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Abstract: The main goal of this paper is to compute the maximal abelian dimension of each solvable non-
decomposable Lie algebra of dimension less than 7. To do it, we apply an algorithmic method which goes ruling out
non-valid maximal abelian dimensions until obtaining its exact value. Based on Mubarakzyanov and Turkowsky’s
classical classifications of solvable Lie algebras (see [13] and [19]) and the classification of 6-dimensional nilpo-
tent Lie algebras by Goze and Khakimdjanov [7], we have explicitly computed the maximal abelian dimension for

the algebras given in those classifications.
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1 Introduction

The main topic of this paper is the maximal abelian
dimension of a given finite-dimensional Lie algebra g.
Let us recall that it is the maximum among the dimen-
sions of the abelian subalgebras of g. Most papers
about this topic (like [4, 18]) work with abelian ide-
als instead of abelian subalgebras, which implies more
restrictive hypotheses. In our work, such assumptions
and restrictions are not used because we are consider-
ing every abelian subalgebra of the Lie algebra g. In
this sense, we are working in the line of [3, 6].

Previously, we have already studied this concept.
The reader can consult [17] for some properties of Lie
algebras using the maximal abelian dimension. The
computation of the maximal abelian dimension was
done for the Lie algebra g,, of n x n strictly upper-
triangular matrices in [1, 2] and for the Lie algebra h,,,
of n x n upper-triangular ones in [5]. These papers
proved properties of these algebras determining the
maximal abelian dimension depending on the order n.

To continue our research, the maximal abelian
dimension is computed for non-decomposable solv-
able Lie algebras of dimension up to 7, applying and
adjusting the algorithmic method of [2], which uses
the main and non-main vectors already introduced in
those papers.

Before we get down to work with the topic of
this paper, we would like to comment, as examples,
some applications of Lie Theory to several fields of re-
search. First of all, Lie groups and algebras have been
profusely used as tools in Theoretical and Mathemat-
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ical Physics. In fact, a very classical use corresponds
to the study of symmetries in problems involving dif-
ferential equations as can be seen in Senashov et al.
[15] or the classical reference by Olver [14]. In this
way, Lie Theory can be applied to dynamical systems
and, more specifically, control problems. Examples in
this last field are given in Kirillova et al. [10] or Lan-
tos [11]. Let us note that there exist applications of Lie
Theory, by means of optimal control problems, related
to fields like Medicine as can be seen in [12]. Finally,
we would like to indicate that Social Sciences are also
applying Lie Theory for dealing with their subjects. In
this sense, we would like to cite the papers by Sume-
drea and Sangeorzan [16] and Hernandez et al. [9] in
order to exemplify this assertion.

2 Preliminaries

This section is devoted to recall some preliminary
concepts and results on Lie algebras. For a general
overview, the reader can consult [20]. From here on,
only finite-dimensional Lie algebras over the complex
number field are considered.

The upper central series of a given Lie algebra g
is defined by

Ci(g) = g, Calg) = [9, 9], C3(g) = [C2(9),Ca(9)],

s Cr(9) = [Cr-1(9),Cr-1(9)], --- (D

When there exists m € N such that C,,(g) = 0, the
Lie algebra g is called solvable.
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A special class of solvable Lie algebras is formed
by abelian algebras. A Lie algebra h is abelian if
[v,w]| =0, forall v, w € h.

A very important abelian subalgebra of a Lie al-
gebra g is its center, which is defined as: cen(g) =
{X € g|[X,Y] =0, VY € g}. Another useful
ideal of g is its nilradical, which corresponds to the
sum of all the nilpotent ideals of the algebra g.

Finally, the maximal abelian dimension of g,
which will be denoted by M(g), is the maximum
among the dimensions of its abelian subalgebras.

The invariant M g) is monotone and additive: for
a subalgebra h of g we have M(h) < M(g), and
for two Lie algebras a and b we have M(a & b) =
M(a) + M(b). By applying these properties, the
maximal abelian dimension can be computed for all
decomposable solvable Lie algebras of dimension less
than 7.

Now we explain the method used in this paper to
compute the maximal abelian dimension of a given
Lie algebra g of dimension d. Let By = {X;}L, be
a basis of g and let B = {v,}};_, be a basis of an
arbitrary r-dimensional (abelian) subalgebra h (with
r < d). Each vector vj, € B is expressible as a linear
combination vy, = zgl:l ap; X; of the vectors in By.
Hence, BB can be translated to a matrix in which the A"
row saves the coordinates of v, with respect to By

ai,d

a1l ai2 ;

(@)

Qr1  Qrp2 Qr.d

Since the rank of the previous matrix is equal to
r, its echelon form, obtained by using elementary row
and column transformations, is the following

b171 0 s 0 b17r+1 bl,d
0 baa -+ 0 baryr b2.q
: o : : . 3)
0 0 br,r bT,T‘+1 br,d

Note that the vector X; € B, can be associated with a
different row depending on Expressions (2) or (3).

Consequently, we can suppose that every basis 5
of h is expressible by a matrix similar to (3) and each
vector in B is a linear combination of two different
types of vectors X;: the ones coming from the pivots
and the remaining ones. The vectors X; correspond-
ing to pivots are called main vectors of I3 with respect
to B, whereas the rest are called non-main vectors.
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3 Solvable Lie algebras of dimension
less than 5

In this section, the maximal abelian dimension is stud-
ied for solvable non-decomposable Lie algebras of di-
mension less than 5, following Mubarakzyanov’s clas-
sification [13]. Obviously, the unique 1-dimensional
Lie algebra is the abelian Lie algebra of dimension
1 and its maximal abelian dimension is equal to its
dimension. Since the maximal abelian dimension of
abelian algebras is exactly their dimension, abelian al-
gebras are not considered in this paper.

3.1 Solvable Lie algebras of dimension 2

We compute the maximal abelian dimension of the Lie
algebra go 1.

Proposition 1 1t is verified that M(g2 1) = 1.

Proof: The Lie algebra g 1 is generated by the vec-
tors {Z1, Z>} and there is a unique nonzero bracket:
[Z1,Z5] = Z;. Hence, g2 is non-abelian and
M(g2,1) < 2. Since 1-dimensional Lie algebras are
abelian, both (Z1) and (Z3) are abelian subalgebras
of go,1 and M(g21) = 1. O

3.2 Solvable Lie algebras of dimension 3

Now, let us compute the maximal abelian dimension
of 3-dimensional solvable Lie algebras.

Proposition 2 The maximal abelian dimension of the
Lie algebras g3 ;, where i € {1,...,5}, is given by
M(gsi) = 2.

Proof: Fixed and given i € {1,2,3,4,5}, let us prove
that M(gs;) = 2. We have to find a 2-dimensional
abelian subalgebra in g3 ;, in addition to determine the
nonexistence of 3-dimensional abelian subalgebras.
First, M(g3;) < 2 because the Lie algebra g3 ;
is non-abelian. Hence, the problem is now reduced to
prove the existence of 2-dimensional abelian subalge-
bras of g3 ;. Obviously, the subalgebra (Z1, Z3) of g3 ;
is abelian for ¢ € {1,2,3,4,5}. So, M(g3;) =2. O

3.3 Solvable Lie algebras of dimension 4

Next, we study the maximal abelian dimension of
solvable Lie algebra of dimension 4.

Proposition 3 1t is verified that

3, ifje{1,4,5,6,7,8},

M(ga5) = { 2. ifje{2,3.910,11) @
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Proof: Fixed and given i € {1,4,5,6,7,8}, let us
prove that M(gs;) = 3. So, we have to find a 3-
dimensional abelian subalgebra in g4 ;, in addition to
determine the nonexistence of 4-dimensional abelian
subalgebras. Since the Lie algebra g, ; is non-abelian,
we can set that M(gs;) < 3. In this way, we
only have to prove the existence of 3-dimensional
abelian subalgebras. Let us consider the subalge-
bras hl = <Z1,ZQ,Z3>, h2 = <Zl,ZQ,Z4> and
hs = (Zy,7Z3,7Z4). It is easy to prove that hy, ho
and h3 are abelian subalgebras of g4 5, gs6 and g4 ;
(for 7 € {1,4,7,8}), respectively. Consequently,
M(gs;) = 3, fori € {1,4,5,6,7,8}.

Now, let us prove that 2 is the maximal abelian
dimension of the Lie algebras g4, for k£ €
{2,3,9,10,11}. Since the Lie algebra g, is non-
abelian, its maximal abelian dimension is less than 4.
We define the subalgebras

a={Zi+NZ |1 <i<4ANi#l), (S
where Z; is the non-main vector. It can be proved that
the subalgebras a; are not abelian for [ = 1,2,3,4
as subalgebras of g, . Hence, the maximal abelian
dimension of g4 is less than 3. Since the subal-
gebra (Z3, Zy) of gy is abelian, we can assert that
M(h47k) = 2. O

4 Solvable Lie algebras of dimen-
sion §

Due to the complexity of the problem, we will study
solvable non-decomposable Lie algebras of dimen-
sion 5 by considering Mubarakzyanov’s classifica-
tion [13] and distinguishing the following cases:

4.1 Nilpotent Lie algebras and solvable
non-nilpotent ones containing a 4-
dimensional abelian subalgebra

We deal now with the maximal abelian dimension
of 5-dimensional nilpotent Lie algebras and solvable
ones containing an abelian subalgebra of dimension 4.

Proposition 4 Giveni € {1,...,4}, it is verified that
M(gs,i) = 3.

Proof: For i€{1,...,4}, we have to compute a 3-
dimensional abelian subalgebra of g5; and to prove
the nonexistence of abelian subalgebras of dimension
greater than 3. Obviously, the maximal abelian di-
mension of g5 ; is less than 5, due to not being abelian.
Moreover, the subalgebra (71, Za, Z3) is abelian.
Consequently, it is sufficient to prove that it is not
possible to obtain 4-dimensional abelian subalgebras
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of g5, fori € {1,...,4}. For reason of length, only
one of these algebras is studied explicitly. The same
reasoning can be applied for the rest of these algebras.
Let us consider the Lie algebra g5 3 whose law
with respect to a certain basis {Z; }2_, is given by:
(2o, Z4) = Z3,[Z2, Zs) = Z1, [ Zs, Zs| = Zp. (6)
Let us suppose the existence of a 4-dimensional
abelian subalgebra. We can suppose that each vector
in a basis of such subalgebra is expressed as a linear
combination of a main vector and the non-main one.
So 4-dimensional subalgebras would be expressed as
ar = {Zi+NZp |1 <i <B5Ni#kY), (D)
where Zj, is the non-main vector. Proving that ay, is
non-abelian is equivalent to finding a nonzero bracket
in its law.

e For k ¢ {1,3,5}1 [ZQ 4+ XNoZi, 24 + )\4Zk] =
Z5+ v is nonzero, because v € (Z1, Za, Zy, Zs).

e Fork = 2: [Z4 4+ MZo, Z5 + )\522] =Zy+uvis
nonzero, because v € (Z1, Zs3, Zy, Z5).

e For k = 4: [ZQ + XNoZy, Z5 —|— A5Z4] =Z1+vis
nonzero, because v € ({Z;}=3).

Hence, there do not exist 4-dimensional abelian
subalgebras of g5 3 and M(gs 3) = 3. O

Proposition 5 Fixed and given j € {5,...,18} the
maximal abelian dimension of gs j is M(gs ;) = 4.

Proof: Let us note that the 4-dimensional subalgebra
Ofg57j <Z1, ZQ, Z3, Z4> is abelian fOI’j S {5, ceey 18}.
Since g5 ; is not abelian, its maximal abelian dimen-
sion is exactly 4 and the abelian subalgebra previously
expounded is a maximal abelian subalgebra. ad

4.2 Solvable, non-nilpotent Lie algebras of
dimension S containing a 3-dimensional
abelian subalgebra

Next, we study the maximal abelian dimension of the

solvable Lie algebras of dimension 5 that contain a
3-dimensional abelian subalgebra.

Proposition 6 For j € {19,...,38}, the maximal
abelian dimension of gs j is M(gs ;) = 3.

Proof: The subalgebras (71, Z3, Z4) and (Z1, Za, Z3)
are abelian for j € {19,...,29} and for j €
{30,...,38}, respectively. So, we can set that

M(g57j) > 3forj € {19, oo 38}.

Issue 1, Volume 9, January 2010



WSEAS TRANSACTIONS on MATHEMATICS

Consequently, it is sufficient to prove the nonex-
istence of 4-dimensional abelian subalgebras of g5 ;.
Once more, the reasoning is analogous for all these al-
gebras. So we only study explicitly the algebra g5 22,
whose law is with respect to a certain basis {Z; }2_;:

®)

By applying the reasonings and notations used
in Proposition 4, let us suppose the existence of a
4-dimensional abelian subalgebra and find a nonzero
bracket in its law.

(Z2, Z3] = Z1,[Z2, Zs| = Z3, |24, Z5) = Zs.

e For k € {1,4,5}: [Za + NoZy, Z3 + A\sZ] =
Z1 + v is nonzero, because v € ({Z;}2_,).

o Fork € {2,3}:[Zs+ 2k, Zs+ N5 Zy) = Zy+w
is nonzero, because w € (Zy, Za, Z3, Zs).

Hence, there do not exist 4-dimensional abelian
subalgebras of g5 22 and M (g5 22) = 3. 0

4.3 Solvable, non-nilpotent Lie algebras of
dimension 5 containing a 2-dimensional
abelian subalgebra.

Finally, we compute the maximal abelian dimen-
sion of 5-dimensional Lie algebras containing a 2-
dimensional abelian subalgebra.

Proposition 7 1t is verified that M(gs 39) = 2.

Proof: The subalgebra (Z1, Z3) of g5 39 is abelian.
Hence, M(g539) > 2 and we only have to prove the
nonexistence of abelian subalgebras of dimension 3.
Let us suppose the existence of a 3-dimensional
abelian subalgebra. We can suppose that each vector
in a basis of such subalgebra is expressed as a linear
combination of a main vector and two non-main ones.
So 3-dimensional subalgebras would be expressed as

ajr = {Zi + NiZj +piZi |1 < i <5A G,k #i}), (9)

where Z; and Zj; are the two non-main vectors. Prov-
ing that a; is non-abelian is equivalent to finding a
nonzero bracket in its law.

e For (j,k) € {(1,2),(1,4)}: the bracket
(Z34+ A3 Zj 41321, Zs+ A5 Zj+ s Zy) = Za+v
is nonzero, because v € (71, Z3, Zy, Zs).

e For (j,k) € {(1,3),(1,5)}: the bracket
(Zo+XoZj+ 22y, Za+MZj+ paZy) = Zo+v
is nonzero, because v € (71, Z3, Zy, Zs).

e For (j,k) € {(2,5),(3,5)}: the bracket
[Zl‘f‘/\le‘f',Ule; Z4+)\4Zj+M4Zk] =2714+w
is nonzero, because w € (Z;)?_,.
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e For (j,k) = (4,5): the bracket
(Zo+XoZj+poZy, Z3+ X325+ 32y = Zy+w
is nonzero, because w € (Z;)2_,.

e For (j,k) = (2,3): we consider the bracket
[Z1 + MZa + 123,24 + MZy + paZs)=
(2 4+ Mpa — M)y + MZy + nZs. If
the subalgebra as3 is abelian, this bracket
would have to be zero, obtaining the sys-
tem {2 + Apg — A =0, Ay =0, 1 = 0},
which has no solution.

e For (j, k) = (2,4): we have the brackets

(Z3 + A3 Zy + p3Za, Zs + A5 Za + psZs) = —As 24

+(1 4+ Agpes — u3As) Za + (us — A3)Z3,  (10)
[Z1 + MZo+ p1Z4, Zs + NsZoy + psZa| =
21521 — M Zz + (Apis — p1Xs) Zo. (11)

If the subalgebra as 4 is abelian, these brack-

ets would have to be zero and the following
system without solutions would be obtained:
{1+ X3ps — pusAs =0, A5 =0, ps — A3=0,
2p5 =0, A =0, Aips — pids = 0}.

e For (j,k) = (3,4): we consider the brackets
(Z2 + AoZs + p2Za, Zs + A5 Zs + pi5 2] = N5 Z1

+(Aops — poXs — 1) Zg + (ps + A2)Z2,  (12)

[Z1 + MZ3+ p1Za, Zo + Mo Zs + p12Zs) = —p1 Zo

+(2p2 — A1) Z1 + (Mg — piA2) Zs, (13)
[Zl + )\1Z3 —+ ,[1,1Z4, Z5 + )\523 + ,LL5Z4] =
2usZ1 + M Zs + (Aips — a1 As) Zs, (14)

If the subalgebra a3 4 is abelian, these brackets

would have to be zero, obtaining the following
system without solutions { o5 — piaAs —1= 0,
As =0, pus + A2 =0, 2u2 = A\ =0, g =0,
Apz — pire = 0, pus = 0, Ay = 0,
Aps — p1As = 0}

Hence, there do not exist 3-dimensional abelian
subalgebras of g5 39 and M (g5 39) = 2. O

S Solvable Lie algebras of dimen-
sion 6

This section is devoted to compute the maximal
abelian dimension of each 6-dimensional solvable,
non-decomposable Lie algebra g.
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5.1 Nilpotent Lie algebras of dimension 6.
We deal now with the maximal abelian dimension of
6-dimensional nilpotent Lie algebras. The classifica-
tion of these algebras is the one given by Goze and
Khakimdjanov [7], but including the corrections given
later by Goze and Remm [8].

Proposition 8 17 is verified that

5, ifj€{1,2},
M(gsj) =4 4, ifje{3,4,...,18},
3, ifj e {19,20}.

5)

Proof: Fixed and given ¢ € {1,2}, let us prove that
M(gs,i) = 5. We have to find a 5-dimensional abelian
subalgebra in gs ;, and determine the nonexistence of
6-dimensional abelian subalgebras. Since the Lie al-
gebra gg ; is non-abelian, we can set that M (gs ;) < 5.
In this way, we only have to prove the existence of
5-dimensional abelian subalgebras. Since the Lie al-
gebra (Zy, Z3, Zy, Zs, Zs) is a 5-dimensional abelian
subalgebra of gg;, we can affirm that M(gs;) = 5,
fori e {1,2}.

For i € {3,...,18}, we have to compute a 4-
dimensional abelian subalgebra of g¢; and to prove
the nonexistence of abelian subalgebras of dimension
greater than 4. Obviously, the maximal abelian di-
mension of gg ; is less than 6, due to not being abelian.
For reason of length, only one of these algebras is
studied explicitly. The same reasoning can be applied
for the rest of these algebras. We consider the Lie al-
gebra gg 5 whose law with respect to a certain basis
{Z;}5_, is given by:

(21, Zo) = Z3,[Z1, Z4) = Zs, [Zo, Zs)= —Zs. (16)

Let us note that (73, Z4, Z5, Zg) is a 4-dimensional
abelian subalgebra of g 5. Let us suppose the exis-
tence of a 5-dimensional abelian subalgebra. We can
suppose that each vector in a basis of such subalgebra
is expressed as a linear combination of a main vector
and the non-main one. So 5-dimensional subalgebras
would be expressed as

ar={Zi+NZp |1 <i<6ANiF£k}), (17)
where Zj, is the non-main vector. Proving that ay, is
non-abelian is equivalent to finding a nonzero bracket
in its law.

e Fork € {3,4,5,6}:
[Z1 + M Zy, Za + NaZy| = Z3 + v is nonzero,
because v € (Z1, Za, Z4, Z5, Zg).

e Fork = 2: [Zl + MNZo, Z4+ /\422] =Zs+vis
nonzero, because v € (Z3, Zg).
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e Fork =1: [ZQ + AoZ1, 2y + )\421] =—Zg+wv
is nonzero, because v € (Z3, Z5).

Hence, there do not exist 5-dimensional abelian
subalgebras of g¢ 5 and M(gg5) = 4.

Now, let us prove that 3 is the maximal abelian
dimension of the Lie algebras gg 19 and gg20. Since
these Lie algebra are non-abelian, their maximal
abelian dimension is less than 6. For both Lie alge-
bras, (Zy, Z5, Zg) is a 3-dimensional abelian subalge-
bra. We have to prove that it is not possible to find
a 4-dimensional abelian subalgebra of gg 19 or g 20.
To do it, we express a generic 4-dimensional subalge-
brain gg 19 (an analogous reasoning can be applied to

96,20) as
ajk={ZtNiZjHiZp | 1< i< 601 #£ j k}) (18)

e For (j,k) € {(3,4),(3,5),...,(4,6),(5,6)},
(Zv+MZj+ 2y, Zo+ N Zj+ poZy) = Zz+v
is a nonzero bracket, because v € {Zj, }+3.

e For (j,k) € {(2,4),(2,5),(2,6)}: the bracket
(Z1v+MZj+ 1 Zy, Zs+ N3 Zj+ pusZy) = Zs+v
is nonzero, because v € (71, Z3, Zy, Zs).

e For (j,k) € {(1,2),(1,5),(1,6)}, the bracket
[Z3+ N3 Zj+ 1321, Za+ aZi+uaZy) = —Zg+v
is nonzero, because v € {Zp, }<s.

e For (j,k) € {(1,3),(1,4)}, the bracket
[Zg+)\22j+/L2Zk, Z5+)\5Zj+,u5Zk] = Zg+v
is nonzero, because v € {Zp, }p,<s5.

e For (j,k) = (2,3), the following bracket:
(Z1+MZj+ 1 Zy, Za+ aZj~+paZy) = Zs+v
is nonzero, because v € (Z1, Za, Z3, Z4, Zg).

Therefore, there do not exist 4-dimensional
abelian subalgebras of gg 19 and M (g 19) = 3. Anal-
ogously, the same conclusion can be obtained for the
Lie algebra gg 20. O

5.2 Solvable, non-nilpotent Lie algebras of
dimension 6.

We show the propositions where the invariant M(g)
has been computed for solvable, non-nilpotent Lie al-
gebras of dimension 6. Let us note that the proof
of these results will be done in the same way as
in the previous subsection. Here we have consid-
ered Mubarakzyanov and Turkowski’s classification
(see [13] and [19]).

Proposition 9 For j € {21,22...,47}, it is satisfied
that M(gs ;) = 4.
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Proof: To prove this proposition, we have to find a 4-
dimensional abelian subalgebra of the Lie algebra gg_;
(for j € {21,22...,47}) and prove that there do not
exist any abelian subalgebras of dimension 5. Let us
note that no 6-dimensional abelian subalgebra can be
found in these algebras, because they are not abelian.

Indeed, the subalgebra (Z3, Z4, Zs, Zs) of ge ; is
abelian for j = 21,...,47. So, the maximal abelian
dimension of g ; is, at least, 4. In this way, we only
need to see if there exists some abelian subalgebra of
dimension 5. Due to reasons of length, we only study
one of the Lie algebras shown in the statement of the
proposition. The rest can be studied using an analo-
gous reasoning.

We consider the algebra gg 39 whose law with re-
spect to a certain basis {Z;}9_; is given by the follow-
ing nonzero brackets:

(Z1,23) = Zy + Zs,[Z1, Z4) = —Z3 + Zs,

(21, Zs) = Zg, [Z1, Zs)= —Z5, [ Z2, Z3]| = Z3, (19)
(Zo, Z4) = Z4,[Z2, Zs] = Zs, [ Za, Zs| = Zs.

Let us suppose that there exists a 5-dimensional
abelian subalgebra of g 19. Then, we can assume that
each vector in the basis of such a subalgebra are ex-
pressed as a linear combination of one main vector
and the non-main one. So any 5-dimensional abelian
subalgebra is expressed by

ar = {Zi+ NiZp |1 <i<6AiP#£ K} (20)

where Zj, is the non- main vector. Now, we are prov-
ing that we can find a nonzero bracket in its law.

e For k € {1,3,4,5}: a nonzero bracket is
[Z2 + XNoZk, Zg + N¢Zr] = Zs + v, because
v € (21, 2o, Z3, Za, Zs).

e For £k € {2,6}, a nonzero bracket is
[Z1 + NoZk, Z5 + N¢Zi] = Zs + v, because
v € (21, 22,73, 24, Zs5).

Hence, there do not exist any 5-dimensional
abelian subalgebras of gg 39 and M(gs 39) = 4. O

Proposition 10 For j € {48,49,...,60}, it is veri-
fied that M(gs ;) = 3.

Proof: Let us note that <Z;3, Z4, Z5> and <Z3, Z4, Z6>
are abelian subalgebras of gg 48 and ggp, for p =
{49,...,60}, respectively. Hence, the maximal
abelian dimension of these algbras is greater than or
equal to 3. So we are now going to prove that no
4-dimensional subalgebra of gs ) is abelian for p =
48,...,60. We are going to prove this fact for one
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of the algebras and an analogous reasoning can be ap-
plied to the rest.

Let us consider the algebra gg 51, whose law with
respect to a certain basis {Z;}9_; is given by the fol-
lowing nonzero brackets

[Z17Z4] = Z47 [Z].7Z5] = _Z5)

(2o, Z3| = Z3, |22, Zs5| = Zs, (1)
[Z2, Zs| = Z1 + Zs, [Za, Zs| = Z3.

Now, we prove that it is not possible to obtain a
4-dimensional abelian subalgebra of g 51 by arguing
analogously to Proposition 7. In this way, we are as-
suming that the subalgebras are expressed as follows

aj k= <{Zi+/\iZj+uiZk ’ 1< i< 6A7, ]{7& Z}) (22)

where Z; and Zj, are the two non-main vectors. To
prove the nonexistence of abelian subalgebras of di-
mension 4, we only need to find a nonzero bracket in
each of these subalgebras:

e For (j,k) € {(1,2),(1,3),(1,6),(2,3)},
we consider the nonzero bracket given by
(Za+ MZj+ paZy, Zs+ Ns Zj+ ps Zyl= Zi1+ v,
because v € (Z3, Zy, Zs).

e For (5,k) € {(1,4),(1,5),(3,5)}, this bracket
(Zo+ Ao Zj+poZy, Zo+ N6 Zj+ i Zy) = Z1+v
is nonzero, because v € Z3, Z4, Z5).

e For (j,k) € {(2,5),(2,6)}, the bracket
(Z1+MZj+ 1 Zy, Za+ aZj~+paZy) = Za+v
is nonzero, because v € (71, Zs, Z5, Zg).

e For (j,k) € {(3,4),(3,6)}, the bracket
(Zo+XoZj+ 22y, Zs+Ns Zj+ s Zi) = Zs+v
is nonzero, because v € (71, Z3, Zy, Zg).

e For (j,k) € {(4,5),(4,6),(5,6)}, the bracket
[Z2+)\QZj+M2Zk, Z3+ X327 +usZy| = Zs+v
is nonzero, because v € (71, Z4, Z5, Zg).

e For (j, k) = (2,4), we consider the brackets
[Z1+MZa+u1Zy, Zs+ N3 Za+usZy) = usZa+r1 23
(Z1+MZo+ 12y, Zs+As Zo+ s Za) = 121 (23)
+usZs + (A —1)Zs

If the subalgebra as 4 is abelian, these brackets
would have to be zero, obtaining the following
system without solutions {A\; = 0, A\; — 1 = 0}.

Consequently, there are not abelian subalgebras
of dimension 4 in g 51 and M(gg51) = 3. O
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Conclusions

In this paper a new method for computing abelian sub-
algebras and, in particular, the maximum among the
dimension of all the abelian subalgebras of a Lie alge-
bra has been proposed. We hope to continue with this

Iese

arch in the future in order to provide the classifi-

cation of nilpotent and solvable Lie algebras.
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A Tables

Table 3: Non-decomposable Solvable Lie algebras of

Table 1: Non-decomposable Solvable Lie algebras of dimension 5 (I).

dimension less than 5.

Alvch N brack Iy Algebra Nonzero brackets M(g)
gebra onzero brackets (9) [Za, Z5] = 71,23, Z5] = Za, 1
92,1 (21, Zo) = Z) 1 95,6 (24, Z5) = Z3

71, 75] = Z1. (22, 7] = oo,
93,1 (21, Z3) = Za 2 o [[Z'gl Z:]] = /623[ [2 5}5} :O‘WZZ 4
93,2 (21, 23] = Z1,(Z2, Z3] = Z2 2 5 [Za, Z5] = Z1,Z3, Z5) = Z3, 4
5,8 —
2.3 1, 28] = 22122, 25] = — 2 2 s [Z1, Z5] _[ZZ41’ Z[5Z]2 ZZ]Zi’ Z1+ Z3
Y bl - bl El - bl
93,4 (21, 2Z3) = 21,22, Z3) = =21 — Z» 2 95,9 [Z3, Zs) = BZs, | Za, Z5) = V24 4
93,5 [Z1,23] = —Z1 2 95.10 [Z27Z5][; Zév %Z&ZZS] = 22, 4
’ 4, 45| = 44
94,1 (21, Z3) = Z2,[ 21, Z4] = Z3 3 Z1,25] = Z1,| 22, Z5| = Z1 + 22,
u 4
gaz (21, Z3] = Zs, [ 21, Z4] = Za, 2 95,11 (Z3, Z5| = Z2 + Z3,[Z4, Z5) = ¥Z4
' (22, 23] = Z4 [Z1,Z5] = Z1,|Z2, Z5) = Z1 + Zo, 4
gas (Z1,Z3] = Z3,[Z1, Z4] = Za, ) 95,12 [Z3,Z5) = Zo + Z3,|Z4, Z5) = Z3 + Z4
’ (22, Z3] = —Z4,1Z2, Z4) = Z3 [Z1, 25 = Z1, 22, Z5] = 7 Za.
94,4 (21,25 = Z3,[Z1, Z2] = Z4 3 9875 (Z3, Z5) = pZ3 — 824, 4
a8 [Z4, Z7] = 71,124, Z2] = aZ>, 3 [Z4,Z5] = sZ3 + pZy
945 (24, 23] = BZ3 g5.14 [Z2,Z5) = Z1,(23, Z5] = pZ3 — Za, 4
. [Z3, Z1) = aZa, 23, Z2) = Za, 3 [Z4,Z5] = Z3 + pZa
94,6 [Zs, Z4] = Zo + Z4 . (21, Z5] = Z1,(Z3, Zs] = vZ3,
(21, Z2] = Z2 + Z3, 3 95,15 (22, Z5] = Z1 + Z2, 4
94,7 (Z1,23] = Z3 + Za,[Z1,Z4]) = Za (24, Z5] = Z3 + 174
o (Z1,Z4] = aZ4, (21, Z2] = BZ2 — Z3, 3 s (21, Z5] = 21,22, Zs] = Z1 + Za, 4
94,8 [Z1,Z3] = Z2 + BZ3 95,16 (Z5, Z5) = pZs — sZa,
. (72, 73] = Za, %1, Z2] = (a — 1) Za, 5 |21, Z5] = 525 + pZs
949 (21, Z8) = Zs, (21, Za] = 0 Zs 21, Z6] = o2, = 2o
[Z2, Z3] = Za,[Z1, Z2] = Z2 + Z3, 2 Py (22, Z5) = Z1 + pZa, 4
0 21, 28] = Z5,[Z0, Za] = 274 ’ [Zs, Z5] = aZs — 524,
o [Z2, 5] = Za, 21, 2] = a2 — Za, ) (24, Z5) = 525 + 924
94,11 [Z1,Z4) = 20Z4,[Z1,Z3) = Z2 + aZ3 [Z3[7ZZ5]Z—] Zl; I;Zsz— Zy,
P 2, Z5] = Z1 + pZ2,
95,18 [Z1, Z5) = pZ1 — Za, 4
[Z4,Z5)| = Za + Z3 — pZ4
8 [Z27Z3]:Z17[Zl,Z5}:(1+OC)Z1,
9510 [Z2,Z5) = Z2,(Z3, Z5] = aZs, 3
Table 2: Non-decomposable Solvable Lie algebras of [ ] [Z4, [25] = /}@'24( )
. . Za, 23] = 71,21, Z5] = (1 + ) Z2,
dimension 5 (I). 9250 [Z2, Zs| = Z»,[Z3, Zs5) = aZs, 3
[Z47Z5} =71+ (1 + Oc)Z4
Algebra Nonzero brackets M(g) [Za, Z3] = 21,21, Z5] = 221,
951 [Z2,Z4) = Z3,(Z2, Z5] = Z1, 3 95,21 [Z2,2Z5] = Za + Z3,(Z4, Z5) = Za, 3
’ [Z4,25) = Z2 [Z3,Z5] = Z3 + Za
g5,2 [Z2, Z4) = 21,123, Zs) = Z1 3 5.2 [Z2723][; Zg %Z_27ZZ5] = Zs, 3
. [Z3, Z4) = Z1,|Z2, Zs) = Z1, 3 4751 — 24
95,3 [Z3, Z5) = Zs 5 (22, Zs] = 21, (21, Z5]) = 221, 3
s Zo, Z5| = Zo + Z3,
9 (Z3, Z4] = Z1,[Z2, Z5] = Z1, 3 95,23 Z éf—z] [22213—52
o (Z5,Z5) = Z3,(Z4,Z5] = Z3 325 — 28, 2 o5l — 2
2 2. — 2 (7. 2| — Z I (Z2, 23] = Z1,[Z1, Z5] = 271,
955 (%5, Z5) = 21, 124, 5] = 22 95 24 22, Z5) = Za + Z3, [ Zs, Z5) = Zs, 3
7 [Z47 Z5] =eZ1+ 27y
(Z2, 23] = Z1,[Z1, Z5] = 271,
957’265 (Z2, Z5) = Za + Z3,[Z4, Z5) = Za, 3
(Z3,Z5) = Z3 + Z4
[Z2, Z5] = pZa + Z3,[Z1, Z5] = 2pZ1,
98’36 [Z2, Z3][: Z17][Zs7 Zs| = —Z2 + pZs, 3
24, Ls| = €Z1 + 2pZy
(22, Z3] = Z1,(Z3, Z5] = Z3 + Za, 3
9527 (21,25 = 21,24, Z5) = Z1 + Za
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Table 6: Non-decomposable Solvable Lie algebras of

Table 4: Non-decomposable Solvable Lie algebras of ) .
dimension 6 (II).

dimension 5 (II).

Algebra Nonzero brackets M(g) Algebra Nonzero brackets M(g)
(22, 23] = Z1, (22, Z5) = aZa, [Z1,Z2) = Z3,[Z1, Z3] = Za,
95,28 (21, Z5] = (1 + @) Z1,[Z4, Z5] = Za, 3 96,10 [Z1,Z4][Z= ZZ5,][Z2,ZZg] = Zs, 4
[Zs,Z5] = Zs + Z4 2, Z6] = Zs.
ZQ,Zg :Zl, Zl,Z5 :Zl, [Z1»Z2]:Z3,[ZI7Z3]:Z47
95,29 [[ZQ7 Z5]] = ZQ,[[Zg, Z5]} =24 3 96,11 [ZI:Z5} [:ZZ6Z7[]Z3a ZE’)] = —Zy, 4
[Z2,Z4] = Z1,(Z3, Z4] = Z, 2,26 = Z4.
9% 30 [Z1,Z5] = (24 h)Z1,[Z4, Z5) = Za, 3 g6 12 21, Z2| = Z3,[Z1, Z3] = Za, 4
’ [ZQ,Z5} = (1+h)Z2,[Z37Z5] = hZ3 ' [Z17Z5] :Zﬁv[Z5726} = Za.
[ZQ,Z4] =Z1,[Z3,Z4] :ZQ, 96.13 [Zl»ZQ] :ZBa[Z17Z3] :Z47 4
95,31 (21, Z5) = 321, (23, Z5) = Z3, 3 ’ [Z1,Z5] = Zs, 22, Z3] = Zs.
[Z2,Z5) = 222,(Z4,2Z5]| = Z3 + Z4 21, Z2| = Z3,[Z1, Z3] = Za, 4
(Za, Za] = 2, |23, Za] = Za, g6.14 (21, 5] = Zs,[Z2, Z3] = Ze.
gg32 [Z1,Z5] =Z1,[Z2,Z5] = Zo, 3 [Zl)ZQ] :Z?n[ZhZ?:] = Za,
’ [Z3,25] = hZ1 + Z3 96,15 [Z1, Z5] = Zs, | Z2, Z3] = Zs, 4
8, (21, Z4] = 71,23, Z4] = BZ3, 3 (22, Z5] = Zs.
95,33 [Z2, Z5) = Z»,[Z3, Z5) = vZ3 G616 21, Z2) = Z3,1Z1, Z3] = Za, 4
[Z1, Z4] = aZn, |22, Z4] = Za, ’ [Z1, 25| = Zs, [Z2, Z5] = Za.
95 34 Z3,Z4) = Z3,(Z1,Z5] = Z1, 3 Z1,2Z2) = Z3,(Z1, Z3] = Za,
’ (Z3, Z5) = Z> 96,17 21, Z4) = Z5,1Z1, Z5] = Zs, 4
(21, Z4) = hZ1,Z2, Z4] = 22, (22, Z3] = Zs.
95,55 (23, Za) = 23, (2>, Zs] = —Zs, 3 (20, 25] = Zs, (21, Zs] = Za, 4
’ [Z1,2Z5) = aZy1,[Z3, Z5] = Z> 96,18 : []Z5, Zs) [= —Z4]-
Za, Z3| = Z1, |21, Zs] = Z1, Z1, 22| = Z3, (21, Z3] = Za,
95,36 {Zz, 24} = Zo, {237 ZJ = Z3, 3 96,19 [Z1, Z4) = Z5, (21, Z5] = Zs, 3
[Z2, Z5) = —Z> [Z2,Z5] = Zs, [Z3, Z4] = —Zs.
(21, Z4] = Z1,(Z2, Za] = Za2, (21, Zs] = Z3,[Z1, Z3] = Za,
95,37 (21, 2Z5] = — 22,22, Z5] = Z7, 3 96.20 [Z1, Z4) = Z5, 121, Z5] = Zs, 3
(Z4,Z5) = Z3 ’ (Z2, Z3) = Zs — Zg, [Z2, Z4] = Zs,
[Zl, Z4] =7, [ZQ7 Z5] = Zo, 3 [Z27Z5] = Zs, [Z37 Z4] = —Zs.
95,38 [Z4,Z5) = Z3 s (21, 23] = aZ3,[Z1, Z4] = 24,
(22, Z3] = Z1,|Z1, Za] = 221, 9?,’2[117% (21, Z6] = Zs, (22, Z3] = BZ3, 4
95,39 [Z2,Z4] = Z2,[Z3, Z4) = Z3, 2 (22, Z4) = 0Z4,(Z2, Z5]) = Zs
[Z2, Z5) = —Z3,(Z3,Z5] = Z2 (21, 23] = aZ3,[Z1, Z4] = Za,
s | e |
. 2, 2Z3) = 823,22, Z4) = V24,
[Z2,2Z5) = Z5
21, 23] = Z3,|Z2, Z5] = Zs,
Table 5: Non-decomposable Solvable Lie algebras of 98 23 [[2221 ZZ4 ‘T];QZZ‘Z [[ZZI2 ’ZZ‘F’Q];ZZG(;’ 4
dimension 6 (I). [Z2,Z3) = aZ3 + Z4
[Z1,Z3) = Z3,|Z1, Z4] = Za,
Algebra Nonzero brackets M(g) a,p [Z1,Z5] = Z6, [ Z2, Z6] = aZs, 4
(21, Z2] = Z3,]Z1, Z3] = Za, 5 96,24 (22, Z3) = Z4,(Z2, Z4) = — Z3,
96,1 [Z17Z4] :Z5=[ZLZ5} = Zs. [ZQ7Z5] = aZs + BZs
21, Z2] = Z3,[Z1, Z3] = Za, 5 (21, Z3] = aZ3,[Z1, Ze| = Zs,
96,2 (21, Z5] = Z. 96s (22, Z[s] = ﬂ]zg, (22, Z4) = Za, 4
Z1,Zo| = Z3,[Z1, Z4] = Zs, Z1,2Z5]| = Zs + Zs
96,3 “ 2[]Zz,Zz] [:1—Z§]. ’ 4 (21, Z3] = aZs,[Z1, Z4] = aZa,
[Zl,ZQ] :Zg,[Zth] =Z47 gg,é% [Z1,Z5] :Z5+267[Z1aZ6] :Z6, 4
96,4 21, Z4) = Z5,121, Z5] = Zs, 4 [[ZZZ Zg] }: Z3Z+ Z{; [ZZ27]Z4] :ZZ4
Za, 43| = Zs, |22, Za] = Zs- 1,43] = aZs, |21, Z4] = aZy,
{ZL Zz} = Z3, %Zh 24% =Zs, 4 g8 [Z2,Z5) = BZs, 22, Z3| = vZ3 + Za, 4
96,5 (Z2, Z4] = —Zs. 6,27 (21, Zs] 2[22622127 Z; = 223 +7Za,
Z1, 29| = Z3,[Z1, 23] = Zy, 1,45] = 45 + Zs
96,6 {Zl, 24} = Zs, {227 Zﬁ% = Z4, 4 [Z1, 23] = Z1,[Z1, Z4] = Zs,
(Z3, Z6) = Zs. 96,28 [Z2,Z4] = Z2, 4
[Zl, Z2] = Z3, [Zl7 Z3] = Zy, [Z27 Z5] = Z5 + Zs, [Z27 Zﬁ] = Zs
96,7 (21, Z4) = Zs,[Za, Zs) = Zs, 4 [Z1, 23] = Z3,[Z1, Z4] = Zs,
[Z2, Z3] = Zs. 96,29 (Z2, Zs) = Ze, | Z2, Z4) = Za + Zs, 4
(21, Z2] = Z3,[Z1, Z3] = Za, 4 (22, Z5] = Z5 + aZs
96,8 (21, Z4] = Zs,| 2o, Z6) = Zs. (21, Z3] = aZ3, (21, Za] = Z3 + BZs,
[Z1,Z2) = Z3,|Z1, Z3) = Za, 4 9ep (21, Z5] = Zs,[Z2, Zs] = Zs, 4
96,9 [Z1,Z4) = Z5, [ Z2, Z3) = Zg. ’ [Z1, Z6] = Zg, [Z2, Z3] = Z3,
[Z2,Z4] = Zs
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Table 7: Non-decomposable Solvable Lie algebras of
dimension 6 (III).

Algebra Nonzero brackets M(g)
(21, Z3] = Za, |22, Z3] = Z3,
g2 (Z2,Z4) = Z4,(Z1, Zs]| = Zs, 4
6,31 [Z2,Z5] = aZs,[Z1, Zs) = Zs + Zs,
[Z2,Zs] = aZs
(Z1,Z3) = Z3 + Z4,[Z1, Z4) = Z4,
(Z1,25) = Zs + Z¢,[Z1, Z6) = Zs,
954 (Z2, Z4) = Zs, |22, Z6) = —Za, 4
[Z2,23) = aZy + Zs — BZs,
[Z2,Z5] = —Z3 + BZ4 + aZs
21, Z3] = aZ3,[Z1, Za] = v Za,
@,B,7,8 (21, Z5] = Zs, (22, Z5] = Zs, 4
6,33 21, Z6) = —Zs,[Z2, Z3] = BZ3,
[Z2,Z4]) = 6Z4,[Z2, Z¢| = Zg
(22, Z4) = Z4,|Z1, Zs| = —Z5 + v Zs,
gg”?fi’” (21, 23] = aZs, [ Z2, Z3] = BZs, 4
[Z1,Z5] =~Z5 + Zs
(21, 23] = Z3,(21, Z4) = Za,
[Z1,Z5] = aZs + BZs,
g5t | (22, Z6) = 626, [21, Ze] = —BZ5 + aZs, 4
[Z2,Z3]) = vZ3 + Z4, [ Z2, Zs) = 65,
(Z2,Z4] = —Z3 +vZ4
(21, 23] = Z4,[21, Z5] = aZs + Zs,
o, (21, Z6) = —Z5 + aZs, [Z2, Z3) = Z3, 4
96,36 (Za, Za) = Za, |22, Z5) = BZs,
(22, Z6] = BZs
(21, 23] = aZ3 + Z4,[Z1, Z4] = aZy,
98 37 [Z1,Z5) = Zs, [Z1, Z6] = —Z5, 4
[Z2, Z5] = Z5,[Z2, Zs] = Zs
(21, 23] = Z4,[Z1, Z4] = —Z3,
B,y (21, Z5) = aZs + BZs, [ Z2, Ze] = 6 Zs, 4
96,38 (22, 23] = Z3,[Z2, Z4] = Z4,
(Z1,7Z¢]) = —BZ5 + aZg, [Z2, Z5) = vZ5
(21, 23] = Zs + Z5,[ 21, Ze) = — Zs,
6 50 (21, Z5] = Zs, (22, Z5] = Zs, 4
’ (Z1,24) = —Z3 + Zs, [Z2, Z3] = Z3,
(22, Z4] = Z4,[Z2, Zs] = Zs
(21, Z4] = aZ4,[Z1, Zo] = Zs,
aeth (22, Za] = BZa, |22, Z5) = Zs, 4
(Z1,2] = Z3
(21, Z4) = Z4,[Z1, Z5) = Zs,
96 a1 (Z2, Z4) = aZy, | Z2, Z5) = Zs, 4
(Z2, Z6] = Zs,[Z1, 2] = Z3
(21, 23] = Z3, (%1, Z5] = Zs,
9612 (22, Z3] = aZ3,[Z2, Z4] = Z4, 4
[Z1,22) = eZs
(Z1, 23] = Z3,(Z1, Z4) = Za,
e (Z1,Z5) = Zs, [ Z2, Z3] = Za, 4
96,43 (Z2,Z4) = —Z3, |22, Zs5] = aZs,
[Z1,22) = €Z5
(Z1,2Z5] = Zs + Zs, [ Z1, Zs) = Zs, 4
96,44 (Z2,2Z4] = Z4,[Z1,Z2] = Z1
(Z1,Z4] = 0Z4,|Z1, Z5] = Zs,
@B (Z1,Z6) = —Z5,|Z2, Zs) = Zs, 4
96.45 (Z2, Zs) = Zs, |21, Z2) = Z3,
(22, 23] = BZ4
o (21, Z5] = aZs + Zg, [Z2, Z4] = Za, 4
96,46 (Z1,Z6] = —Z5 + aZg, [Z1, Z2) = Z3
(Z1, 23] = Z4,|Z1,Z5] = Zs,
. (Z1,Z6) = —Z5 + aZs|Z1, Ze] = —Zs5, 4
96,47 (Za, Z5) = Zs, 22, Z6) = Zs,
[Zl, Z2] ER VA
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Table 8: Non-decomposable Solvable Lie algebras of
dimension 6 (IV).

Algebra Nonzero brackets M(g)
(21, Z3] = Z3,|Z4, Zo| = Z3,
(21, Z5) = —Z5,[Z1, Z6| = Zs, 3
9648 (22, Za) = Za, |22, Zs) = 225,
[Z2, Z6) = —Zs6,[Z5, Z6] = Z4
(21, Z3] = Z3,[Za, Z5] = Z3,
B (21, Z4) = Z4,(21, Zs) = aZs, 3
96,49 (Za, Zs) = Zs, |22, Z5) = Zs,
[Z2,Zs) = BZs
21, Z3] = 221,21, Z5] = Zs5,
o (Z2,Z4) = Zs, |22, Z¢] = Zs, 3
96,50 (21, Z6] = aZs, |24, Z5] = Z1,
(Z1,24]) = Z4
(21, 24] = Z4, |21, Z5] = —Zs,
96,51 [Z2, Z3] = Z3,(Z2, Z5) = Zs, 3
(Z2,Z6) = Z1 + Ze,[Z4,Z5) = Z1
(21, Z4] = Z4, |21, Z5] = —Zs,
o (Z1, Z6| = Z3, 22, Zs| = Zs, 3
96,52 (Z2, Z3]) = Z3,(Z2, Z4] = aZy,
[Z2,Z5] = (1 — ) Z5,(Z4,Z5] = Z3
(21, Z3] = Z3,[Z1, Za] = Za,
96,53 (Z2, Z3] = Z3,[Z2, Z5| = Z5 + Zs, 3
(22, Z6] = Zs,[Z4,Z5] = Z3
(21, Z3] = Z3,[Z1, Za] = Za,
o (21, Z5] = Zs, [ Z2, Zs] = Zs, 3
96,54 (22, Z3) = (1 + ) Z3, [ 22, Za] = aZa,
(Z2, Z5] = Z5,[Z4, Z5]| = Z3
(21, Z4) = Z5,1Z1, Zs] = aZs,
9B (22, 23] = 223,(Z2, Z4] = Za, 3
6,55 21, Z5) = —Z4,[Z2, Zs| = Zs,
[Z2, Zs) = BZs,[Z4, Z5) = Z3
[Z1,24] = Z5, (21, Z5] = —Za,
(Z2, Z3) = 223, [Z4, Z5] = Z3, 3
96,56 (Za, Zs) = Z4,|Z2, Zs) = Zs,
(Z2,Zs] = Z3 + 276
(Z2,Z4] = Zs + 0Z5,[Z1, Z4] = Zs,
a (Z1,2Z5) = — 24,21, Z6) = Z3, 3
96,57 (Z2, Z3] = 223,(Z2, Z5] = —aZs + Zs,
[Z2, Z6] = 2Z6,[Z4, Z5) = Z3
(Z1, 23] = Z3,(Z1, Z4] = Za,
96,58 (Z2, Z3] = Z3,[Z4, Z5] = Z1, 3
[Z2,Z5] = Zs,[Z1, 2] = Zg
(Z1, Z2) = Zs, |22, Z5] = Zs,
(21, Z4) = Z5,121, Z5] = — 24, 3
96,59 (Z2, Z3] = 273, [Za, Z4) = Za,
(Z4,Z5) = Z3
(21, 22| = Z3,[Z1, Z4] = Zs5,
96,60 21, Z5) = —Z4,|Z2, Z6| = Zs, 3

(Z4,Z5) = Z3
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