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Abstract: For a one-dimensional probability distribution, the classical con-
cept of central region as a real interquantile interval arises in all applied sci-
ences. We can find applications, for instance, with dispersion, skewness and
detection of outliers. All authors agree with the main problem in a multivari-
ate generalization: there does not exist a natural orderingdimensions,

n > 1. Because of this reason, the great majority of these generalizations
depend on their use. We can say that is common to generalize the concept of
central region under the definition of the well known concept of spatial me-
dian. In our work, we develop an intuitive concept which can be interpreted
as level curves for distribution functions and this one provides a trimmed re-
gion. Properties referred to dispersion and probability are also studied and
some considerations on more than two dimensions are also considered. Fur-
thermore, several estimations for bivariate data based on conditional quantiles
are discussed.
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1 Introduction

For a one-dimensional probability distribution, the classical concept of central region as a
real interquantile intervallQ(p) = (F~'(1 — p), F~*(p)), for1/2 < p < 1, arises in all
applied sciences. We can find applications, for instance, with dispersion, skewness and
detection of outliers. In the multivariate finite dimensional case, several central regions
have been studied. All authors agree with the main problem in a multivariate general-
ization; there does not exist a natural orderingridimensionsy,, > 1. From this, it

has always been a serious obstacle to the development of statistical methods based on
order statistics. In a classical paper, Barnett (1976) provides several possible methods
for ordering multivariate data. Since 1976 we have in the literature various attempts that
all are valuable contributions toward both multidimensional generalization of univariate
guantiles and the generalization of the real interquantile interval. The authors usually
provide a generalization of the univariate quantiles based on properties in one dimension
and after that they use this one to define a new concept of multivariate central region. For
instance, we can see the concept of depth function, see Tukey (1975) and the notion of
quantiles based on Oja’s criterion function that arises in the definition of Oja’s simplex
median, Oja (1983). Another way is to generalize directly the real interquantile interval,
that is the case of the minimum volume ellipsoid with fixed probability, see Rousseeuw
and Leroy (1987). Other examples are provided by the notion of trimmed region, defined
as the intersection of all half-planes whgs@robability measure is at least equalito
thep-trimmed regions are known as peeling procedures, see Nolan (1992) ane dhalss
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Theodorescu (1994). To study thoroughly the concept of multivariate quantiles is interest-
ing to see the generalization provided in Abdous and Theodorescu (1992) and Chaudhuri
(1996), this concept is based on a generalization of the spatial median. Anyway, there
are several approaches based on different point of views. Because of this reason the great
majority of these generalizations depend on their use. In a recent paper, Averous and
Meste (1997) provided an interesting introduction of various classical concepts of central
regions and a brief explanation about the problems which we can observe in each one.
Basically, the problems come from the shape of these regions which is a priori chosen, so
it is difficult to interpret the majority of these regions for distributions non-symmetrical.
Another problem is referred to the probability accumulated which is less obvious than in
the real case, that is to say{P¥ € IQ(p)} = 2p — 1.

In spite of all problems we can find because of the multivariate nature, there is a
point of view which is frequently accepted in the literature; to generalize the concept of
central region through the notion of spatial median, for instance the Median Balls, see
Averous and Meste (1997). This way has been extensively studied and the central regions
are defined through a proximity criterion to the spatial median, it seems to be the most
interesting one to generalize the real interquantile interval. X.éie an-dimensional
random vector with distributio®(.), the spatial median is defined as

M:argmin/ |x—c| — | x| dP(x).
¢ Jx

In depends on the used norm, but in the sense, the city block norm, we obtain the
vector of marginal medians for each componentXof

In our work, we develop an intuitive concept of central region for bivariate distribu-
tions. We propose a trimmed region which is centered around the spatial median. We
also show the shape is not a priori chosen thus it can be used to study symmetrical and
non-symmetrical distributions. Properties related to dispersion and probability are studied
and some considerations on more than two dimensions are also considered. Finally, the
introduced notion is illustrated for particular cloud data and properties of estimation are
discussed.

2 Multivariate Quantiles as Level Curves

One of the most difficult problems when we broach the multivariate case is the notation.
From now on, we represent in bold both variables and points with more than one di-
mension. Lefi/? denote the set of variations of two elements withepetitions and let

Ok, .k, € V2 denote the variatiotty, - - -, k,, wherek; = {0or1}, forj = 0,---,n.
Let II,, denote the set of permutations ofelements{1,---,n}, wherer;, ...; repre-
sents the permutation, - - - ,i,,. The symbols\, andA; represent the inequalities<™”

and “>" respectively. Furthermore, anda; represent the symbolsttcc” and “—oo”
respectively. For an easier notation,teandy be two points irR" and letsy, ..., € V2,
we denotexA;, 'y ifand only if z;Ay;, foralli = 1,--- n. Let X be a univariate
random variable and lgt€ (0, 1) then@ x(p) denotes the-th univariate quantile, that is
to say

Qx(p) = Fx'(p) = inf{z : F(z) > p}.
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Although we study the bivariate case, we introduce the following concepts dor
mensions.

Definition 2.1. Let X = (X3, -+, X,) be an-dimensional random vector. Let
(0,1), then define the-th multivariate quantile set)x (p; o, ..., ), under the variation
Oky .k, € V2 S

whereo represents the topological border.

Note that for fixedp € (0,1), we have2™ multivariate quantile sets, one for each
variation inR”. It is easy to show the above definition is a generalization of univariate
guantile set. Fon = 1 it holds

Qx(p; o) = inf{x : F(x) > p} andQx(p; 1) = sup{z : F(z) < 1 — p},

see Lewis and Thompson (1981) for more details in the definition of univariate quantiles.
The following proposition provides an easy interpretation of the quantile sets as level
curves for the distribution function.

Proposition 2.1. Let X be a random vector and 1€0x (p, ok, ... &, )-
Thenx € Qx(p, ok, ...k, ) if and only if for eachy,; andy. such that

vils, ., XAs Y2
strictly in all its components, it holds
Pr{XAs, ... y1} <p<Pr{XA; . ya}.
Proof. We consider the sets
A={xeRr": Pr{Xa;, ., x}>p}.

and
A¢ = {x € R": PT{XA(;M,WMX} < p} .

Observe thatd and A© are increasing and decreasing under the variatipn ,, € V2
respectively. That is to say, for € A andy such thatcA;, 'y thenit holdsy € A.
In the same way, fox € A° andy such thagyA(;klmknx then it holdsy € A-.

For the necessary condition, let € JA and lety,As, ., x strictly in all their
components. Suppose that{erA(;kl,,,"knyl} > p, theny, € A. Becaused is increasing
under the variatiordy, ... .., there existg > 0 such that the Euclidean ball centered in
x, B(x,¢), is included inA, hencex ¢ 0A which is a contradiction. Analogously for
XAékl,u-,knyz and usingA¢. The sufficiency of the condition is trivial. ]
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Note that the definition of multivariate quantile set is based on the probabilities of
being in the2™ orthants inR™. If X is a random vector with continuous distribution
function then for eaclx that belongs to the-th multivariate quantile set it holds

Pr{XAékl,m,an} = p.

At this point, it is interesting a particular study about flat zones for the distribution func-
tion, see Lewis and Thompson (1981).

Proposition 2.2. Let X be a random vector with a continuous distribution function and
let Qx (p; Ok, ... x,,) for all &, ..., € V2 be the family of the™ quantile sets then

1 Ifp> % the intersection of all quantile sets is empty.

2. If =5 < p < ; the intersection of whatever + 1 quantile sets is empty for

2<k<2"—1.
Proof. Trivial O

It is also easy to show the equivariance under both location and any homogeneous
scale transformations. Note that in some situations, it is necessary to standardize the
coordinate variables, for instance when the units of measurements for different coordinate
variables happen to be different. The following step is to study the relation between
marginal quantiles and the multivariate quantile set.

Definition 2.2. Let X be a random vector and l&Dx (p, ok, ... x,) be the multivariate
guantile set, then define tipeth multivariate marginal quantile vector under the variation
Ok, .k » denoted byy(p, &, ... x, ) @s the vector withi-th component

[A(p, k1)) = Q. (P) M Qx, (1 — p)*,
foralli=1,---,n.

Example 2.1. Let X be a bivariate random vector and let € (0, 1) then there are
four multivariate marginal quantile vectors, that is to sayp, dp0) = (Qx, (p), @x,(p)),
a(p, 010) = (@x,(1-p), @x, (), aA(p, 611) = (@x, (1-p), @x,(1—p)) andq(p, do,1) =
(QX1 <p>7 QX2<1 - p))

Theorem 2.1. Let X be a random vector with continuous distribution function strictly
increasing in all its components, then it holds

lim I1;(x) = [a(p; Ok, )] (1)

Ty — O,
i F
X € Qx (P, Oky )

wherell, is the function which maps theth component.
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Proof. Letx € Qx(p, 0k, ... x,,) and
y = (Ofk17"'ayj7"'7akn)>
wherex; Ay, y; strictly. By Proposition 2.1 it holds

PHXAs,, .0, Y} = PH{X;As 5} > p,

thus |
Qx,(p) <z;  ifk;=0,
Qx,(1—p)>x;if kj =1

Hence under the assumptions of the distribution function it holds 1. O

Note that thep-th multivariate marginal quantile vectay(p, d, ... x,. ), is ordered re-
spect to quantile set under variatiég ... 5, that is to say

Vx € Qx(p, Oy k) = d(p, 5k1,---7kn)A5k1,“,,§nX-

The one-dimensional projections of the multivariate quantile set tend to the univariate
guantiles for each component. This last asymptotic property is referred to definition of
spatial quantile given by Abdous and Theodorescu (1992) and Chaudhuri (1996) for the
city block norm as follows

A(P; Oy, k) = ATG Qigﬂgn E{®(u,X - Q) — ®(u,X)},
whereu is defined as
u; = 2 (pl_ki(l —p)k"') -1, Vi=1,---.n,
and®(u,t) =|| t |1 + < u,t >. Note that whemp = 1/2 it holds the spatial median.

Example 2.2. Let X be a bivariate random vector with independent components which
come from an exponential distribution with parameter= 1 and letp;, p, such that

p1 < 1/2andp, > 1/2. We show in the Figure 1 (a) and (b) all bivariate quantile sets for
p1 andp, respectively. For instance, the points which belong)te(p, 41 o), denoted as

010 In the picture, they accumulate the same probability in the fourth orthant sense, that
is to say, the probability RiX A, ox} = p for all x that belong to this level curve. Note
that the level curves tend to the multivariate quantile marginal vector. The separation
between each curve and the asymptotic lines is referred to a well known multivariate
property denoted as concordance, see Shaked and Shanthikumar (1994).

To conclude this section we provide a characterization of the multivariate quantile sets
through the univariate conditional distributions.

Definition 2.3. Let X be a multivariate random vector and lata multivariate vector
with components; € (0,1), fori = 1,---,n. Then define the quantile curve under the
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Figure 1: Bivariate Quantile Sets.

A
variation d, .., € V2 and under the permutation;, .., € II,, denotedd(d, =, u) as the
AN A\
vector(q; (u1),---,4, (u,)) where each component is given as

G, (uiy) = Qx, (1),

A

4, (u;,) = Qx (ui, )

inl _n1 A
! X;. A i (wg .
MF (X Ak T ()

AN N
Note thatg;, (u,;,) corresponds to thg-th component of the vectsr(d, 7, u). The
above definition is referred to the univariate quantiles for conditional distributions.

Theorem 2.2. Let X be a multivariate random vector with distribution function abso-
lutely continuous and strictly increasing in all its components. The multivariate quantile
set@x(p, 0k, ..k, ) IS characterized through the quantile curve under the same variation
and whatever chosen permutation, that is to say

x € Qx(p, 0k, .. x,) ifand only ifdu € (0,1)", 5 € (0,1)", where
/\ .
X = Q((Skl’.“,kn, TCiqoeesip s 11), with

wj = (8;) (=B, Vj=1,---n, and [] 8 = p
j=1
Proof. The necessary condition. By the assumptions of the distribution function it holds

Vx € Qx () Ory, k) = PH{XA;, ., X} =D,

thus
p — PI’{XZIA,C” 'ril} s Pr{in |ﬂ?;11(XijAkijmij) Aklnxln},
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hence
B = PHX;, |ﬂ§_=11(X’ijAkijxij) Akizxiz}> Vi=1,---n.

Note there do not exist flat zones for the distribution function. We only have to take
u e (0,1)"as

wg, = (Bi,) (1= B;,)kn,

then

AN

i, (u“) = QXZ'I (ull) = Tiy,

. :

4, (u,) = Qx, | (ui,) = i,

ﬂj=1 (ij Akij qu (Uzj )

The sufficient condition is easy to prove under the properties of the distribution function.
O

Note that in the above conditions, the veatois given through the equation

with u; € (0,1), fori = 1,---n. The characterization depends on the chosen permuta-
tion, so for each variation there exist different ways to describe the same multivariate
guantile set. This property can be useful for distributions which have different relevant
components.

Example 2.3.LetX be a bivariate random vector and 1&f, € V3. By Theorem 2.2 we
obtain the level curve for the distribution function through the conditional distributions.
We have two characterizations, one for each permutation. For the permutatioit
holds

Qx(p; do,0) = {(Qx, (u), QXalx <0y, () (p/u)) = Vu>p}

and for the permutatiom ;
Qx(p:60.0) = {(Qxilxyzay, ., /1), Qxo(w)) © Vu > p}

Note that for random vectors with independent compon@st&, dx, ... ,, ) iS charac-
terized through

(QXl(ul)a"'aQXn(un))v 0< u; < 1= 17"'”7

where[ T (u;)' 7% (1 — w;)* = p.
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3 The Bivariate Central Region

The definition of multivariate quantile sets lead us to define a new concept of central

region. In the bivariate case, the four level curves provide five regions in the plane as a
generalization of the three regions for the univariate interquantile interval. Obviously, we

are interested in the region among all level curves.

Definition 3.1. Let X = (X}, X,) be a bivariate random vector and letc [1/2, 1].
Then define the central region, denoted(p), as follows

Ox(p) = {x € R : Pr{X Ay, , X} <p, Vo, € V3]

Let Z be areal random variable, they (p) is a generalization of the real interquantile
interval in the following way

Qz(p) ={z: Qz(1 —p) <z < Q;(p)}

whereQ? (p) = sup{z : F(x) < p}. Itis easy to show that the central regions are ordered
by inclusion, that is to say, fgr andq such that) < p < ¢ < 1thenQx(p) C Qx(q).
Note that the shape of the central region is not a priori chosen thus it can be applied
for symmetrical and non-symmetrical distributions. In the general dagép) is not a
bounded region. Otherwise, we will provide some remarks to bound the central region.
Now we provide a result concerning the accumulated probability. From now on, we will
consider distribution functions absolutely continuous and strictly increasing in all their
components, and we call this regularity conditions.

Obviously, the central region corresponds to the points among all level curves. For a
more operative definition, we describe the central region as following

Qx(p) = U Ax,(p) U Tx (Oky k25 P) (2)

Oky ko

whereA x, (p) corresponds to the region among the marginal quantiles
Ax,(p) = {x € R*: Qx,(1 —p) < 2 < Qx,(p)}
andYx (ox, x,, p) corresponds to the region
Tx (0ky kos D) = {X € R%: A(0ky ks P)As,,, ,, x @Nd PEX Ay, | x} < p} :

Since the Proposition 2.1, it holds tHék (Jx, x,, p) is referred to the points between the
p-th multivariate marginal quantile vector and the multivariate quantile set

TX(ékl,kwp) - {X € Rz : q(ékl,kwp)A(skl,kQX andEly € QX(pa 6k1,k2)7 XA(Skl’kQY} )

and from the Theorem 2.2, using the permutatign, we obtain thail'x (0, «,, p) can be
characterized as

AN
Yx (Oky ko D) = {X eR*: A(Oky ks P) Dby, 4, X5 ANAT2 A, [A (08 15 T1 2, u)]2} )
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whereu; = Fy, (z;) and3; = P{X A, 21}, SOuy = (p/B1) %2 (1 — p/B1)*=.
Note that the Equation 2 it is easy to show by inclusion. Observe that

Ax, () () Tx(Os 0o 1) = D,

fori = 1,2 and for alld, 5, € V2. It holds too that

Tx(5k'1,k'27p) ﬂ TX(ékl,kwp) =0

for all (K}, k5) # (K1, k2).

In respect to the spatial quantiles, th¢h multivariate marginal quantile vector be-
longs to the central region for all variation, hence the central region is centered around the
spatial median.

Connecting with other definitions, it is easy to show the interquantile ball provided by
Chaudhuri (1996) foff . ||; as

1(@Q@x,(r1), @x,(r2)) : | 2r =1 [+ [2rg =1 [< 1},

it is included inQ2x (p) for » = 2p — 1. On the other hand, the notion of trimmed region,
defined as the intersection of all half-planes whicprobability measure is at least equal

to p, Nolan (1992), it is obviously included 01x (p). Finally, certain properties referred

to median balls defined by Averous and Meste (1997), are also possible for symmetrical
distributions, but in general the relation in this sense it is not so clear.

Theorem 3.1.Let X be a bivariate random vector and |&t be its distribution function
under the regularity conditions and I¢tbe its density function. Lete [1/2,1) then the
accumulated probability is

Pr{X € Ox(p)} = 4p(1 + 1n(]19)) — 34+ Rx(p),

where R (p)
! . G2(p/1) 9
Z(_l) 1/ [ Pr{XlAklxl}a_fXQ‘?ﬁAk - (:E2>dl’2dx1,
k1=0 @Ay, 21 J 92(1—p/B1) 1 1

with ¢; = [q(p, dx, ,)]; fori = 1,2 and

A A
q2() = [q (5k1,k2a 1,25 u)]Qa

for u; = F’X1 (:L’l) andﬁl = Pr{XlAklfL'l}.

Proof. Since 2 we can share the study of the probability in different regions. At first we
obtain the probabilities of being i x (dx, ,, p). Since the expression 3 it holds

PF{X € Tx(ékhkz,p)} = // dFXl,X2<x1>x2>
Yx (Oky ko D)



150 Austrian Journal of Statistics, Vol. 31 (2002), No. 2&3, 141-156

/ / dFx, x,(71,72)
IRAVIE SRR VAVIS: - PAVAS G2 (uz)

/ / del,XQ(l‘l,lé)
Q1 Ak 71 J 2R, q2(u2

S

1]
- / / dFX17X2(x1>x2)'
AVAVSE SRRV 2 YAVRNG
2

Whereu, = (p/31)%2(1 — p/31)*2. Itis easy to show that

2] = PH{q1 Ay, X1, XoAg,q0}-

Furthermore, no more that represents

- AX1 <p> U AXZ <p> - U {X e R*: q(p, 5k17k2>A5k1,knx}7

k1,k2
it holds that
— Z Pr{qlAlel, XQAk;QQQ} -+ PF{X - AX1 (p) U AXQ(p)} =4p — 3.
k1,k2

On the other hand, since the following expressions

f(ﬂ?l,ﬂfg) f (J} ) . 0/01’2Pr{X1Ak1x1,X2 < 1’2}
) 2|x1A, @ 2) — )
le(.Zl) Xalx, k171 PI’{XlAklfL'l}

it is easy to show that

fXQ\X1=x1 <I2> =

1Pr{X Ak1$ } 0
Frtsyon (@2) = Fratag, o (@2) + (F) =200 e frar, o, (22):

So if denotely, I, the intervalsy; Ag, x4 andeAkﬁg(uQ) respectively, it holds

[1] = le(xl) fX2|X1:11 ($2)d$2dx1
I I

— fx, (1) fX2|X1Ak1$1(m2)da:2d:c1
Il 12

J

g

(3]
0
+ //(_1)k1Pr{XlAklxl}a—fX2|XlAk zl(l’g)dl’gdl'l.
I, JI2 1 1

J/

g

(4]
We obtain thaf3] = pln( ), for all &y, x, € V3. In addition,

— o

/ Ix, (561)/ (fxg\xlzzl (z2) — fXQ\XlAk - (5‘32)) drydry =0,
1Ak, 1 !
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so if we denoté4]|= RL(g, 1,, p), it easily holds that

Z RL((S/ﬂ,kwp) = RX(p)'

k1,k2

Note that in the general case we always have the following inequality
PH{X € Qx(p)} > PH{X € Ax,(p)} =2p — 1,

as a generalization of the accumulated probability in the real interval quantile. On the
other hand, whep tends tol it holds thatRx (p) tends ta0.

Corollary 3.1. Let X be a bivariate random vector with independent components, then
Rx(p) = 0.

Corollary 3.2. Let X be a bivariate random vector with independent components and
denoteLx (p, ok, 1,) the lateral region

Lx(p, 5k17k2) = {X e R?: PF{XA(sliQX} > p},

then
PF{X € Lx<p’ 5/€1,/€2>} =1 —p(l + hl(l/p)). (4)

Remark that it would be interesting to study the necessary conditioRx{¢p) equal
to 0. Several empirical examples show that the #atd p) modifies the probability in the
central region and it depends on properties for the distribution function.
Becausé)x (p) is not a bounded region we can not directly use it for detecting outliers,
in this way some considerations for outliers in both component&ndzx, are possible.
It would be interesting to bound the central region through parallel lines te Q) x, (p),
r1 = Qx,(1—p), rs = Qx,(p) andzy, = Qx, (1 — p). Note that in the last sense we keep
the shape of the central region. Alternatively, because the shape is not a priori chosen,
discussions related to skewness, dispersion, concordance and dependence are easier to
show in a descriptive way.

3.1 A Note on the Dispersion Study

A concept of bivariate dispersion can be generalized as the classical univariate ordering
of quantiles more widely separated studied by Lewis and Thompson (1981)X bet

a bivariate random vector and 18 (p), (2x(¢) the central regions fof/2 < p < ¢ <

1. Intuitively, the concept of dispersion is associated to “the distance” betfugén)
andQx(q). Note that this can be obtained through the distance among the multivariate
guantiles, that is to say, among the different level curves for each variation. Without loss
of generality, we consider the variatiop, and letu such thatl /2 < p < ¢ < u < 1.

Then from Theorem 2.2, the poirﬁﬁéo,o, 12, (U, p/u)) anda(do,o, m 2, (u, ¢/u)) belong
to @x(p, do0) andQ@x (g, dp o) respectively. Observe that the distance

AN A
| d(0,0, 1,2, (w, p/u)) — d(do,0, 71,2, (1, g/w)) |2,
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denoted byD-,x, represents the separation between quantiles for the conditional distribu-
tion XQIXISQXI ) Otherwise, using the permutatiaf, to describe the level curves and
letv such thatl /2 < p < ¢ < v < 1, it holds that

Dix =| QXHXzSQxQ(w(q/U) - QXI\XQSQ;Q(U) (p/v) |-

In the same wayD;x represents the separation among quantiles for the conditional dis-
tribution X, |X2§QX2 (v)-

Definitively, if we have two bivariate random vectaXsandY, we compare quantiles
more widely separated for the conditional variables. This one can be interpreted as dis-
persion in the orthant defined under the variatign,, € V3. We see in the Figure 2 that
the multivariate quantiles under the variati@y, are more separated for the distribution
Y than forX, that is to sayDy > Dix andDyy > Dox.

Qxq (W) \ Dlx\ Qy, (v
QX(Q150,0) ¥ Qv (g,%0.0)
Daox Doy
T Qx(®%0) | ——— Qv (0 d0.0)
Qx4 () Qyy ()
(a) Dispersion for X. (b) Dispersionfor Y.

Figure 2: Quantiles more widely separated.

4 An Example of Estimation

LetX;, i = 1,---,n benindependent and identically distributed copieXof= (X1, X5)
and denote the empirical distribution function{oX; : i = 1,---,n} by F™ and the

corresponding — th marginal distribution b)E("), ¢ = 1,2. From Theorem 2.2, using
the permutationr; », it holds

Qx(p, d0,0) = {(QXl (U),QX2|X1§QX1<H) (p/u)): Vu> p},
Ox(p,01.0) = {(Qx, (W), Qaix, gy, /(1= W) : Vu<1=p},
Qx(p:d01) = { (@, (), Qs e o (L = P/0) = Vu>p},

( (

Qx(p,01,1) = {(Qxl u),QX2|X12QX1<u) 1—p/(1—=w))): Yu<l1 —p} )

Obviously, the estimating method will be based on the estimation of the conditional cu-
mulative distribution function and of the conditional quantiles. In this paper is not our pur-
pose to show all asymptotic properties related to estimate the conditional quantiles. From



J.M. Ferrandez-Ponce and A. 8tez-Llogéns 153

this one, we will use the well known estimating method through the empirical distribution.
Without loss of generality we consider the variatipn € V3. Let{zy;: i=1,---,m}

be a set of real values which belong to the support of the marginal distribiticand

let u; = Fl(")(a:u), fori = 1,---,m, the estimation of the accumulated probability. We

A
denoteq)y, |, ., = (.) the estimator of the conditional quantile defined in termgr6p
andF™. Then, the set

@x (p, d0,0) = {Pi = (21, éxzmgm (p/ui)) = u; > p}

provides the estimation of a family of points @x(p, o). Note that to estimate the
support of X, we take the points,; = x,(; as thei-th ordered statistic of the marginal
distribution X, that is to sayr;;) < --- < x(,). Note that whem — oo we have
guaranteed the convergence. We also represent the lines connecting theppaints
pi+1 to interpret easier the different regions.

To illustrate the estimation with a real data cloud, we provide an example for two
classical variables associated to applied sciences in the environment. It is widely studied
the atmospheric concentration levels in an urban area. For this purpose, we consider the
sulfur oxide G0O,) and nitrogen oxide ¥ O,) concentration level in the lowest latitude
of the south of Spain. The observations were supplied by the corresponding local gov-
ernment of the council of &liz, Spain. The contamination variablex), and NO,,
were measured each day from a monitoring network system during 1994 and expressed in
mg/m3. Although there are a lot of factors they should be considered as the wind speed
or rain fall, our purpose is to obtain a collection of points which represent the population.
We show in the Figure 3 the dispersion diagram where the sulfur oxide is in the horizontal
axis and the nitrogen oxide is in the vertical axis.
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Figure 3:(S0,, NO,,)

The relationship between the marginal distributions implies the shape of the central
region. Figure 4 (a) represents the central regiopfer0.5. Observe that there are points
in Qx(0.5) with a largeN O, component, so this bivariate distribution is more dispersed
in this sense. In Figure 4 (b) and 5 (a) we represent the central regionps=$010.6
andp = 0.7. Under the assumption of independent components, using 4, we obtain that
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the probabilities of the lateral regiohx (p, ok, ,). for p = 0.5, p = 0.6 andp = 0.7 are
15.34%, 9.35% and5.03% respectively for all variations. Note that these last probabilities

do not correspond with the empirical probabilities. The lateral region for the variations
010 anddy; accumulate an inferior percentage than the lateral regions for the variations
do,0 anddy ; -this analysis result of performing a hypothesis test concerning to a simple
proportion- thus there exist a relation of dependence between the contaminants with a
positive correlation. We also represent in Figure 5 (b) the central region fer0.5,

p = 0.6 andp = 0.7 simultaneously. We can see that there are directions where the
conditional quantiles are more separated than other ones. It is also interesting to show
the stability of the central region to existence of outliers. Finally, the central region is
centered around the spatial median thus we always obtain a representative data set of the
population which can be interpreted as a trimmed region.
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Figure 4: Central Regions.
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