ n − 1) ,

where xµ,0
n,j and xµ,λ

n,j denote the eigenvalues of the matrices Jµ,0
n and Jµ,λ

n

(resp.). As a consequence, there exists at most one eigenvalue of Jµ,λ
n out

of the interval [xµ,0
n,1, x

µ,0
n,n].

(iv) Between two consecutive eigenvalues of Jn there exists at most two eigen-
values of Jµ,λ

n , and conversely. Furthermore, there exist at most two eigen-
values of Jµ,λ

n out of the interval [xn,1, xn,n], where xn,1 and xn,n denote
the smallest and the greatest eigenvalues of Jn (resp.).

Proof. The statement in (i) is a well known fact, which follows at once from the
fact that, under the conditions of the proposition, the matrix Jµ,λ

n is similar to
a symmetric tridiagonal matrix with positive entries along the upper and sub
diagonals. Further, since the zeros of the co-recursive polynomial Pµ

n interlace
with those of Pn (see [5]) then we may conclude that the eigenvalues of Jµ,0

n and
Jn interlace, which proves (ii). In order to prove (iii), recall first that, since the
zeros of the orthogonal polynomials are real and distinct, then for each m we
may denote by xm,1 < xm,2 < · · · < xm,m the eigenvalues of Jm ≡ J0,0

m . Define
a polynomial sequence (Qm)m ≡ (Qm(·; λ))m by

Qm(x) := Pm(x) − λPm−1(x)

for all m = 0, 1, 2, . . . . Notice the relations

Qn(xn,j) = −λPn−1(xn,j) ,
Qn(xn,j+1) = −λPn−1(xn,j+1)

for all j = 1, . . . , n−1. Then, since the zeros of Pn and Pn−1 interlace [6, p. 28],
it follows that the quantities Pn−1(xn,j) and Pn−1(xn,j+1) have opposite signs
for all j = 1, . . . , n − 1 (see Figure 2).

Pn−1

Pn

Figure 2: Pn and Pn−1

Thus the polynomial Qn has n real ze-
ros and between two consecutive zeros of Pn

there is exactly one zero of Qn. This gives
the location of n − 1 zeros of Qn. The re-
mainder zero is less than xn,1 if λ < 0 and it
is greater than xn,n if λ > 0. To prove this
let us assume λ < 0. Then, Qn(xn,1) has the
same sign as Pn−1(xn,1), which is the oppo-
site one of limx→−∞ Pn(x), which in turn has
the same sign as limx→−∞ Qn(x). In other
words, denoting by xn,1(λ) < xn,2(λ) <
· · · < xn,n−1(λ) < xn,n(λ) the zeros of Qn, the interlacing property

xn,1(λ) < xn,1 < xn,2(λ) < xn,2 < · · · < xn,n(λ) < xn,n
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holds. For the case when λ > 0 we can use the same reasoning but with the
greatest zero xn,n instead of xn,1 to obtain

xn,1 < xn,1(λ) < xn,2 < xn,2(λ) < · · · < xn,n < xn,n(λ) .

Next, notice that the polynomial Qn can be written as

Qn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x − β0 1 0 . . . 0 0
γ1 x − β1 1 . . . 0 0
0 γ2 x − β2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . x − βn−2 1
0 0 0 . . . γn−1 x − βn−1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

This follows by expanding this determinant by its last row and taking into
account (3.1) for µ = 0 as well as the definition of Qn. Notice that Qn is the
(monic) characteristic polynomial of the matrix J0,λ

n , hence Qn = P 0,λ
n . Now,

introduce a new sequence (Rm)m ≡ (Rm(·, µ, λ))n by

Rm(x) := Pµ
m(x) − λPµ

m−1(x) , m = 0, 1, 2, · · · .

Since Rn is defined from the sequence (Pµ
m)m by the same way as Qn was defined

from (Pm)m, we have that the zeros of Rn and Pµ
n must interlace and

Rn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x − β0 − µ 1 0 . . . 0 0
γ1 x − β1 1 . . . 0 0
0 γ2 x − β2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . x − βn−2 1
0 0 0 . . . γn−1 x − βn−1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

so that Rn is the (monic) characteristic polynomial of Jµ,λ
n , i.e., Rn = Pµ,λ

n .
Hence the eigenvalues of Jµ,λ

n and Jµ,0
n interlace, which proves (iii). Finally, (iv)

is an immediate consequence of (ii) and (iii). 2

Theorem 3.2 Let Jm be the tridiagonal k−Toeplitz matrix (2.1) whose entries
(βs)s and (γs)s are k-periodic sequences fulfilling (2.2). Let Σk be the set defined
in (2.3). Then, for every n = 1, 2, · · · and each j = 0, 1, · · · , k−1, the following
properties hold:

(i) There exists at most two eigenvalues of the perturbed matrix Jµ,λ
nk+j−1 out

of the convex hull of Σk.

(ii) There exists at most Nj + 2 eigenvalues of Jµ,λ
nk+j−1 in between two con-

secutive intervals Iℓ and Iℓ+1 (ℓ = 1, · · · , k − 1), where Nj is given by
(2.4).

(iii) There are at most (k − 1)Nj + 2k eigenvalues of the perturbed matrix

Jµ,λ
nk+j−1 out of the set Σk.

Proof. Statement (i) follows from Theorem 2.1-(iii) and Proposition 3.1-(iv).
Statement (iii) is an immediate consequence of (i) and (ii). To prove (ii) we
notice first that, by Proposition 3.1-(ii) and Theorem 2.1-(iii), in between two
consecutive intervals Iℓ and Iℓ+1 (ℓ = 1, · · · , k − 1) there exists at most Nj + 1

eigenvalues of the perturbed matrix Jµ,0
kn+j−1. (In Figure 3 an illustrative situa-

tion is presented.) Thus using Proposition 3.1-(iii) it follows that in between Iℓ
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❚                                                          ▲ ▼

❚ ❚ ❚ ❚ ❚▼ ▼ ▼ ▼▼
▲ ▲ ▲ ▲ ▲

– Jnk−1 – Jµ,λ
nk−1

– Jµ,0
nk−1

▲❚                                                                  ▼

❚ ❚ ❚ ❚ ❚▼ ▼ ▼
▲

❚▼ ▼ ▼ ❚ ▼
▲ ▲ ▲▲ ▲ ▲

– Jnk+j−1 – Jµ,λ
nk+j−1

– Jµ,0
nk+j−1

Figure 3: The typical distribution of the eigenvalues of the matrices Jkn−1, J
µ,0
nk−1

,

and J
µ,λ
nk−1

(upper picture) and Jkn+j−1, J
µ,0
nk+j−1

, and J
µ,λ
nk+j−1

(lower picture).

and Iℓ+1 there are at most Nj +2 eigenvalues of the perturbed matrix Jµ,λ
kn+j−1.

2

The next proposition gives a bound for the distance between two consecutive
eigenvalues of Jkn+k−1 inside each interval Iℓ (ℓ = 1, . . . , k), assuming that all
these intervals are disjoint.

Theorem 3.3 Assume the conditions of Theorem 2.1 as well as the conditions
πk(ξi) 6= ±α for all i = 1, · · · , k − 1. Let zℓ,n,1 < zℓ,n,2 < · · · < zℓ,n,n be the n
eigenvalues of Jkn+k−1 that lie in the interior of the interval Iℓ (ℓ = 1, 2, · · ·k).
Then

|zℓ,n,ν+1 − zℓ,n,ν| ≤
̺ℓ

n + 1
, ̺ℓ :=

απ

minx∈Iℓ
|π′

k(x)|
(3.2)

for all ℓ = 1, 2, · · · , k and ν = 1, 2, · · · , n−1. Moreover, the interlacing property

zℓ,n,ν < zℓ,n−1,ν < zℓ,n,ν+1 < zℓ,n−1,ν+1 < zℓ,n,ν+2 (3.3)

holds for all ℓ = 1, 2, · · · , k, ν = 1, 2, · · · , n − 2, and n ≥ 3.

Proof. According to (2.6) the eigenvalues of Jnk+k−1 inside the interior of Σk

are the kn roots of the equations

πk(x) = yn,ν := α cos
νπ

n + 1
(ν = 1, 2, · · · , n) .

Notice that for each fixed ν this equation has k roots which are distributed over
the k intervals Iℓ in such a way that there is exactly one root in each Iℓ. By the
mean value Theorem we know that for all real numbers a and b we may write
πk(a) − πk(b) = π′

k(ξ)(a − b) for some ξ such that a < ξ < b. Hence taking
a = zℓ,n,ν+1 and b = zℓ,n,ν we deduce

|zℓ,n,ν+1 − zℓ,n,ν| ≤
|yn,ν+1 − yn,ν |

minx∈Iℓ
|π′

k(x)|
≤

1

minx∈Iℓ
|π′

k(x)|

απ

n + 1
=

̺ℓ

n + 1
.

Let us point out that πk is monotone in each interval Iℓ (ℓ = 1, · · · , k). This
fact together with the hypothesis πk(ξi) 6= ±α for every i = 1, · · · , k− 1 implies
πk(ξi) 6∈ [−α, α] for all i = 1, · · · , k − 1, hence π′

k(x) 6= 0 for all x ∈ Iℓ,
ℓ = 1, · · · , k.

Finally, (3.3) follows from (2.6), taking into account the interlacing property
of the zeros of the Chebyshev polynomials Un(x), as well as the monotonicity
of the function πk in Iℓ, for every ℓ = 1, · · · , k. 2
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Remark 3.4 It is clear that every ̺ℓ in (3.2) may be replaced by a uniform
upper bound (independent of ℓ), say, ̺. For instance,

̺ℓ ≤ ̺ := απ/ min
x∈Σk

|π′
k(x)| , ℓ = 1, · · · , k . (3.4)

Remark 3.5 For the case k = 1 and k = 2 the above estimates can be easily
sharpenned. In fact from (2.8) and after some straigthforward computations
using the mean value Theorem, one can obtain the following results.

1. The (1−)Toeplitz matrix Jn. Let βs = a and γs = b2, a, b ∈ R, b > 0 for
all s. Then all the eigenvalues zn,ν := z1,n,ν of Jn lie inside the interval
I1 = [a − 2b, a + 2b], and

|zn,ν+1 − zn,ν | ≤
2bπ

n + 1
, ν = 1, . . . , n − 1.

2. The 2−Toeplitz matrix J2n+1. Let

βs =

{
a if s is even
b if s is odd

and γs =

{
c2 if s is even
d2 if s is odd

for all s, with a, b ∈ R, c, d > 0 and |a − b| + |c − d| 6= 0, and let

r =

√
|c − d|2 + |(a − b)/2|2 and s =

√
|c + d|2 + |(a − b)/2|2. Then,

there are n eigenvalues z1,n,ν inside the interval I1 =
[

a+b
2 − s, a+b

2 − r
]
,

n eigenvalues z2,n,ν inside I2 =
[

a+b
2 + r, a+b

2 + s
]
, and the remaining

eigenvalue, a, lies between these two intervals. Furthermore, the distance
between two consecutive eigenvalues inside the intervals I1 or I2 satisfy
the inequality

|zℓ,n,ν+1 − zℓ,n,ν| ≤
cd√(

a−b
2

)2
+ (c − d)2

π

n + 1
,

for all ℓ = 1, 2 and ν = 1, 2, . . . , n − 1.

From Theorem 3.3 and Theorem 2.1-(iii) we can obtain a bound similar to
(3.2) for the distance of the eigenvalues of the matrices Jnk+j−1 (j = 1, · · · , k−1)

inside Σk. Denote by z
(j)
ℓ,n,1 < · · · < z

(j)
ℓ,n,nj,n(ℓ) the eigenvalues of Jkn+j−1 inside

the interval Iℓ (ℓ = 1, 2, · · · , k). Notice that, according to Theorem 2.1-(iii), the
numbers Nj , Lj and Mj satisfy the uniform bounds

1 ≤ Nj ≤ ⌊k/2⌋+ 1 , 0 ≤ Lj , Mj ≤ ⌊(k + 1)/2⌋

for all j = 0, 1, · · · , k, hence from (2.5) one sees that the number nj,n(ℓ) of
eigenvalues of Jnk+j−1 inside Iℓ satisfies

n − ⌊(k + 1)/2⌋ ≤ n − Lj ≤ nj,n(ℓ) ≤ n + Mj − 1 ≤ n + ⌊(k − 1)/2⌋

for all j = 0, 1, · · · , k and ℓ = 1, · · · , k. This implies

|nj,n(ℓ) − n| ≤ max{Lj, Mj − 1} ≤ ⌊(k + 1)/2⌋

for all j = 0, 1, · · · , k and ℓ = 1, · · · , k.

Theorem 3.6 Under the conditions of Theorem 3.3,

∣∣∣z(j)
ℓ,n,ν − zℓ,n,ν

∣∣∣ ≤
j̺ℓ

n + 1
<

k̺

n + 1
(3.5)

for all j = 0, 1, · · · , k − 1, ℓ = 1, · · · , k, and ν = j + 1, · · · , min{nj,n(ℓ), n − 1},
where ̺ is given by (3.4).
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Proof. It follows from Theorem 3.3 and taking into account the interlacing
properties fulfilled by the eigenvalues of the matrices Jnk−1, Jnk, · · · , Jnk+j−1.
In fact, assume first j = 1. By the interlacing property between the eigenvalues
of Jnk−1 and Jnk, it follows that

∣∣∣z(1)
ℓ,n,ν − zℓ,n,ν

∣∣∣ ≤ |zℓ,n,ν − zℓ,n,ν+1| ≤
ρℓ

n + 1

for all ν = 2, 3, · · · , n− 1, the last inequality being justified by (3.2), and so the
desired result follows for j = 1. In a similar way, for j = 2, by the interlacing
properties between the eigenvalues of Jnk−1, Jnk and Jnk+1, we get

∣∣∣z(2)
ℓ,n,ν − zℓ,n,ν

∣∣∣

≤
∣∣∣z(1)

ℓ,n,ν − zℓ,n,ν

∣∣∣ +
∣∣∣z(1)

ℓ,n,ν+1 − z
(1)
ℓ,n,ν

∣∣∣ +
∣∣∣z(1)

ℓ,n,ν+1 − zℓ,n,ν+2

∣∣∣

= |zℓ,n,ν − zℓ,n,ν+2| = |zℓ,n,ν − zℓ,n,ν+1| + |zℓ,n,ν+1 − zℓ,n,ν+2| ≤
2ρℓ

n + 1

for all ν = 3, 4, · · · , min{n2,n(ℓ), n − 1}. In a similar way, we get the desired
result for any j. 2

Theorem 3.7 Under the conditions of Theorem 3.3, let

z
(j,µ,λ)
ℓ,n,1 < · · · < z

(j,µ,λ)
ℓ,n,n′

j,n
(ℓ), j = 0, 1, · · · , k − 1,

be the eigenvalues of Jµ,λ
kn+j−1 inside the interior of the interval Iℓ (ℓ = 1, · · · , k).

Then the following bounds
∣∣∣z(j,µ,λ)

ℓ,n,ν − zℓ,n,ν

∣∣∣ ≤
(5j + 2)̺ℓ

n + 1
≤

(5k − 3)̺

n + 1

hold for all ν = j + 2, · · · , min{nj,n(ℓ), n′
j,n(ℓ), n − 1} − 1.

Proof. From (3.2) and (3.5) and using the triangle inequality we see that the

eigenvalues z
(j)
ℓ,ν of the matrices Jnk+j−1 that lies inside the interval Iℓ satisfy

∣∣∣z(j)
ℓ,n,ν − z

(j)
ℓ,n,ν+1

∣∣∣ ≤
∣∣∣z(j)

ℓ,n,ν − zℓ,n,ν

∣∣∣ +
∣∣∣z(j)

ℓ,n,ν+1 − zℓ,n,ν+1

∣∣∣ +
∣∣∣zℓ,n,ν+1 − zℓ,n,ν

∣∣∣

≤
(2j + 1)̺ℓ

n + 1

for all ν = j + 1, · · · , min{nj,n(ℓ), n − 1} and ℓ = 1, · · · , k. On the other hand,

by (ii) and (iii) in Proposition 3.1, for all the eigenvalues z
(j,µ,λ)
ℓ,n,ν and z

(j)
ℓ,n,ν of

the matrices J
(j,µ,λ)
nk+j−1 and Jnk+j−1 that are inside the interior of Iℓ we can write

∣∣∣z(j,µ,λ)
ℓ,n,ν − z

(j)
ℓ,n,ν

∣∣∣ ≤ 2 max
ν

∣∣∣z(j)
ℓ,n,ν − z

(j)
ℓ,n,ν+1

∣∣∣ ≤
2(2j + 1)̺ℓ

n + 1

for all ν = j + 2, · · · , min{nj,n(ℓ), n′
j,n(ℓ), n − 1} − 1 and ℓ = 1, · · · , k. As a

consequence, for all the eigenvalues z
(j,µ,λ)
ℓ,n,ν and zℓ,n,ν of the matrices J

(j,µ,λ)
nk+j−1

and Jnk−1 that are inside Iℓ one finds

∣∣∣z(j,µ,λ)
ℓ,n,ν − zℓ,n,ν

∣∣∣ ≤
∣∣∣z(j,µ,λ)

ℓ,n,ν − z
(j)
ℓ,n,ν

∣∣∣ +
∣∣∣z(j)

ℓ,n,ν − zℓ,n,ν

∣∣∣ ≤
(5j + 2)̺ℓ

n + 1

for all ν = j + 1, . . . , min{nj,n(ℓ), n′
j,n(ℓ), n − 1} − 1 and ℓ = 1, · · · , k. 2

Remark 3.8 From Theorem 3.7 we see that for large n, up to a number inde-
pendent of n, the eigenvalues of the matrix Jµ,λ

nk+j−1 may be approximated by the

eigenvalues of Jnk−1 Henceforth, for large n most of the eigenvalues of Jµ,λ
nk+j−1

are close enough to the solutions of the equation (2.8).
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4 Examples and numerical experiments

4.1 Perturbation of a tridiagonal 3−Toeplitz matrix

Let us consider matrices with the following structure

H =

(
a1 0
0 AN

)
, (4.1)

where AN is a tridiagonal matrix. The eigenproblem

(
a1 0
0 AN

) (
x1

X

)
= λ

(
x1

X

)
,

always has the eigenvalue λ = a1 and the eigenvector (1, 0, . . . , 0)T . To compute
the remaining eigenvectors, (0, X)T , and the corresponding eigenvalues, λ, we
need to solve the eigenproblem

X 6= 0, ANX = λX. (4.2)

Here we will concentrate our attention in the case when AN is a perturbed
tridiagonal k-Toeplitz matrix. This structure is motivated by certain physical
models (cf. e.g. [2]). An example of such a matrix is

H
(3)
N =

(
a1 0
0 AN

)
, (4.3)

where N = 3n + 2 and AN is

A3n+2 =




a2 b2 0 0 0 0 0 0 · · · 0 0 0 0
b2 a3 b3 0 0 0 0 0 · · · 0 0 0 0
0 b3 a4 b4 0 0 0 0 · · · 0 0 0 0
0 0 b4 a5 b2 0 0 0 · · · 0 0 0 0
0 0 0 b2 a3 b3 0 0 · · · 0 0 0 0
0 0 0 0 b3 a4 b4 0 · · · 0 0 0 0
0 0 0 0 0 b4 a5 b2 · · · 0 0 0 0
0 0 0 0 0 0 b2 a3 · · · 0 0 0 0
..
.

..

.
..
.

..

.
..
.

..

.
..
.

. . .
. . .

. . .
..
.

..

.
0 0 0 0 0 0 0 · · · b2 a3 b3 0 0
0 0 0 0 0 0 0 · · · 0 b3 a4 b4 0
0 0 0 0 0 0 0 · · · 0 0 b4 a5 b2
0 0 0 0 0 0 0 · · · 0 0 0 b2 a2




, (4.4)

so that AN is a perturbed tridiagonal 3-Toeplitz matrix. As pointed out before,

H
(3)
N has the eigenvalue λ0 = a1 corresponding to the eigenvector (1, 0, . . . , 0)T .

To obtain the other eigenvalues we will suppose that n is large enough and
we change the first entry of the diagonal of AN by a5 and the last entry by
a3, hence we obtain a (non-perturbed) tridiagonal 3-Toeplitz matrix, say, ÃN .
According to the results in [22], or from (3.10)–(3.12) in [1], the eigenvalues λℓ

(ℓ = 1, 2, . . . , 3n + 2) of ÃN ≡ Ã3n+2 are

λ1 =
a3 + a5 −

√
(a3 − a5)2 + 4b2

2

2
, λ2 =

a3 + a5 +
√

(a3 − a5)2 + 4b2
2

2

and the 3n solutions of the cubic equations

x3 − (a3 + a4 + a5)x
2 + (a3a5 + a4a5 + a3a4 − b2

2 − b2
3 − b2

4)x

+ a4b
2
2 + a5b

2
3 + a3b

2
4 − a3a4a5 + 2b2b3b4 cos

kπ

n + 1
= 0 ,
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for k = 1, 2, . . . , n. The corresponding eigenvectors are

vℓ = (0, S0(λℓ), S1(λℓ), . . . , S3n+1(λℓ))
T

, ℓ = 1, 2, . . . , 3n + 2,

where (Sν)ν is a sequence of orthonormal polynomials, defined explicitly by

S3k(λ) = Uk (ϕ3(λ)) +
b4

b2b3
(λ − a3)Uk−1 (ϕ3(λ)) ,

S3k+1(λ) =
(λ − a5)

b2
Uk (ϕ3(λ)) +

b4

b3
Uk−1 (ϕ3(λ)) ,

S3k+2(λ) =
(λ − λ1)(λ − λ2)

b2b3
Uk (ϕ3(λ))

for all k = 0, 1, 2, . . . , being

ϕ3(x) :=
1

2b2b3b4
{(x − a3)(x − a4)(x − a5) − (b2

2 + b2
3 + b2

4)(x − a4)

+(a5 − a4)b
2
3 + (a3 − a4)b

2
4 } ,

and Uk is the Chebyshev polynomial of the second kind of degree k, defined in
(2.7). Notice that, according to Theorem 3.7, the eigenvalues of AN and ÃN

are close enough for N large.

4.2 Some numerical experiments

To conclude this section let us briefly discuss some numerical results. We have
computed the eigenvalues corresponding to the matrices AN and ÃN by find-
ing an accurate agreement between the numerical and the analytical results.
As expected, the numerical results confirm that the interlacing property (iv)
in Proposition 3.1 holds. As an example, consider the perturbed tridiagonal
1−Toeplitz matrix

AN =




a2 b2 0 · · · 0 0
b2 a3 b2 · · · 0 0
0 b2 a3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · a3 b2

0 0 0 · · · b2 a4




. (4.5)

In Figure 4 we show the interlacing property between the 12−th and 15−th
eigenvalues λAN

(with stars) and λÃN
(open circles) of the matrices AN and

ÃN (resp.) where we have choosing b2 = 1/2, a1 = 9/2, a2 = 5/2, a3 = 4, and
N = 21. Notice that between the 13−th and 14−th eigenvalues of the perturbed
matrix AN there exist two eigenvalues of the matrix ÃN as it is stated in in
Proposition 3.1(iv).

4.1 4.3 4.6

Figure 4: The interlacing property of the eigenvalues of AN and ÃN .

Next, we will include some numerical simulations for perturbed tridiagonal
k-Toeplitz matrices, for several choices of k. We start with two examples with
k = 3. In this case there are three disjoint intervals where almost all the
eigenvalues lie, and only few of them are out of these intervals (see Fig. 5). The
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left panel is an example for the case of a matrix AN of the form (4.4) where
a2 = 4, a3 = 2, a4 = 6, a5 = 1, b2 = 2, b3 = 3, and b4 = 4, and in the right panel
we may see the eigenvalues distribution of the same matrix but now when the
last diagonal element is a4 = 9.75 (the first element remains the same, a2 = 2).
Many other examples we have simulated are in accordance with Theorem 3.7.
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Figure 5: The eigenvalues λA (with stars) and λÃ (using open circles) for tridiagonal
3−Toeplitz matrices when n = 50, N = 3 n+2. The values of the remaining parameters
are described in the text.

Finally, in Fig. 6 a plot of a typical example of 5 and 7-Toeplitz matrices
is considered. In the first case the diagonal is a repetition of the elements
[1, 5, 3, 3, 2] and the supper and subdiagonal are [1, 5, 4, 4, 5], respectively. As
before, using stars we plot the eigenvalues of the perturbed matrix and by circles
the eigenvalues of the unperturbed ones. As we can see in Fig. 6 (left panel)
there are 5 disjoint intervals. In the second case we have a 7−Toeplitz matrix
obtained by repeating the elements [1, 5, 3, 3, 3, 2, 1] and [1, 5, 4, 4, 5, 2, 1] in the
diagonal and in the supper and subdiagonal, respectively, and the perturbation
parameters are µ = 2 and λ = 1.5.
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Figure 6: The eigenvalues λA (with stars) and λÃ (using open circles). Parameters
of the numerical simulations are: in left panel, k = 5, n = 30, N = 5 n + 3; in right
panel, k = 7, n = 20, N = 7n + 3. The parameters ai and bi are defined in the text.

Programs: The numerical simulations presented here have been obtained by
using the commercial program Matlab. The source code can be obtained by
request via e-mail to niurka@euler.us.es or ran@us.es.
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Appendix A

Here we will deduce the solution of the eigenproblem for the matrix

H
(1)
N =

(
a1 0
0 AN

)
,

where AN is the perturbed 1−Toeplitz matrix (4.5). Using (4.2) we have that

one eigenvalue of H
(1)
N is λ0 = a1 and an associated eigenvector is (1, 0, . . . , 0)T .

In order to obtain the other eigenvalues, put a2 = a3 + λ and a4 = a3 + µ, and
consider the tridiagonal 1−Toeplitz matrix

ÃN =




a3 b2 0 · · · 0 0
b2 a3 b2 · · · 0 0
0 b2 a3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · a3 b2

0 0 0 · · · b2 a3




.
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It is well known (see e.g. [17]) that the eigenvalues of this matrix are

λk = a3 + 2b2 cos

(
kπ

N + 1

)
, k = 1, 2, . . . , N ,

and the corresponding eigenvectors are

vℓ = (0, S0(λℓ), S1(λℓ), . . . , SN−1(λℓ))
T

, ℓ = 1, 2, . . . , N,

where

Sk(λ) = Uk

(
λ − a3

2b2

)
, k = 0, 1, 2, . . . ,

being Uk the Chebyshev polynomial of the second kind of degree k defined in
(2.7). Hence, one sees that

Sk(λℓ) =
sin (k+1)ℓπ

N+1

sin ℓπ
N+1

, ℓ = 1, 2, . . . , N ; k = 0, 1, 2, . . . ,

and so

vℓ =
1

sin ℓπ
N+1

(
0, sin

ℓπ

N + 1
, sin

2ℓπ

N + 1
, . . . , sin

Nℓπ

N + 1

)T

, ℓ = 1, 2, . . . , N.

Notice that, according to Theorem 3.7, for N large enough the eigenvalues of
AN are close enough to the eigenvalues of ÃN .


