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Abstract

In the present paper we deal with the polynomials L
(α,M,N)
n (x) orthogonal with respect

to the Sobolev inner product

(p, q) =
1

Γ(α+1)

∫

∞

0

p(x)q(x)xα e−xdx + M p(0)q(0) + N p′(0)q′(0), N,M ≥ 0, α > −1,

firstly introduced by Koekoek and Meijer in 1993 and extensively studied in the last years.
We present some new asymptotic properties of these polynomials and also a limit relation
between the zeros of these polynomials and the zeros of Bessel function Jα(x). The re-
sults are illustrated with numerical examples. Also, some general asymptotic formulas for
generalizations of these polynomials are conjectured.
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1 Introduction

In this paper we will deal mainly with the polynomials which are orthogonal with respect to
the Sobolev-type inner product

(p, q) =
1

Γ(α + 1)

∫ ∞

0
p(x)q(x)xα e−xdx + M p(0)q(0) + N p′(0)q′(0) , (1)

where M,N ≥ 0 and α > −1. These polynomials were introduced by Koekoek and Meijer in

[10] and constitute a natural generalization of the so–called Koornwinder’s generalized Laguerre
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†Research partially supported by Junta de Andalućıa, Grupo de Investigación FQM 0229, Dirección General
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polynomials, earlier introduced by Koornwinder in [11], which are orthogonal with respect to
(1) where N = 0 (for details see e.g. [8, 11]).

In the following we will denote
(

L
(α,M,N)
n (x)

)

n
the sequence of orthogonal polynomials

with respect to (1). In [10] the authors established different properties of the polynomials
(

L
(α,M,N)
n (x)

)

n
such as the differential equation that they satisfy, a five–term recurrence rela-

tion, a Christoffel–Darboux type formula, a representation as a hypergeometric series 3F3 and
some properties of their zeros (being one of them the fact that the zeros of these polynomials

are all real and simple). Later, although it was published earlier, Koekoek in [9] considered the
more general inner product

(p, q)g =
1

Γ(α + 1)

∫ ∞

0
p(x)q(x)xα e−xdx +

s
∑

i=0

Mi p
(i)(0)q(i)(0) , (2)

where Mi ≥ 0, i = 0, . . . , s and α > −1 and studied some properties of the correspond-
ing orthogonal polynomials with respect to the inner product (2), usually called the discrete

Sobolev-type Laguerre which constitutes an instance of a larger class of orthogonal polynomi-
als: the discrete Sobolev-type orthogonal polynomials. For more detailed description of this
Sobolev-type orthogonal polynomials (including the continuous ones) we refer the readers to

the recent reviews [12, 14, 15].

Our main aims here are two:

1. To fill a gap in the study of the polynomials L
(α,M,N)
n (x) orthogonal with respect to the

inner product (1), that is, to obtain new asymptotic properties such as strong asymptotics,
Plancherel–Rotach type asymptotics and Mehler–Heine type formulas. This will be done

in Section 3, theorems 1 and 2.

2. To establish limit relations when n→∞ between the zeros of the polynomial L
(α,M,N)
n (x)

and the zeros of Bessel functions Jα, Jα+2, Jα+4 or their combinations according to the
values of the masses N and M . This will be done in Section 4, theorem 3.

These kind of problems have been also considered for the Jacobi Sobolev–type orthogonal
polynomials (see [2]) and for the continuous Sobolev orthogonal polynomials (see, e.g., [4, 13]).

Also we will show that the technique used here for the L
(α,M,N)
n (x) polynomials can be easily

extended to another family of orthogonal polynomials corresponding to a non-diagonal case
introduced later on in [5, 6]. This will be done in section 4.1.

The structure of the paper is as follows: In section 2, some preliminary results are quoted.
In section 3, the asymptotics of the polynomials orthogonal with respect to the inner product

(1) is deduced that allows us, in section 4, to obtain some interesting properties of the zeros of
these generalized polynomials as well as to set out a conjecture about the asymptotic behavior

of the polynomials orthogonal with respect to (2). In section 4.1 an example of a non-diagonal
case will be discussed briefly and, finally, in section 4.2 some numerical examples illustrating
the above results are presented.
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2 Preliminaries

2.1 The classical Laguerre polynomials

The classical Laguerre polynomials are defined by (see e.g. [16])

L(α)
n (x) =

n
∑

k=0

(

n + α

n − k

)

(−x)k

k!
,

where
(α
β

)

are the binomial coefficients.

Proposition 1 Let
(

L
(α)
n (x)

)

n
be the sequence of Laguerre polynomials with leading coefficients

(−1)n/n! . They verifies the following properties:

(a) For α ∈ R, ([16, f. (5.1.1)])

L(α)
n (x) − L

(α)
n−1(x) = L(α−1)

n (x). (3)

(b) Strong asymptotics (Perron’s formula) on C \ R ([16, Th. 8.22.3]). Let α ∈ R. Then

L(α)
n (x) = 2−1π−1/2ex/2(−x)−α/2−1/4nα/2−1/4e2(−nx)1/2

(

1 + O
(

n−1/2
))

. (4)

This relation holds for x in the complex plane cut along the positive real semiaxis; both
(−x)−α/2−1/4 and (−x)1/2 must be taken real and positive if x < 0 . The bound of the

remainder holds uniformly in every closed domain which does not overlap the positive
real semiaxis.

(c) It holds ([16, Section 8.22 and formula (1.71.7)])

L
(α)
n (x)

nα/2
= ex/2x−α/2 Jα(2

√
nx) + O(n−3/4), (5)

uniformly on compact subsets of (0,+∞) where Jα is the Bessel function.

(d) Mehler–Heine type formula ([16, Th. 8.1.3])

lim
n→∞

L
(α)
n (x/(n + j))

nα
= x−α/2Jα(2

√
x), (6)

uniformly on compact subsets of C and uniformly on j ∈ N ∪ {0}.

(e) Scaled asymptotics on C \ [0, 4]. It holds ([7])

lim
n→∞

2n
√

2π n (−1)nL(α)
n (nx)

(

x − 2 +
√

x2 − 4x
)−n

exp

( −2nx

x +
√

x2 − 4x

)

=

2−α−1/2x−α
(

x − 2 +
√

x2 − 4x
)1/2 (

x +
√

x2 − 4x
)α
(

x2 − 4x
)−1/4

, (7)

uniformly on compact subsets of C \ [0, 4] taking into account that the square roots in (7)
are negative if x is negative.

Remark 1 Although the Mehler–Heine type formula for Laguerre polynomials in Szegő’s book
is (6) with j = 0, it can be shown that this formula is true for j ∈ N such as it appears in (6).
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On the other hand, formulas (4) and (7) allow us to obtain the ratio asymptotics for
Laguerre and scaled Laguerre orthogonal polynomials (α > −1), respectively. In fact, from (4)
we deduce

lim
n→∞

n(`−j)/2
L

(α+j)
n+k (x)

L
(α+`)
n+h (x)

= (−x)(`−j)/2 , j, ` ∈ R, h, k ∈ Z. (8)

uniformly on compact subsets of C \ [0,∞). We will use this result with j, ` ∈ Z.
Also, from (7) we get, for j ∈ N ∪ {0},

lim
n→∞

L
(α)
n−1((n + j)x)

L
(α)
n ((n + j)x)

= − 1

ϕ ((x − 2)/2)
, (9)

uniformly on compact subsets of C \ [0, 4] where ϕ is the conformal mapping of C \ [−1, 1] onto
the exterior of the unit circle given by

ϕ(x) = x +
√

x2 − 1 , x ∈ C \ [−1, 1], (10)

with
√

x2 − 1 > 0 when x > 1.

2.2 Generalization of Laguerre polynomials

In [10] Koekoek and Meijer establish that the orthogonal polynomials, L
(α,M,N)
n (x), with respect

to the inner product (1), M,N ≥ 0, α > −1, can be rewritten in terms of the Laguerre

polynomials, L
(α)
n (x),

L(α,M,N)
n (x) = B0(n)L(α)

n (x) + B1(n)xL
(α+2)
n−1 (x) + B2(n)x2L

(α+4)
n−2 (x), n ≥ 0, (11)

where it is assumed L
(α)
i (x) = 0, for i = −1,−2 and

B0(n) = 1 − N

α+1

(

n+α+1

n−2

)

, B1(n) = − M

α+1

(

n+α

n

)

− (α+2)N

(α+1)(α+3)

(

n+α

n−2

)

, (12)

B2(n) =
N

(α+1)(α+2)(α+3)

(

n+α

n−1

)

+
MN

(α+1)2(α+2)(α+3)

(

n+α

n

)(

n+α+1

n−1

)

. (13)

Notice that using (11) and the fact that the leading coefficients of the Laguerre polynomials

are (−1)n/n! we deduce that the leading coefficients of L
(α,M,N)
n (x) are

(−1)n

n!
(B0(n) − nB1(n) + n(n − 1)B2(n)) .

Following [10] we can use the above formulas (12–13) to obtain the asymptotics of the coeffi-
cients in (11):

Case M > 0, N = 0.

B0(n) = 1 , lim
n→∞

B1(n)

nα
=

−M

Γ(α + 2)
, B2(n) = 0 .
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Case M = 0, N > 0.

lim
n→∞

B0(n)

nα+3
=

−N

(α + 1)Γ(α + 4)
, lim

n→∞
B1(n)

nα+2
=

−N(α + 2)

(α + 1)Γ(α + 4)
,

lim
n→∞

B2(n)

nα+1
=

N

(α + 1)Γ(α + 4)
. (14)

Case M > 0, N > 0.

lim
n→∞

B0(n)

nα+3
=

−N

(α+1)Γ(α+4)
, lim

n→∞
B1(n)

nα+2
=

−N(α+2)

(α+1)Γ(α+4)
,

lim
n→∞

B2(n)

n2α+2
=

MN

(α+1)Γ(α+3)Γ(α+4)
. (15)

The polynomials L
(α,M,N)
n (x) verify several interesting properties [10]: they satisfy a second–

order differential equation with polynomial coefficients of degree at most three, a five–term

recurrence relation, and Christoffel–Darboux type formula and they can be represented as a
generalized hypergeometric series 3F3. Of particular significance to our work is the following:

Theorem [Koekoek, Meijer [10]] The polynomial L
(α,M,N)
n (x) has n real simple zeros. At least

n − 1 of them lie in (0,+∞). Furthermore, when N > 0 and n large enough they have exactly

one zero in (−∞, 0].

Before concluding let us point out that some of the above properties and results have been

extended to other more general polynomials. The reader interested in these results can consult,
e.g., [1, 3, 9].

3 Asymptotic properties of generalized Laguerre polynomials

Along this section Bi(n), i = 0, 1, 2, take the values given by (12–13), respectively.

Theorem 1 The polynomials
(

L
(α,M,N)
n (x)

)

n
, with α > −1, satisfy

(a) Exterior asymptotics. The following limits hold uniformly on compact subsets of C \
[0,+∞),

• If M > 0 and N = 0,

lim
n→∞

L
(α,M,0)
n (x)

nα+1L
(α)
n (x)

=
M

Γ(α + 2)
.

• If M = 0 and N > 0,

lim
n→∞

L
(α,0,N)
n (x)

nα+3L
(α)
n (x)

=
(α + 2)N

(α + 1)Γ(α + 4)
.

• If M > 0 and N > 0,

lim
n→∞

L
(α,M,N)
n (x)

n2α+4L
(α)
n (x)

=
MN

(α + 1)Γ(α + 3)Γ(α + 4)
.

5



(b) Asymptotics on compact subsets of (0,+∞).

• If M > 0 and N = 0,

L
(α,M,0)
n (x)

n3α/2+1
= a(n) ex/2xx−(α+2)/2Jα+2

(

2
√

(n − 1)x
)

+ O
(

n−min{α+5/4,3/4}
)

, (16)

where

a(n) =
B1(n)

nα

(

n − 1

n

)α/2+1

−→ −M

Γ(α + 2)
when n → ∞ .

• If M = 0 and N > 0,

L
(α,0,N)
n (x)

n3α/2+3
= ex/2

(

b0(n)x−α/2Jα

(

2
√

nx
)

+ b1(n)xx−(α+2)/2Jα+2

(

2
√

(n − 1)x
)

+ b2(n)x2 x−(α+4)/2Jα+4

(

2
√

(n − 2)x
))

+ O
(

n−3/4
)

, (17)

where

b0(n) =
B0(n)

nα+3
−→ −N

(α + 1)Γ(α + 4)
when n → ∞ ,

b1(n) =
B1(n)

nα+2

(

n − 1

n

)α/2+1

−→ −(α + 2)N

(α + 1)Γ(α + 4)
when n → ∞ ,

b2(n) =
B2(n)

nα+1

(

n − 2

n

)α/2+2

−→ N

(α + 1)Γ(α + 4)
when n → ∞ .

• If M > 0 and N > 0,

L
(α,M,N)
n (x)

n5α/2+4
= c(n)ex/2 x2 x−(α+4)/2Jα+4

(

2
√

(n − 2)x
)

+O
(

n−min{α+5/4,3/4}
)

, (18)

where

c(n) =
B2(n)

n2α+2

(

n − 2

n

)α/2+2

−→ −N

(α + 1)Γ(α + 4)
when n → ∞ .

Proof: (a) We will prove here only the case when M,N > 0. The proof of the other cases

can be done in a similar way. First, we divide (11) by n2α+4 L
(α)
n (x)

L
(α,M,N)
n (x)

n2α+4 L
(α)
n (x)

=
B0(n)

nα+3

1

nα+1
+

B1(n)

nα+2

1

nα+1

xL
(α+2)
n−1 (x)

nL
(α)
n (x)

+
B2(n)

n2α+2

x2L
(α+4)
n−2 (x)

n2L
(α)
n (x)

.

Now, (8) and (15) yield

lim
n→∞

L
(α,M,N)
n (x)

n2α+4 L
(α)
n (x)

= lim
n→∞

B2(n)

n2α+2

x2L
(α+4)
n−2 (x)

n2L
(α)
n (x)

=
MN

(α + 1)Γ(α + 3)Γ(α + 4)
.

(b) We start considering the case M = 0 and N > 0. In this case, if we divide (11) by n3α/2+3

L
(α,0,N)
n (x)

n3α/2+3
=

B0(n)

nα+3

L
(α)
n (x)

nα/2
+ x

B1(n)

nα+2

L
(α+2)
n−1 (x)

n(α+2)/2
+ x2 B2(n)

nα+1

L
(α+4)
n−2 (x)

n(α+4)/2
,
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and use the formulas (5) and (14), the expression (17) follows.
To prove the case when M,N > 0 we divide (11) by n5α/2+4 to get

L
(α,0,N)
n (x)

n5α/2+4
=

1

nα+1

B0(n)

nα+3

L
(α)
n (x)

nα/2
+

1

nα+1
x

B1(n)

nα+2

L
(α+2)
n−1 (x)

n(α+2)/2
+ x2 B2(n)

n2α+2

L
(α+4)
n−2 (x)

n(α+4)/2
.

Therefore, taking into account the asymptotic formula (see [16, p.15])

Jα(2
√

nx) =

(

1

π
√

nx

)1/2

cos
(

2
√

nx − α
π

2
− π

4

)

+ O(n−3/4), when n → ∞,

valid for any x on compact subsets of C \ [0,∞), and using (5) as well as (15) we find

L
(α,0,N)
n (x)

n5α/2+4
= O

(

1

nα+5/4

)

+ c(n)ex/2 x2 x−(α+4)/2Jα+4

(

2
√

(n − 2)x
)

+ O

(

1

n3/4

)

,

with c(n) =
B2(n)

n2α+2

(

n − 2

n

)α/2+2

. Thus, the application of (15) leads to (18). The case (16)

is similar to this one and we omit it here.

Remark 2 We can deduce the strong exterior asymptotic of the polynomials L
(α,M,N)
n (x), for

all M,N ≥ 0, directly from (a) in the above theorem using Perron’s formula (4). For example,
for case M,N > 0, in the same conditions of Proposition 1 (b) we have

L
(α,M,N)
n (x)

n5α/2+15/4 e2(−nx)1/2
=

MN

2
√

π (α + 1)Γ(α + 3)Γ(α + 4)
ex/2 (−x)−α/2−1/4

(

1 + O(n−1/2)
)

.

Theorem 2 The polynomials
(

L
(α,M,N)
n (x)

)

n
, with α > −1, satisfy

(a) Exterior Plancherel–Rotach type asymptotics. The following limits hold uniformly on
compact subsets of C \ [0, 4],

• If M > 0 and N = 0,

lim
n→∞

L
(α,M,0)
n (nx)

nα+1L
(α)
n (nx)

=
M

Γ(α + 2)

xϕ ((x − 2)/2)

(ϕ ((x − 2)/2) + 1)2
. (19)

• If M = 0 and N > 0,

lim
n→∞

L
(α,0,N)
n (nx)

nα+3L
(α)
n (nx)

=
N

(α+1)Γ(α+4)
×

x2 ϕ2 ((x−2)/2)+(α+2)xϕ ((x−2)/2)
(

ϕ2 ((x−2)/2)+1
)2−

(

ϕ2 ((x−2)/2)+1
)4

(ϕ ((x−2)/2)+1)4
.

• If M > 0 and N > 0,

lim
n→∞

L
(α,M,N)
n (nx)

n2α+4L
(α)
n (nx)

=
MN

(α + 1)Γ(α + 3)Γ(α + 4)

x2 ϕ2 ((x − 2)/2)

(ϕ ((x − 2)/2) + 1)4
. (20)

In the three cases ϕ(x) is given by (10).
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(b) Mehler–Heine type formulas. The following limits hold uniformly on compact subsets of
C,

• If M > 0 and N = 0,

lim
n→∞

L
(α,M,0)
n (x/n)

n2α+1
=

−M

Γ(α + 2)
xx−(α+2)/2Jα+2(2

√
x) . (21)

• If M = 0 and N > 0,

lim
n→∞

L
(α,0,N)
n (x/n)

n2α+3
=

N

(α + 1)Γ(α + 4)

(

x2 x−(α+4)/2Jα+4(2
√

x)

−(α + 2)xx−(α+2)/2Jα+2(2
√

x) − x−α/2Jα(2
√

x)
)

. (22)

• If M > 0 and N > 0,

lim
n→∞

L
(α,M,N)
n (x/n)

n3α+4
=

MN

(α + 1)Γ(α + 3)Γ(α + 4)
x2 x−(α+4)/2Jα+4(2

√
x) . (23)

Proof: (a) To prove (19-20) we will use a similar idea as in the proof Theorem 1 (a). We first
use the identity (3) to rewrite the quotient

L
(α)
n (nx)

L
(α+2)
n−1 (nx)

=
L

(α+2)
n (nx) − 2L

(α+2)
n−1 (nx) + L

(α+2)
n−2 (nx)

L
(α+2)
n−1 (nx)

,

and then use the ratio asymptotics for the scaled Laguerre polynomials (9) to obtain

lim
n→∞

L
(α)
n (nx)

L
(α+2)
n−1 (nx)

= −(ϕ ((x − 2)/2) + 1)2

ϕ ((x − 2)/2)
, lim

n→∞
L

(α)
n (nx)

L
(α+4)
n−2 (nx)

=
(ϕ ((x − 2)/2) + 1)4

ϕ2 ((x − 2)/2)
.

Thus, dividing (11) by L
(α)
n (x), scaling x as nx and using the above limit relations the result

follows.
(b) Since the proof of the three cases are completely analogous we will prove only the second

case and will omit the other two cases.
To prove the case M = 0, N > 0, we use again the relation (11). Scaling the variable x as

x/n, in (11) yields

L(α,0,N)
n (x/n) = B0(n)L(α)

n (x/n) + B1(n)
x

n
L

(α+2)
n−1 (x/n) + B2(n)

x2

n2
L

(α+4)
n−2 (x/n).

Then, dividing the above expression by n2α+3 we get

L
(α,0,N)
n (x/n)

n2α+3
=

B0(n)

nα+3

L
(α)
n (x/n)

nα
+

B1(n)

nα+2

xL
(α+2)
n−1 (x/n)

nα+2
+

B2(n)

nα+1

x2 L
(α+4)
n−2 (x/n)

nα+4
.

Finally, we take the limit n → ∞ and use (6) and (14) that lead to the result (22).
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Remark 3 The exterior Plancherel–Rotach type asymptotics of the polynomials L
(α,M,N)
n (x)

can be obtained in a straightforward way using (a) of the above theorem and (7). For example,

in the simplest case M > 0, N = 0 (Koornwinder polynomials) in the same conditions of
Proposition 1 (e) we have

lim
n→∞

(−1)n2n+1L
(α,M,0)
n (x)

nα+1/2ϕn ((x − 2)/2) exp
(

2nx
x+

√
x2−4x

) =
M

2α
√

π Γ(α + 2)
×

x1−α
(

x +
√

x2 − 4x
)α
(

x2 − 4x
)−1/4

ϕ3/2 ((x − 2)/2)

(ϕ ((x − 2)/2) + 1)2
.

4 Zeros of the generalized Laguerre polynomials

In this section we will obtain the asymptotic properties of the zeros of L
(α,M,N)
n (x) that follow

from the Mehler–Heine type formulas given in Theorem 2 (b). More concretely, we will establish
a limit relation between the zeros of the generalized Laguerre polynomials and the zeros of

Bessel function Jα, Jα+2 or Jα+4 or their combinations. In fact, we will prove the following:

Theorem 3 Denote by jα,i the i-th positive zero of the Bessel function Jα(x). Let
(

xn,i

)n

i=1
be

the zeros in increasing order of the polynomial L
(α,M,N)
n (x) orthogonal with respect to the inner

product (1) with α > −1. Then,

(a) If M > 0 and N = 0, we have

lim
n→∞

nxn,1 = 0 and lim
n→∞

nxn,i =
j2
α+2,i−1

4
, i ≥ 2. (24)

(b) If M = 0 and N > 0, we have
lim

n→∞
nxn,i = hα,i,

where hα,i denotes the i-th real zero of function h(x) defined as

h(x) =
N

(α + 1)Γ(α + 4)

(

x2 x−(α+4)/2Jα+4(2
√

x) − (α + 2)xx−(α+2)/2Jα+2(2
√

x)

−x−α/2Jα(2
√

x)
)

.

Moreover, h(x) has only one negative real zero.

(c) If M,N > 0, we have

lim
n→∞

nxn,i = 0, i = 1, 2 and lim
n→∞

nxn,i =
j2
α+4,i−2

4
, i ≥ 3. (25)

Proof: The results in the three cases are a consequence of Theorem 2 (b) and Hurwitz’s

theorem [16, Thm. 1.91.3]. Let prove now that when M = 0 and N > 0, the limit function
h(x) has only one negative real zero. Using the definition of Bessel function Jα(x) we have:

x−α/2Jα(2
√

x) =

∞
∑

i=0

(−x)i

i!Γ(i + α + 1)
.
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It is well known [16, §8.1] that for α > −1 the above function only has positive real zeros.
Therefore,

h(x) =
N

(α + 1)Γ(α + 4)

∞
∑

i=0

(

(−1)ixi+2

i!Γ(i + α + 5)
− (α + 2)(−1)ixi+1

i!Γ(i + α + 3)
− (−1)ixi

i!Γ(i + α + 1)

)

=
N

(α + 1)Γ(α + 4)

(

− 1

Γ(α + 1)
+

∞
∑

i=0

(−x)i+2

i!Γ(i + α + 3)

α + 2

(i + 2)(i + α + 4)

)

.

Thus,

lim
x→−∞

h(x) = +∞ , h(0) = − N

Γ(α + 2)Γ(α + 4)
< 0 . (26)

Moreover,

h′(x) =
−N

(α + 1)Γ(α + 4)

∞
∑

i=0

(i + 2)(−x)i+1

i!Γ(i + α + 3)

α + 2

(i + 2)(i + α + 4)
< 0 , for allx < 0 .

Then, h(x) is a continuous decreasing function on (−∞, 0) and gathering with (26) we obtain

that h(x) has one and only one zero on (−∞, 0).

The last theorem has several important consequences. First of all, from (24) follows that
in the case when M > 0, N = 0 the first scaled zero, nxn,1, of the orthogonal polynomials

(Koornwinder polynomials) L
(α,M,0)
n (x) goes to 0 when n → ∞. Second, in the case M > 0,

N > 0 the two first scaled zeros (nxn,1, nxn,2), being one of them a negative zero [10], of the

corresponding orthogonal polynomials L
(α,M,N)
n (x) also tend to 0 when n → ∞., i.e., in these

cases the origin attracts one or two zeros of the corresponding orthogonal polynomials. This
situation agrees with the results in [1]. In fact, in [1] the authors proved, in a more general

framework, that if M,N > 0 then there are two zeros –not scaled ones– of L
(α,M,N)
n (x) that are

attracted by 0 and if M > 0, N = 0 there is only one zero that is attracted by 0. We will call
this the simple or regular situation. Notice that if nxn,i → 0 then xn,i → 0 but not vice versa.

Let also point out that to apply the general results of [1] we need to obtain the ratio

asymptotics of the sequence
(

L
(α,M,N)
n (x)

)

n
. This relation can be deduced from Theorem 1

and the relation (8), in fact we have that limn→∞ L
(α,M,N)
n+1 (x)/L

(α,M,N)
n (x) = 1 , uniformly on

compact subsets of C \ [0,∞) with M,N > 0.
The situation for the case M = 0, N > 0 is different because in this case we can not apply

the general results of [1]. Furthermore, in this case, for n large enough, the first scaled zero
nxn,1 is always negative and does not tends to zero when n → ∞, i.e., limn→∞ nxn,1 = hα,1 is

a negative real number.

Let us now consider the polynomials L
(α,M0,...,Ms)
n (x) orthogonal with respect to the inner

product (2). If all masses M0, . . . , Ms are positive then, using the results of [1] it can be

shown that s + 1 zeros of L
(α,M0,...,Ms)
n (x) go to zero as n tends to infinity. But now, using the

fact proved here that asymptotic behavior of the smaller zeros of L
(α,M,N)
n (x) is determined

by the Mehler–Heine type formulas, it is reasonable to expect for this general case a simple

Mehler–Heine type formulas similar to the (21-23). More exactly, we pose the following:
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Conjecture 1 Let L
(α,M0,...,Ms)
n (x) be the polynomials orthogonal with respect to the inner

product (2). If Mi > 0, i = 1, . . . , s, then, for some real numbers β and K

lim
n→∞

L
(α,M0,...,Ms)
n (x/n)

nβ
= K xs+1 x−(α+2s+2)/2Jα+2s+2(2

√
x) ,

uniformly on compact subsets of C where β ∈ R and K is a non-zero constant.

Moreover, in the general case these simple Mehler–Heine type formulas should not be ex-

pected when some of the constants vanish since even in the case of the polynomials L
(α,M,N)
n (x)

discussed here it does not appear. What happens in this case is still an open question.

4.1 Another generalization of the Laguerre polynomials

In [5, 6] a different generalization of the Laguerre polynomials has been introduced. In fact in

[5, 6] the authors considered the monic polynomials, Rα,M0,M1

n (x), orthogonal with respect to
the linear functional U on the linear space of polynomials with real coefficients defined as

〈U , P 〉 =

∫ ∞

0
P (x) xαe−xdx + M0P (0) + M1P

′(0), M0,M1 ∈ R, α > −1.

Although the functional U is not positive definite, for n large enough there exists the orthogonal

polynomial Rα,M0,M1

n (x) for all the values of the masses M0 and M1. Furthermore, we have the
following expression for these generalized monic Laguerre polynomials, in terms of the monic

Laguerre polynomials L̂α
n(x)

Rα,M0,M1

n (x) = L̂α
n(x) + A1(L̂

α
n)′(x) + A2(L̂

α
n)′′(x),

being
lim

n→∞
nA1 = 2(α + 2) > 0, lim

n→∞
n2A2 = (α + 2)(α + 3) > 0

In [6] it was established for n large enough and M0,M1 ≥ 0, that all zeros of these polynomials
are real, simple and one of them is negative. Thus, using the same ideas presented in this paper
we can obtain the Mehler–Heine type formula, that is, for any M1 > 0, and M0 ≥ 0,

lim
n→∞

Rα,M0,M1

n (x/n)

nα
= x2 x−(α+4)/2Jα+4(2

√
x) ,

from where a similar formula to (25) follows, i.e., if M1 > 0 and M0 ≥ 0 we have

lim
n→∞

nxn,i = 0, i = 1, 2 and lim
n→∞

nxn,i =
j2
α+4,i−2

4
, i ≥ 3,

where xn,i denotes, as before, the zeros of the polynomial Rα,M0,M1

n (x) ordered in increasing
order. In other words, for this non diagonal case the origin always attracts the two first scaled

zeros of Rα,M0,M1

n (x). In this case we expect to be true the following:

Conjecture 2 Let Rα,M0,...,Ms
n (x) be the polynomials orthogonal with respect to linear func-

tional U defined by

〈U , P 〉 =

∫ ∞

0
P (x) xαe−xdx +

s
∑

k=0

Mk(P (0))(k), α > −1.
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If Ms > 0, then, for some real numbers β and K

lim
n→∞

L
(α,M0,...,Ms)
n (x/n)

nβ
= K xs+1 x−(α+2s+2)/2Jα+2s+2(2

√
x) ,

uniformly on compact subsets of C where β ∈ R and K is a non-zero constant, i.e., in this case
we have a simple Mehler–Heine type formula for any choice of the masses M0, . . . , Ms−1 ≥ 0.

4.2 Numerical examples

Finally, we illustrate with numerical examples the asymptotic behavior of the first three scaled

zeros of L
(α,M,N)
n (x) in the three cases.

(a) (Koornwinder polynomials) α = 0.5, M = 4 and N = 0.

nxn1 nxn,2 nxn,3

n = 100 0.0012226844 8.2437752506 20.530281615

n = 300 0.0002383295 8.2838350858 20.628775446
n = 500 0.0001110472 8.2920021251 20.649038871

Limit value 0
j2
α+2,1

4
= 8.3043654787

j2
α+2,2

4
= 20.679807776

(b) α = 0.5, M = 0 and N = 4.

nxn1 nxn,2 nxn,3

n = 100 −2.9502897801 5.9140361943 18.441785447
n = 300 −2.9413138140 5.9620907466 18.545273471

n = 500 −2.9395263213 5.9718231990 18.566504799

Limit value hα,1 =−2.9368500726 hα,2 =5.9864991636 hα,3 =18.598691651

(c) When M,N > 0 we present three examples with the objective to compare our numerical
results with the lower bound for xn,1 obtained in [10].

(c1) α = −0.5, M = 2 and N = 30.

nxn1 nxn,2 nxn,3

n = 100 −0.5803594677 0.6641769437 12.232451164
n = 300 −0.4596747367 0.5115142683 12.230360187

n = 500 −0.4102511939 0.4511789180 12.227361506

Limit value 0 0
j2
α+4,2

4
= 12.207798411
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(c2) α = −0.5, M = 2 and N = 4.

nxn1 nxn,2 nxn,3

n = 100 −0.5803835399 0.6641570515 12.232438558

n = 300 −0.4596762948 0.5115129187 12.230359354
n = 500 −0.4102516290 0.4511785349 12.227361272

Limit value 0 0
j2
α+4,2

4
= 12.207798411

(c3) α = −0.5, M = 60 and N = 4.

nxn1 nxn,2 nxn,3

n = 100 −0.1176774997 0.1208277520 12.181114739
n = 300 −0.0903224524 0.0921633932 12.198979258

n = 500 −0.0797063110 0.0811386546 12.202659549

Limit value 0 0
j2
α+4,2

4
= 12.207798411

The lower bound obtained in [10] for the smallest zero of L
(α,M,N)
n (x) when n is large enough

and M,N > 0 is

b(N,M) := −1

2

√

N

M
≤ xn,1 ≤ 0

and furthermore limn→∞ xn,1 = 0. We compare this lower bound with the data of the numerical
examples: α = −0.5,

• If M = 2, N = 30, then b(2, 30) ≈ −1.9364916731,

x100,1 ≈ −0.0058035947, x300,1 ≈ −0.0015322491, x500,1 ≈ −0.0008205024.

• If M = 2, N = 4, then b(2, 4) ≈ −0.7071067812

x100,1 ≈ −0.0058038354, x300,1 ≈ −0.0015322543, x500,1 ≈ −0.0008205033.

• If M = 60, N = 4, then b(60, 4) ≈ −0.1290994449

x100,1 ≈ −0.0011767750, x300,1 ≈ −0.0003010748, x500,1 ≈ −0.0001594126.

Notice that the smallest zero, at least in these numerical examples, is very close to 0 even for

values of n not excessively large (it is also true for values of n such as 10, 20, etc.)
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