
SOOCHOW JOURNAL OF MATHEMATICS

Volume 32, No. 2, pp. 181-199, April 2006

SIMPLY CONNECTED LIE SUBGROUPS OF THE

UNIPOTENT LIE GROUP OF ORDER 4

BY

J. C. BENJUMEA1, F. J. ECHARTE1, J. NÚÑEZ1 AND A. F. TENORIO2

Abstract. In this paper we obtain simply connected Lie subgroups (up to isomor-

phism) of the Lie group G4 of upper triangular matrices of order 4 having “1” in

its main diagonal. To do it, we determine Lie subalgebras of the Lie algebra g4

associated with G4. We find that there exist 4 simply connected subgroups of G4

for dimension less than 4, 3 for dimension 4 and 4 for dimension 5. We also prove

that the rest of groups associated with Lie algebras of these dimensions are not

representable as subgroups of G4.

0. Introduction

First of all, we would like to explain why we are dealing with simply connected

Lie groups associated with nilpotent Lie algebras. It is because, in our opinion, an

adequate knowledge about such groups could allow to get some advances in the

study of those algebras, due to the special relation existing between Lie groups

and Lie algebras.

In this way, we will study in this paper all the Lie subgroups, up to iso-

morphism, of the Lie group G4, whose elements are unipotent matrices of order

4 (see Section 2). With respect to the relation between Lie algebras and Lie

groups, Lie’s Third Theorem states that there exists a bijective correspondence

between Lie algebras and simply connected Lie groups (up to isomorphism). In

this way, when considering isomorphism classes, two isomorphic simply connected
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Lie groups can be considered the same since they belong to the same isomorphism

class.

In any case, as it can be easily checked, it is equivalent to study all Lie

subalgebras of the Lie algebra g4, associated with the Lie group G4.

Nevertheless, there exists another classification of the groups of G4. Such a

classification depends on the conjugacy classes of G4. Let us observe that if two

subgroups are conjugated then they are isomorphic. But the converse condition

is not true, in general. As a consequence, when the classification of the subgroups

of G4 according to this point of view is studied, more distinct classes than in the

isomorphic case would be obtained.

In this paper we search for unitary matrix representations for every non-

isomorphic simply connected Lie subgroup. To get it, we only need to compute

a representative of each nilpotent Lie subalgebra of g4. Then, we obtain all the

nilpotent Lie algebras whose associated simply connected Lie group admits a

4-dimensional matrix representation.

The problem studied here could be interesting in connection with global

differential geometric method, as the Fröbenius’ Theorem, and its relation with

the theory of Pfaffian forms and it could be also seen as the first step towards

a conjugacy class classification of the subgroups of G4, once the possible related

Lie algebras have been identified.

The structure of this paper is as follows: In the first section we show some

preliminary concepts on Lie groups and Lie algebras. The second section deals

with the unipotent Lie group G4 and with its associated Lie algebra g4. Finally,

the third section is devoted to determining the simply connected Lie subgroups

of the Lie group G4, showing each of them together their associated Lie algebra

(which is a subalgebra of g4). The main result of the paper is Theorem 3.15.

1. Preliminaries

For a general overview on Lie groups and Lie algebras, the reader can con-

sult [3]. Other results about these concepts, mainly about the connection between

one-parameter subgroups and left-invariant fields and about nilpotent Lie alge-

bras, are the following:
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Let G be a Lie group. It is easy to prove that the set of left-invariant fields

of G is a Lie algebra, which is denoted by L(G) or g, and it is called Lie algebra

associated with G. Note that dimensions of G and g are the same.

The converse states that every Lie algebra is associated with some Lie group.

This last result was locally proved by Lie, in his Third Theorem, and globally

by Ado. Ado’s Theorem (see [3]) says that any finite-dimensional complex Lie

algebra is isomorphic to some matrix Lie algebra (in fact, this theorem is not

merely valid for complex Lie algebras, but states moreover that any real Lie alge-

bra is actually isomorphic to the Lie algebra of some analytic group of complex

matrices). Note, however, that the uniqueness of the converse is only satisfied, up

to isomorphism, if Lie groups considered are simply connected. Let us recall that

a Lie group is said to be simply connected if its associated topological structure

is simply connected.

A representation of a Lie group of dimension n is a Lie group homomorphism

φ : G→ GL(n, C).

A relation between Lie subgroups of a fixed and given Lie group and their

respective associated Lie algebras is the following:

Proposition 1.1. Let G be a Lie group and let g be its associated Lie algebra.

If H is a Lie subgroup of G, then the Lie algebra h associated with H is a Lie

subalgebra of g.

A Lie algebra g is called abelian if [X,Y ] = 0, for all X,Y ∈ g, where [X,Y ]

denotes the law of g.

The central descending sequence of g is defined by:

g = C1(g) ⊇ C2(g) ⊇ · · · ⊇ Ck(g) ⊇ · · ·

where the ideal Ck(g) of g is defined by Ck(g) = [g, Ck−1(g)] ,∀k ∈ N.

The Lie algebra g is said to be nilpotent if there exists n ∈ N such that

Cn(g) = {0}. The least integer n verifying this condition is called nilindex of g

(i.e. Cn−1(g) 6= {0}).

Nilpotent Lie algebras verify the following:

Proposition 1.2. Let g be a nilpotent Lie algebra and let g′ be a Lie subal-

gebra of g. Then, it is verified Ck(g′) ⊆ Ck(g), for all k ∈ N.
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Those nilpotent Lie algebras of dimension n whose central descending se-

quence is (n − 2, n − 3, . . . , 2, 1, 0) are called filiform. These algebras constitute

the most structured subset of nilpotent Lie algebras.

To finish this section we recall Fröbenius’ Theorem, which will be used to

obtain simply connected Lie subgroups of the unipotent Lie group G4 of order 4:

If M is a complex analytic manifold of dimension n and D is an r-dimensional

involutive analytic distribution over M (with r < m), then the set I(D) of all

differential forms on M annulling D is an ideal of the module Λ(M) of all differ-

ential forms over M . Moreover, this ideal is locally generated by m−r independent

differential 1-forms over M and it is a differential ideal.

Then, Fröbenius’ Local Theorem sets that if the ideal I(D) ⊂ Λ(M) is both

differential and locally generated by m− r independent differential 1-forms, then

there exists a submanifold L of dimension r which is integral of I(D) containing

p, for all p ∈ M (remember that a submanifold L is said integral of I(D) if

Tq(L) = Dq, for a given q ∈ L). Moreover, Fröbenius’ Global Theorem both

affirms the uniqueness of such a submanifold L and sets that L is connected and

maximal. For the reader interested in the details of this theorem (as its local

version as its global one), see Section 1.3 in [3].

2. The Lie Group G4 and Its Associated Lie Algebra g4

The Lie group G4 is that whose elements g4(xi,j) are unipotent matrices of

order 4, having the following expression:

g4(xi,j) =













1 x1,2 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 x3,4

0 0 0 1













. (1)

If this group is considered as an analytic complex manifold, then it has

dimension 6. So, the dimension of its associated Lie algebra g4 is also 6. Since

the proper Lie subalgebras of g4 have dimension less than 6, simply connected Lie

subgroups of G4 will have also dimension less than 6, in virtue of Ado’s Theorem.

Now, to determine these proper Lie subalgebras of g4, we will give, in the

first place the law of g4 with respect to an adequate basis. By using previous

expression (1) of the elements of G4, we already proved in [2] the following result:
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Theorem 2.1. A basis of the Lie algebra g4 is given by the vector fields:

X1,2 = e1,2, X2,3 = e2,3 + x1,2e1,3,

X1,3 = e1,3, X2,4 = e2,4 + x1,2e1,4,

X1,4 = e1,4, X3,4 = e3,4 + x2,3e2,4 + x1,3e1,4,

where ei,j denotes ∂
∂xi,j

. The brackets of the algebra with respect to this basis is:

[X1,2, X2,3] = X1,3, [X1,3, X3,4] = X1,4,

[X1,2, X2,4] = X1,4, [X2,3, X3,4] = X2,4.
(2)

Now, as an immediate consequence of the previous theorem, the following

result holds:

Corollary 2.2. The Lie algebra g4 is nilpotent and its central descending

sequence is (3, 1, 0).

Therefore, subalgebras of g4 must be nilpotent Lie algebras of dimension

less than 6. The classification of these algebras was reached by Morozov in [1].

However, he only classified nilpotent Lie algebras which are indecomposable (i.e.,

non-isomorphic to a direct sum of lower dimensional ideals). We exhibit here the

full list of nilpotent Lie algebras of dimension less or equal than 5, independently

on the fact whether they are decomposable or not, which will be denoted by (d)

or (i), respectively:

Dimension 1: n1
1 abelian. (i)

Dimension 2: n1
2 abelian. (d)

Dimension 3: n1
3 [Y1, Y3] = Y2 model filiform (i)

n2
3 abelian. (d)

Dimension 4: n1
4 [Y1, Y4] = Y3, [Y1, Y3] = Y2 model filiform (i)

n2
4 [Y1, Y4] = Y3 direct sum n1

3 ⊕ n1
1 (d)

n3
4 abelian. (d)
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Dimension 5: n1
5 [Y1, Y5] = Y4, [Y1, Y4] = Y3,

[Y1, Y3] = Y2 model filiform (i)

n2
5 [Y1, Y5] = Y4, [Y1, Y4] = Y3,

[Y1, Y3] = Y2, [Y4, Y5] = Y2 filiform (i)

n3
5 [Y1, Y5] = Y4, [Y1, Y4] = Y3,

[Y4, Y5] = Y2 (i)

n4
5 [Y1, Y5] = Y4, [Y1, Y3] = Y2,

[Y2, Y3] = Y4 (i)

n5
5 [Y1, Y5] = Y4, [Y1, Y3] = Y2 (i)

n6
5 [Y1, Y5] = Y4, [Y2, Y3] = Y4 (i)

n7
5 [Y1, Y5] = Y4 direct sum n1

3 ⊕ n1
2 (d)

n8
5 [Y1, Y5] = Y4, [Y1, Y4] = Y3 direct sum n1

4 ⊕ n1
1 (d)

n9
5 abelian. (d)

Related to their respective central descending sequences, the following result

is easily obtained:

Proposition 2.3. The central descending sequence of each nilpotent Lie

algebra of dimension less or equal than 5 is:

algebras n1
5 and n2

5 (3, 2, 1, 0)

algebra n3
5 (3, 2, 0)

algebras n1
4, n4

5 and n8
5 (2, 1, 0)

algebra n5
5 (2, 0)

algebras n1
3, n2

4, n6
5 and n7

5 (1, 0)

algebras n1
1, n1

2, n2
3, n3

4 and n9
5 (0).
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3. Nilpotent Lie Algebras of Dimension < 6 Which Are Subalgebras

of g4

The main goal of this section is to obtain nilpotent Lie algebras of dimen-

sion less than 6 which are subalgebras of g4, or equivalently, in virtue of Ado’s

Theorem, to obtain the simply connected Lie subgroups of the Lie group G4.

To do this, we will prove in first place that some nilpotent Lie algebras of

dimension less than 6 cannot be subalgebras of g4.

Proposition 3.1. The nilpotent Lie algebras n1
5, n2

5 and n3
5 are not subalge-

bras of g4.

Proof. According to Corollary 2.2, it is verified that dimC3(g4) = 1. How-

ever, Proposition 2.3 implies that dim C3(nk
5) = 2, for k = 1, 2, 3. Therefore,

dim C3(nk
5) > dim C3(g4) for k = 1, 2, 3, which is contradictory with Proposi-

tion 1.2.

As an immediate consequence of this result, it is also proved the following:

Corollary 3.2. The simply connected Lie groups associated with filiform Lie

algebras n1
5 and n2

5 and with nilpotent Lie algebra n3
5 cannot be represented as a

subgroup of G4.

Now, by taking into consideration that this inconvenience does not appear

with the rest of nilpotent Lie algebras of dimension less or equal than 5, we are

going to determine which of such algebras are subalgebras of g4. We firstly begin

with abelian Lie algebras.

Proposition 3.3. The subalgebras 〈X1,2〉, 〈X1,2, X1,3〉, 〈X1,2, X1,3, X1,4〉 and

〈X1,3, X1,4, X2,3, X2,4〉 of g4 are isomorphic to the abelian Lie algebras n1
1, n1

2, n2
3

and n3
4, respectively.

Proof. It is an immediate consequence of Theorem 2.1.

Now, as we will see, the obtained expressions of abelian Lie algebras as sub-

algebras of g4 will allow to determine the respective associated simply connected

Lie groups as subgroups of G4.

To do this, we will find in the first place, all the Lie subalgebras of Lie

algebra g4, associated with G4. Once a Lie subalgebra of dimension r (with
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r < 6 = dim(G4)) and a basis of its are obtained, we will consider this subalgebra

as a r-dimensional involutive differential distribution D over G4. Secondly, we

will extend the basis of D to a basis of g4 and we will consider its dual basis. The

dual 1-forms corresponding to extended fields annul D and generate the ideal

I(D) defined before. Therefore, I(D) is a differential ideal generated by 6 − r

independent differential 1-forms. In consequence, as the assumption of Fröbenius’

Theorem are satisfied, a submanifold of G4 (which is an integral submanifold of

I(D) and a Lie subgroup of G4) is obtained. Note that to obtain a integral

manifold L of G4, verifying Tq(L) = Dq, for all q ∈ L, we have to integrate the

6− r 1-forms which generate I(D) (see Section 1).

So, by proceeding in this way, we show next several results, whose proofs will

be constructed in three steps, as follows:

• Step 1: Observe which is the subalgebra of g4 which is isomorphic to the

Lie algebra previously fixed.

• Step 2: Extend the basis of that subalgebra to a basis of g4, by using other

necessary fields.

• Step 3: Consider the corresponding dual basis {ωi}
6
i=1 of the extended basis

and obtain the equations of the corresponding simply connected Lie group

associated with such a subalgebra, by integrating the differential equations

system obtained from Fröbenius’ Theorem.

Corollary 3.4. The simply connected Lie groups associated with abelian Lie

algebras n1
1, n1

2, n2
3 and n3

4 admit, respectively, the following matrix representa-

tions:

n1
1 −→













1 x1,2 0 0

0 1 0 0

0 0 1 0

0 0 0 1













n1
2 −→













1 x1,2 x1,3 0

0 1 0 0

0 0 1 0

0 0 0 1













n2
3 −→













1 x1,2 x1,3 x1,4

0 1 0 0

0 0 1 0

0 0 0 1













n3
4 −→













1 0 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 0

0 0 0 1













.
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Proof.

(a) Lie algebra n1
1.

Step 1. This abelian Lie algebra is the subalgebra generated by Y1 = X1,2.

Step 2. We extend this basis with Y2 = X1,3, Y3 = X1,4, Y4 = X2,3, Y5 =

X2,4 and Y6 = X3,4.

Step 3. We consider the corresponding dual basis {ωi}
6
i=1 and we obtain

the equations of the associated simply connected Lie group, by us-

ing Fröbenius’ Theorem, after integrating the following differential

equation system:

ω2 = dx1,3 − x1,2dx2,3 = 0,

ω3 = dx1,4 − x1,3dx2,4 + (x1,3x2,3 − x1,3)dx3,4 = 0,

ω4 = dx2,3 = 0,

ω5 = dx2,4 − x2,3dx3,4 = 0,

ω6 = dx3,4 = 0,

whose solution is x1,3 = x1,4 = x2,3 = x2,4 = x3,4 = 0.

(b) Lie algebra n1
2.

Step 1. We consider the subalgebra 〈Y1 = X1,2, Y2 = X1,3〉.

Step 2. We extend this basis with: Y3 = X1,4, Y4 = X2,3, Y5 = X2,4 and

Y6 = X3,4.

Step 3. We solve the differential equations system {ωi = 0, i = 3, 4, 5, 6},

whose solution is x1,4 = x2,3 = x2,4 = x3,4 = 0.

(c) Lie algebra n2
3.

Step 1. We consider the subalgebra 〈Y1 = X1,2, Y2 = X1,3, Y3 = X1,4〉.

Step 2. We extend this basis with: Y4 = X2,3, Y5 = X2,4 and Y6 = X3,4.

Step 3. We solve the differential equations system {ωi = 0, i = 4, 5, 6},

whose solution is x2,3 = x2,4 = x3,4 = 0.

(d) Lie algebra n3
4.

Step 1. We consider the subalgebra 〈Y1 = X1,3, Y2 = X1,4, Y3 = X2,3, Y4 =

X2,4〉.

Step 2. We extend this basis of with: Y5 = X1,2 and Y6 = X3,4.

Step 3. We solve the differential equations system {ω5 = 0, ω6 = 0}, whose

solution is x1,2 = x3,4 = 0.
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With respect to these abelian Lie algebras, we must still find a matrix rep-

resentation for the one of dimension 5, but we will prove later the impossibility

to find a representation of its associated Lie group as a Lie subgroup of G4.

Now, we will consider simply connected Lie groups associated with non

abelian nilpotent Lie algebras of dimension less or equal than 5. Propositions

from 3.5 to 3.11 show the matrix representations of these algebras. The scheme

of the proof of each proposition is the same as previous propositions.

Proposition 3.5. The simply connected Lie group associated with the fili-

form Lie algebra n1
3 admits the following representation:













1 x1,2 x1,3 0

0 1 x2,3 0

0 0 1 0

0 0 0 1













.

Proof.

Step 1. The subalgebra 〈Y1 = X1,2, Y2 = X1,3, Y3 = X2,3〉 is isomorphic to n1
3.

Step 2. We extend this basis with Y4 = X1,4, Y5 = X2,4 and Y6 = X3,4.

Step 3. We solve the differential equations system {ωi = 0| i = 4, 5, 6}, whose

solution is x1,4 = x2,4 = x3,4 = 0.

Proposition 3.6. The simply connected Lie group associated with the fili-

form Lie algebra n1
4 admits the following representation:













1 x1,2 x1,3 x1,4

0 1 x2,3
1
2
x2

2,3

0 0 1 x2,3

0 0 0 1













.

Proof.

Step 1. We consider the subalgebra 〈Y1 = −(X2,3 + X3,4), Y2 = X1,4, Y3 =

X1,3, Y4 = X1,2〉.

Step 2. We extend this basis with the fields Y5 = X2,4 and Y6 = X3,4.

Step 3. We solve the differential equations system {ω5 = 0, ω6 = 0}, whose

solution is x3,4 = x2,3 and x2,4 =
x2

2,3

2
.
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Proposition 3.7. The simply connected Lie group associated with the nilpo-

tent Lie algebra n2
4 admits the following representation:













1 x1,2 x1,3 x1,4

0 1 0 x2,4

0 0 1 0

0 0 0 1













.

Proof.

Step 1. We consider the subalgebra 〈Y1 = X1,2, Y2 = X1,3, Y3 = X1,4, Y4 =

X2,4〉.

Step 2. We extend this basis with Y5 = X2,3 and Y6 = X3,4.

Step 3. We solve the differential equations system {ω5 = 0, ω6 = 0}, whose

solution is x2,3 = x3,4 = 0.

Next, we will obtain the simply connected Lie subgroups of G4 of dimension

5.

Proposition 3.8. The simply connected Lie group associated with the nilpo-

tent Lie algebra n4
5 admits the following representation:













1 x1,2 x1,3 x1,4

0 1 x1,2 x2,4

0 0 1 x3,4

0 0 0 1













.

Proof.

Step 1. We consider the subalgebra 〈Y1 = X3,4, Y2 = X2,4, Y3 = −(X2,3 +

X1,2), Y4 = X1,4, Y5 = −X1,3〉.

Step 2. We extend this basis with Y6 = X2,3.

Step 3. We solve the differential equation ω6 = 0, whose solution is x2,3 = x1,2.
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Proposition 3.9. The simply connected Lie group associated with the nilpo-

tent Lie algebra n5
5 admits the following representation:













1 x1,2 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 0

0 0 0 1













.

Proof.

Step 1. We consider the subalgebra 〈Y1 = X1,2, Y2 = X1,3, Y3 = X2,3, Y4 =

X1,4, Y5 = X2,4〉.

Step 2. We extend this basis with Y6 = X3,4.

Step 3. We solve the differential equation ω6 = 0, whose solution is x3,4 = 0.

Proposition 3.10. The simply connected Lie group associated with the

nilpotent Lie algebra n6
5 admits the following representation:













1 x1,2 x1,3 x1,4

0 1 0 x2,4

0 0 1 x3,4

0 0 0 1













.

Proof.

Step 1. We consider the subalgebra 〈Y1 = X1,3, Y2 = X1,2, Y3 = X2,4, Y4 =

X1,4, Y5 = X3,4〉.

Step 2. We extend this basis with Y6 = X2,3.

Step 3. We solve the differential equation ω6 = 0, whose solution is x2,3 = 0.

Proposition 3.11. The simply connected Lie group associated with the Lie

algebra n8
5 admits the matrix representation:













1 x1,2 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 x1,2

0 0 0 1













.
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Proof.

Step 1. We consider the subalgebra 〈Y1 = −(X1,2+X3,4), Y2 = X1,3+X2,4, Y3 =

−2X1,4, Y4 = −X1,3 + X2,4, Y5 = X2,3〉.

Step 2. We extend this basis with Y6 = X1,2.

Step 3. We solve the differential equation ω6 = 0, whose solution is x1,2 = x3,4.

It was already proved in Corollary 3.2 that simply connected Lie groups

associated with the filiform Lie algebras n1
5 and n2

5 and with the nilpotent Lie

algebra n3
5 are not Lie subgroups of the Lie group G4. So, we have now to study

if simply connected Lie groups associated with the nilpotent Lie algebra n7
5 and

with the abelian algebra n9
5 can be obtained as subgroups of G4. To do it, we

previously proved the following:

Lemma 3.12. Every subalgebra of g4 of dimension 5 has a basis {Yi}
5
i=1

whose elements are a linear combination of two fields of the basis {Xj,k}j,k of g4,

in such a way that one of those two fields is common to all fields Yi (i = 1, . . . , 5).

Proof. Each one of elements of an arbitrary set {Yi}
5
i=1 of fields of g4 can

be expressed by:

Yi =

j=3
k=4
∑

k=j+1
j=1

ai,j,kXj,k , (ai,j,k ∈ C) , (i = 1, . . . , 5).

Since the set {Yi}
5
i=1 is linearly independent, the matrix of their coefficients

must have rank 5, that is:

rank

















a1,1,2 a1,1,3 a1,1,4 a1,2,3 a1,2,4 a1,3,4

a2,1,2 a2,1,3 a2,1,4 a2,2,3 a2,2,4 a2,3,4

a3,1,2 a3,1,3 a3,1,4 a3,2,3 a3,2,4 a3,3,4

a4,1,2 a4,1,3 a4,1,4 a4,2,3 a4,2,4 a4,3,4

a5,1,2 a5,1,3 a5,1,4 a5,2,3 a5,2,4 a5,3,4

















= 5.
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In consequence, this matrix is equivalent to the following:

















b1,1 0 0 0 0 b1,6

0 b2,2 0 0 0 b2,6

0 0 b3,3 0 0 b3,6

0 0 0 b4,4 0 b4,6

0 0 0 0 b5,5 b5,6

















where bi,i 6= 0, for 1 ≤ i ≤ 5. It completes the proof.

We continue now our study by considering Lie algebras n7
5 and n9

5.

Proposition 3.13. The simply connected Lie group associated with the al-

gebra n7
5 does not admit a representation as a Lie subgroup of G4.

Proof. Starting from Lemma 3.12, we consider the following six possibilities.

We will completely detail the first and the last of them. In the rest of them a

contradiction similar to the obtained in the first possibility appears:

1. 〈X1,2 + λ1X3,4, X1,3 + λ2X3,4, X1,4 + λ3X3,4, X2,3 + λ4X3,4, X2,4 + λ5X3,4〉

(λi ∈ C).

We obtain the nonzero brackets [X2,3+λ4X3,4, X1,2+λ1X3,4] = −X1,3+λ1X2,4

and [X1,2 + λ1X3,4, X2,4 + λ5X3,4] = X1,4. Therefore, the dimension of its

derived algebra is greater or equal than 2, which is contradictory with the

fact of the derived algebra of n7
5 having dimension 1. →←

2. 〈X1,2 + λ1X2,4, X1,3 + λ2X2,4, X1,4 + λ3X2,4, X2,3 + λ4X2,4, X3,4 + λ5X2,4〉

(λi ∈ C).

3. 〈X1,3 + λ1X1,2, X1,4 + λ2X1,2, X2,3 + λ3X1,2, X2,4 + λ4X1,2, X3,4 + λ5X1,2〉

(λi ∈ C).

4. 〈X1,2 + λ1X1,3, X1,4 + λ2X1,3, X2,3 + λ3X1,3, X2,4 + λ4X1,3, X3,4 + λ5X1,3〉

(λi ∈ C).

5. 〈X1,2 + λ1X1,4, X1,3 + λ2X1,4, X2,3 + λ3X1,4, X2,4 + λ4X1,4, X3,4 + λ5X1,4〉

(λi ∈ C).

6. 〈X1,2 + λ1X2,3, X1,3 + λ2X2,3, X1,4 + λ3X2,3, X2,4 + λ4X2,3, X3,4 + λ5X2,3〉

(λi ∈ C).
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The nonzero brackets are:

[X1,4 + λ3X2,3, X1,2 + λ1X2,3] =−λ3X1,3,

[X1,4 + λ3X2,3, X3,4 + λ5X2,3] = λ3X2,4,

[X1,3 + λ2X2,3, X1,2 + λ1X2,3] =−λ2X1,3,

[X1,3 + λ2X2,3, X3,4 + λ5X2,3] = X1,4 + λ2X2,4,

[X1,2 + λ1X2,3, X2,4 + λ4X2,3] = X1,4 + λ4X1,3,

[X1,2 + λ1X2,3, X3,4 + λ5X2,3] = λ5X1,3 + λ1X2,4,

[X2,4 + λ4X2,3, X3,4 + λ5X2,3] = λ4X2,4.

Then, we distinguish:

6.1 λ4 6= 0. Then, X2,4 belongs to the subalgebra and, hence, λ4 = 0. →←

6.2 λ4 = 0. Then, X1,4 belongs to the subalgebra and, hence, λ3 = 0. We

distinguish again:

6.2.1 λ2 6= 0. Then, X1,3 belongs to the subalgebra and, hence, λ2 = 0.

→←

6.2.2 λ2 = 0. In this subcase, the unique nonzero brackets are:

[X1,3 + λ2X2,3, X3,4 + λ5X2,3] = X1,4,

[X1,2 + λ1X2,3, X2,4 + λ4X2,3] = X1,4,

[X1,2 + λ1X2,3, X3,4 + λ5X2,3] = λ5X1,3 + λ1X2,4.

Then, so that the dimension of the derived algebra could be 1,

it would be necessary that λ1 = λ5 = 0. Then, the algebra is

< X1,2, X1,3, X1,4, X2,4, X3,4 >, which coincides with the algebra

n6
5, and it is not the algebra n7

5, as we asked. →←

The last simply connected Lie group which could be a subgroup of G4 would

be the associated with the abelian Lie algebra n9
5. It is studied in the following:

Proposition 3.14. The simply connected Lie group associated with the

abelian Lie algebra n9
5 does not admit a representation as a subgroup of the Lie

group G4.

Proof. According to Lemma 3.12, it is sufficient to consider the following

six possibilities:
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1. Let us consider subalgebras having a basis:

Y1 = λ1X1,2 + µ1X3,4, Y2 = λ2X1,3 + µ2X3,4, Y3 = λ3X1,4 + µ3X3,4,

Y4 = λ4X2,3 + µ4X3,4, Y5 = λ5X2,4 + µ5X3,4.

By vanishing the ten possible brackets between basic elements, we obtain an

equation system which contains, among others, the equations:

λ4µ3 = 0, λ4µ2 = 0, λ2µ4 = 0, λ1λ4 = 0, λ4µ1 = 0.

It is easy to see then that the system is incompatible, due to {Yi}
5
i=1 is linearly

independent.

2. Let us consider subalgebras having a basis:

Y1 = λ1X1,2 + µ1X2,4, Y2 = λ2X1,3 + µ2X2,4, Y3 = λ3X1,4 + µ3X2,4,

Y4 = λ4X2,3 + µ4X2,4, Y5 = λ5X3,4 + µ5X2,4.

By proceeding as in the first case, we obtain the incompatible equations

λ1λ4 = 0 and λ2λ5 = 0.

3. Let us consider subalgebras having a basis:

Y1 = λ1X1,3 + µ1X1,2, Y2 = λ2X1,4 + µ2X1,2, Y3 = λ3X2,3 + µ3X1,2,

Y4 = λ4X2,4 + µ4X1,2, Y5 = λ5X3,4 + µ5X1,2.

By proceeding as in the first case, we obtain the incompatible equations

system {λ3µ2 = 0, λ3µ1 = 0, λ3µ4 = 0, µ3λ4 = 0, λ3λ5 = 0, λ3µ5 = 0}.

4. Let us consider subalgebras having a basis:

Y1 = λ1X1,2 + µ1X1,3, Y2 = λ2X1,4 + µ2X1,3, Y3 = λ3X2,3 + µ3X1,3,

Y4 = λ4X2,4 + µ4X1,3, Y5 = λ5X3,4 + µ5X1,3.

By proceeding as in the first case, we obtain the following incompatible equa-

tions λ3λ5 = 0 and λ1λ4 = 0.

5. Let us consider subalgebras having a basis:

Y1 = λ1X1,2 + µ1X1,4, Y2 = λ2X1,3 + µ2X1,4, Y3 = λ3X2,3 + µ3X1,4,

Y4 = λ4X2,4 + µ4X1,4, Y5 = λ5X3,4 + µ5X1,4.

By proceeding as in the first case, we obtain the following incompatible equa-

tions λ1λ3 = 0 and λ2λ5 = 0.
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6. Let us consider subalgebras having a basis:

Y1 = λ1X1,2 + µ1X2,3, Y2 = λ2X1,3 + µ2X2,3, Y3 = λ3X1,4 + µ3X2,3,

Y4 = λ4X2,4 + µ4X2,3, Y5 = λ5X3,4 + µ5X2,3.

By proceeding as in the first case, we obtain the following incompatible equa-

tions λ2λ5 = 0 and λ1λ4 = 0.

Then, as these six cases cover all the possible Lie subalgebras, it can be

settled that the abelian Lie algebra n9
5 is not a Lie subalgebra of the Lie algebra

g4. Consequently, the simply connected Lie group associated with n9
5 does not

admit a representation as a Lie subgroup of the Lie group G4.

In this way, we have obtained all nilpotent Lie algebras which are Lie sub-

algebras of g4. Let us remark that the subalgebras of g4 have to be nilpotent

because g4 is nilpotent.

Moreover, according to Proposition 1.1, all the simply connected Lie sub-

groups of G4 are those which are associated with the subalgebras obtained. Hence,

all the simply connected Lie subgroups of G4 have been so obtained.

We conclude the paper by systematizing previous results in the following:

Theorem 3.15.(Main Theorem) Up to isomorphism, the simply connected

Lie subgroups of the Lie group G4 (each of them with their associated Lie algebra

(which is a subalgebra of g4)) are the following:

Dimension 1, 2 and 3:

n1
1 −→













1 x1,2 0 0

0 1 0 0

0 0 1 0

0 0 0 1













n1
2 −→













1 x1,2 x1,3 0

0 1 0 0

0 0 1 0

0 0 0 1













n1
3 −→













1 x1,2 x1,3 0

0 1 x2,3 0

0 0 1 0

0 0 0 1













n2
3 −→













1 x1,2 x1,3 x1,4

0 1 0 0

0 0 1 0

0 0 0 1













.
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Dimension 4:

n1
4 −→













1 x1,2 x1,3 x1,4

0 1 x2,3
1
2
x2

2,3

0 0 1 x2,3

0 0 0 1













n2
4 −→













1 x1,2 x1,3 x1,4

0 1 0 x2,4

0 0 1 0

0 0 0 1













n3
4 −→













1 0 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 0

0 0 0 1













.

Dimension 5:

n4
5 −→













1 x1,2 x1,3 x1,4

0 1 x1,2 x2,4

0 0 1 x3,4

0 0 0 1













n5
5 −→













1 x1,2 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 0

0 0 0 1













n6
5 −→













1 x1,2 x1,3 x1,4

0 1 0 x2,4

0 0 1 x3,4

0 0 0 1













n8
5 −→













1 x1,2 x1,3 x1,4

0 1 x2,3 x2,4

0 0 1 x1,2

0 0 0 1













.

Remark 3.16. The preceding result does not exclude that non-conjugated

(and conjugated) subgroups have the same underlying Lie algebra.

Indeed, let us consider the following two subgroups of G4, defined, respec-

tively, by the matrices:

G1
4 ≡













1 x1,2 x1,3 x1,4

0 1 0 0

0 0 1 0

0 0 0 1













and G2
4 ≡













1 0 x1,3 0

0 1 x2,3 x2,4

0 0 1 0

0 0 0 1













.

Their respective Lie algebras are g1
4 and g2

4, determined by:

g1
4 = 〈X1,2, X1,3, X1,4〉 y g2

4 = 〈X1,3, X2,3, X2,4〉.
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Note then that both subalgebras g1
4 and g2

4 of g4 are isomorphic to the 3-dimen-

sional abelian Lie algebra. Consequently, the simply connected Lie subgroups G1
4

and G2
4 associated with them are isomorphic, in virtue of Lie’s Third Theorem,

and thus they are representatives of the same isomorphism class of subgroups in

the corresponding classification.

However, these two subgroups are non-conjugated. It is due to that g1
4 is an

ideal of g4 and g2
4 is a subalgebra but it is not an ideal. Hence, G1

4 is a normal

Lie subgroup of G4 and G2
4 is not. So the classification problem with respect to

conjugacy classes need to determine all the non-conjugated classes for every sub-

algebra of g4. Therefore, the classification of conjugacy classes would constitute

a second step, after having identified which are the Lie algebras involved.
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