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FINDING THE PRINCIPAL POINTS
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Abstract. The p-principal points of a random variable X with finite
second moment are those p points in R minimizing the expected squared
distance from X to the closest point. Although the determination of
principal points involves in general the resolution of a multiextremal
optimization problem, existing procedures in the literature provide just
a local optimum. In this paper we show that standard Global Opti-
mization techniques can be applied.
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1. Introduction

Given a random variable X with finite second moment, consider the function
Φ : Rp −→ R,

Φ(c1, . . . , cp) = E

[
min

1≤i≤p
(X − ci)2

]
.
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A p-uple c∗ = (c∗1, c
∗
2, . . . , c

∗
p) such that

Φ(c∗1, . . . , c
∗
p) ≤ Φ(c1, . . . , cp) ∀(c1, . . . , cp) ∈ Rp (1)

is said to be a set of p-principal points of X [3, 4, 9, 11,12,14–17].
Observe that, for p = 1, Φ becomes the classical expected squared distance,

thus the unique 1-principal point is the mean of X . This shows that the concept
of p-principal point constitutes a generalization to p points of the mean, thus
representing a natural way to partition a population into p clusters (according to
the attraction regions), see [10].

The literature addressing computational aspects of the problem of determina-
tion of principal points is rather scarce, and mainly limited to the statement of
sufficient conditions under which the nonlinear equation ∇Φ(c) = 0 has as unique
solution the principal points of X [10, 13,17].

This requires assumptions as strong as existence and symmetry of the density
function of X , conditions which are unlikely to hold just when the use of principal
points is most natural, namely, whenX is a mixture of p populations [10]. However,
as shown in this paper no assumptions on X other than the existence of its second
moment are required in order to solve the problem by standard global optimization
procedures.

The rest of the paper is structured as follows. In Section 2 we state some
general properties on the function Φ. In Section 3 we show how to construct a
bounded polyhedron in Rp which is known to contain an ε-optimal solution. This
polyhedron can be used as starting region for a Branch and Bound procedure.
Some conclusions are given in Section 4 to end the paper.

2. General properties

Finding p-principal points amounts to finding an optimal solution to the opti-
mization problem (PP ),

inf
c∈Rp

Φ(c). (PP )

In this section we address the important, though non-trivial question of existence
of principal points, i.e., the attainment of the infimum of (PP ). Since the usual
sufficient conditions for existence of optimal solutions, namely the compactness of
the level sets {c ∈ Rp : Φ(c) ≤ α}, do not hold, an ad-hoc analysis is needed.
To do that we start showing that Φ can easily be expressed as a d.c. function
(difference of convex functions).

Property 2.1. Let f : Rp −→ R be the convex quadratic function defined as
follows

f(c1, . . . , cp) =
p∑
i=1

c2i . (2)



FINDING PRINCIPAL POINTS 317

Then f −Φ is a convex function and Φ = f − (f −Φ) defines a d.c. decomposition
of Φ.

Proof. Since

p∑
i=1

(x− ci)2 − min
1≤i≤p

(x− ci)2 = max
1≤i≤p

∑
j 6=i

(x− cj)2,

it follows that

f(c1, . . . , cp)− Φ(c1, . . . , cp) =
∫

max
1≤i≤p

∑
j 6=i

(x− cj)2 dF (x)

which is a convex function. Thus, the results holds by observing that f is a convex
function.

For any α, β ∈ R ∪ {±∞}, α ≤ β, let S[α,β] denote the polyhedron

S[α,β] = {(c1, . . . , cp) ∈ Rp : α ≤ c1 ≤ c2 ≤ . . . ≤ cp ≤ β}·

Observe that S[α,β] is bounded iff α > −∞ and β < +∞. Moreover, when
−∞ < α < β < +∞, S[α,β] is a simplex which, rewritten in terms of its extreme
points, leads to the expression

S[α,β] =

{
p∑
i=0

λiv
i : λi ≥ 0 ∀i,

p∑
i=0

λi = 1

}
, (3)

where

v0 = (α, α, . . . , α, α)
v1 = (α, α, . . . , α, β)

...
...

...
vp = (β, β, . . . , β, β).

Due to the symmetry of Φ in its arguments, it follows:

Proposition 2.1. One has:

inf
c∈Rp

Φ(c) = inf
c∈S[−∞,+∞]

Φ(c).

This result can be strengthened when X has compact support. Indeed, one has:

Proposition 2.2. If X has compact support [m,M ], then S[m,M] contains a set
of p-principal points.
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Proof. For any c = (c1, c2, . . . , cp) ∈ S[−∞,+∞], define c∗ = (c∗1, . . . , c
∗
p) ∈ S[m,M]

as

c∗i =

 m, if ci < m
M, if ci > M
ci, else.

By construction one has

(ci − x)2 ≥ (c∗i − x)2 ∀x ∈ [m,M ], ∀i = 1, 2, . . . , p

thus
min

1≤i≤p
(ci − x)2 ≥ min

1≤i≤p
(c∗i − x)2 ∀x ∈ [m,M ].

Since X has zero mass outside [m,M ], one has

Φ(c) =
∫

[m,M]

min
1≤i≤p

(ci − x)2 dF (x) ≥
∫

[m,M]

min
1≤i≤p

(c∗i − x)2 dF (x) = Φ(c∗).

This shows that

inf
c∈S[−∞,+∞]

Φ(c) = inf
c∈S[m,M]

Φ(c). (4)

But S[m,M] is compact, and, by Property 2.1, Φ continuous on compact sets, thus
there exists some c̄ ∈ S[m,M] such that

Φ(c̄) ≤ Φ(c) ∀c ∈ S[m,M],

then, by Proposition 2.1 and (4),

Φ(c̄) ≤ Φ(c) ∀c ∈ Rp.

The following example illustrates a simple case of compact support of X and shows
how local search methods might yield suboptimal solutions.

Example 2.1. Let X be the discrete random variable with support at points xi
and probability mass pi, i = 1, 2, . . . , 9, given in Table 1. Figure 1 depicts a detail
of the level sets and graph of the corresponding Φ for two principal points, clearly
showing the multiextremal character of Φ.

Following Proposition 2.2 the set S[0,20] contains a set of principal points and
consequently, could be used as starting region of a global optimization method.
Instead of this, we build a direct AMPL code [5] for solving (PP ), taking as
starting point in the local-search procedure a random pair in (0, 20)× (0, 20), as
described in the Appendix (Tab. 2).
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Table 1. X with mass at 9 points.

i 1 2 3 4 5 6 7 8 9
xi 0 2 3 8 10 15 16 18 20

pi
1
15

1
15

1
15

4
15

4
15

1
15

1
15

1
15

1
15

Figure 1. Level curves and graph of Φ.

The solution proposed by AMPL as optimal is (9.733, 9.733) (which is not even
a local minimum!) with Φ(9.733, 9.733) = 30.196. However, it is easily checked
that the 2-principal points for this problem are (7, 17.25), with Φ(7, 17.25) = 9.65.

A Branch and Bound algorithm was implemented using a bisection subdivision
[7, 8], and replacing (2), the convex component of the objective function, by its
linear minorant, as bounding scheme, [8]. It required 280 iterations to detect
that an ε-optimal solution (ε = 0.0001) had been found: (6.99707, 17.25098), with
Φ(6.99707, 17.25098) = 9.650006552.

3. Existence and localization of ε-optimal solutions

It has been shown in Section 2 that (PP ) admits an optimal solution for ran-
dom variables with bounded support. This result can be extended for unbounded
supports. First, a technical lemma is given.

Lemma 3.1. One has:

lim
N→+∞

∫
(−N,N)

min{(x+N)2, (x−N)2} dF (x) = +∞. (5)
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Proof.∫
(−N,N)

min{(x+N)2, (x−N)2} dF (x) ≥
∫

(−N2 ,N2 )

min{(x+N)2, (x−N)2} dF (x)

≥
∫

(−N2 ,N2 )

(N/2)2 dF (x)

= N2/4P [X ∈ (−N/2, N/2)],

thus

lim
N→+∞

∫
(−N,N)

min{(x+N)2, (x−N)2} dF (x)

≥ lim
N→+∞

N2/4P [X ∈ (−N/2, N/2)] = +∞.

Proposition 3.1. There exists a set of p-principal points.

Proof. If X has bounded support, the result follows from Proposition 2.2, so that
we assume that X has unbounded support.

Since Φ is bounded below

∃ inf
c∈S[−∞,+∞]

Φ(c) = I ∈ [0,+∞). (6)

To show that an optimal solution exists, suppose that, on the contrary, such infi-
mum is never attained. Hence,

I < Φ(c) ∀c ∈ S[−∞,+∞]. (7)

Hence, by (6) and (7), there exists some unbounded sequence {cn}n ⊂ S[−∞,+∞]

such that Φ(cn) converges to I. Let cn0 = −∞ and cnp+1 = +∞.
By construction of S[−∞,+∞], there exist i0, i1, with 0 ≤ i0 < i1 ≤ p + 1 such

that
cni 7−→ −∞ ∀i ≤ i0
cni 7−→ +∞ ∀i ≥ i1
{cni }n is bounded ∀i, i0 + 1 ≤ i ≤ i1 − 1.

Moreover, since for each i ∈ {i0 + 1, . . . , i1 − 1} the sequence {cni }n is bounded,
it has some convergent subsequence. Without loss of generality we assume that
each {cni }n (i = i0 + 1, . . . , i1 − 1) is convergent.

Two cases may then happen,
1. {cn}n has at least one component bounded, i.e.,

i0 < i1 − 1; (8)
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2. all the components of {cn}n diverge, i.e.,

i0 = i1 − 1. (9)

We consider separately the two cases above. Suppose first that (8) holds. Then,
for any n one has

Φ(cn) ≥
p∑
j=1

∫
(
cn
j−1+cn

j
2 ,

cn
j

+cn
j+1

2 ]

(x− cnj )2 dF (x)

≥
i1−1∑
j=i0+1

∫
(
cn
j−1+cn

j
2 ,

cn
j

+cn
j+1

2 ]

(x− cnj )2 dF (x).

Denote by c∗ ∈ Rp the vector with components

c∗i =

 limn→+∞ cni0+1, if i ≤ i0 + 1
limn→+∞ cni1−1, if i ≥ i1 − 1
limn→+∞ cni , else.

It then follows that

I = lim
n→+∞

Φ(cn) ≥ lim
n→+∞

i1−1∑
j=i0+1

∫
(
cn
j−1+cn

j
2 ,

cn
j

+cn
j+1

2 ]

(x− cnj )2 dF (x)

≥ Φ(c∗),

which contradicts (7). Hence, the result holds.
Suppose now that (9) holds, thus any component of {cn}n diverges. Hence,

by (5), for any M > 0, there exists N > 0 such that∫
(−N,N)

min{(x+N)2, (x−N)2}dF (x) > M.

Moreover, given N > 0, there exists n0 ∈ N such that, for any n ≥ n0,

cni < −N ∀i ≤ i0
cni > N ∀i ≥ i0 + 1.

Hence,

Φ(cn) ≥
∫

(−N,N)

min
1≤i≤p

(x− cni )2dF (x)

≥
∫

(−N,N)

min{(x+N)2, (x−N)2}dF (x) > M,
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thus

I = lim
n→+∞

Φ(cn) = +∞,

which contradicts (6). Hence, the result holds.

For the case in which X has zero mass outside an interval [m,M ], we have
shown in Proposition 2.2 that the search of an optimal solution can be reduced
to the bounded polyhedron S[m,M]. Now we address the general case and show
how to explicitly construct a bounded polyhedron in Rp of the form S[L,U] that
contains an ε-optimal solution cε to (PP ).

The following result is easily shown:

Lemma 3.2. One has:

• the function R 7−→
∫

[R,+∞)
(x−R)2dF (x) is nonincreasing, and

lim
R→+∞

∫
[R,+∞)

(x−R)2dF (x) = 0; (10)

• the function R 7−→
∫

(−∞,R]
(x−R)2dF (x) is nondecreasing, and

lim
R→−∞

∫
(−∞,R]

(x− R)2dF (x) = 0. (11)

Lemma 3.2 implies that, for any ε1, ε2 > 0 one can construct real constants L ≤ U
such that ∫

(−∞,L]

(x− L)2dF (x) ≤ ε1 (12)∫
[U,+∞)

(x− U)2dF (x) ≤ ε2. (13)

Proposition 3.2. Given L ≤ U verifying (12)-(13), there exists c̄ ∈ S[L,U] which
is an (ε1 + ε2)-optimal solution of (PP ).

Proof. One just needs to show that, for any c ∈ S[−∞,+∞], there exists c̄ ∈ S[L,U]

such that

Φ(c̄) ≤ Φ(c) + ε1 + ε2.

To show this, we first show that for any c ∈ S[−∞,+∞] there exists ĉ ∈ S[−∞,U],
such that

Φ(ĉ) ≤ Φ(c) + ε1. (14)



FINDING PRINCIPAL POINTS 323

Let c = (c1, c2, . . . , cp) ∈ S[−∞,+∞]. If cp ≤ U , we are done (take ĉ = c), thus we
can assume that cp > U . Let c0 = −∞, cp+1 = +∞ and let i∗ be given by

i∗ = max {i : ci ≤ U},

which, by assumption, verifies i∗ < p.
Let ĉ ∈ S[−∞,U] be given by

ĉi = min{ci, U} =
{
ci, if i ≤ i∗
U, else.

Then,

Φ(ĉ) ≤
p∑
i=1

∫
(
ci−1+ci

2 ,
ci+ci+1

2 ]

(x− ĉi)2dF (x)

=
i∗∑
i=1

∫
(
ci−1+ci

2 ,
ci+ci+1

2 ]

(x− ci)2dF (x)

+
p∑

i=i∗+1

∫
(
ci−1+ci

2 ,
ci+ci+1

2 ]

(x− U)2dF (x)

= Φ(c)−
p∑

i=i∗+1

∫
(
ci−1+ci

2 ,
ci+ci+1

2 ]

(x− ci)2dF (x)

+
∫

(
ci∗+ci∗+1

2 ,+∞)

(x− U)2dF (x).

Then, either

ci∗ + ci∗+1

2
> U (15)

or

ci∗ + ci∗+1

2
≤ U. (16)

If (15) holds, then by (13),

Φ(ĉ) ≤ Φ(c) +
∫

(
ci∗+ci∗+1

2 ,+∞)

(x− U)2dF (x) ≤ Φ(c) + ε1,

and (14) holds.
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On the other hand, if (16) holds, then

Φ(ĉ) ≤ Φ(c)−
∫

(
ci∗+ci∗+1

2 ,U]

(x− ci∗+1)2dF (x)

−
p∑

i=i∗+2

∫
(
ci−1+ci

2 ,
ci+ci+1

2 ]

(x− ci)2dF (x)

+
∫

(
ci∗+ci∗+1

2 ,U]

(x− U)2dF (x)

+
∫

(U,+∞)

(x− U)2dF (x).

By definition of i∗, ci∗ ≤ U < ci∗+1. Hence, since by (16), ci∗+ci∗+1
2 ≤ U , it follows

that, for any x ∈ ( ci∗+ci∗+1
2 , U ],

|x− U | = U − x ≤ ci∗+1 − x = |ci∗+1 − x|

thus, ∫
(
ci∗+ci∗+1

2 ,U]

(
(x− U)2 − (x− ci∗+1)2

)
dF (x) ≤ 0.

Hence

Φ(ĉ) ≤ Φ(c) +
∫

(U,+∞)

(x− U)2dF (x) ≤ Φ(c) + ε1,

and (14) holds.
Now, let c̄ ∈ S[L,U] be given by

c̄i = max {L, ĉi}·

A similar reasoning shows that

Φ(c̄) ≤ Φ(ĉ) + ε2,

thus
Φ(c̄) ≤ Φ(c) + ε1 + ε2,

and the result holds.

Proposition 3.2 implies that standard Branch and Bound methods [8], can be
used taking S[L,U] as starting set to optimize the d.c. function Φ.

Appropriate values L, U can be found by means of Lemma 3.2. Fortunately,
this is not hard for most usual distributions, as shown in [1]. As a simple example,
one has:
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Proposition 3.3. If X is a normal variable with mean µ and variance σ2, then
the set S[Lε, Uε], given by

Lε = µ− σ
√

2 log
σ2

ε

Uε = µ+ σ

√
2 log

σ2

ε

contains an ε-optimal solution of (PP ).

Proof. For any U ≥ µ, one has∫
[U,+∞)

(x− U)2dF (x) =
∫

[U,+∞)

(x− U)2 1√
2πσ

e−
(x−µ)2

2σ2 dx (17)

= σ2

∫
[0,+∞)

y2 1√
2π

e−
(σy+U−µ)2

2σ2 dy

= σ2

∫
[0,+∞)

y2 1√
2π

e−
σ2y2+(U−µ)2+2σy(U−µ)

2σ2 dy

= σ2e−
(U−µ)2

2σ2

∫
[0,+∞)

y2 1√
2π

e−
y2
2 e−

y(U−µ)
σ dy

≤ σ2e−
(U−µ)2

2σ2

∫
[0,+∞)

y2 1√
2π

e−
y2

2 dy

= σ2 1
2

e−
(U−µ)2

2σ2 . (18)

Let Uε = µ+ σ
√

2 log σ2

ε . Then,

|Uε − µ|√
2σ

≥
√

log
σ2

ε
,

thus
e−

(Uε−µ)2

2σ2 ≤ e− log σ2
ε =

ε

σ2
,

which this implies that ∫
[Uε,+∞)

(x− Uε)2dF (x) ≤ ε

2
·

Similarly, if one defines Lε = µ− σ
√

2 log σ2

ε , it follows that∫
(−∞,Lε]

(x− Lε)2dF (x) ≤ ε

2
,

and by Proposition 3.2, the result follows.
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In [1] we have found values Lε and Uε for other random variables such as gamma,
Student’s t or Snedecor’s F . In particular if X is a gamma variable with density

1
Γ(p)

apxp−1e−ax, x ≥ 0

where a > 0 and p ≥ 1, then

Lε = 0, Uε =
√

2Γ(p+ 2)√
εa2Γ(p)

· (19)

Moreover, if the distribution of X is a mixture of (simpler) random variables,
one can construct the values L,U from the values Li, Ui corresponding to the
distributions involved in the mixture. This may be of interest for important cases
such as the mixture of Erlang laws or more generally Cox distributions [2, 6],
commonly used to model queuing systems [6].

Indeed, one has:

Proposition 3.4. Suppose that the distribution function F is a mixture of distri-
butions functions F1, . . . , Fn. Let L1 ≤ U1, . . . , Ln ≤ Un be scalars such that∫

(−∞,Li]
(x− Li)2dFi(x) ≤ ε1, i = 1, , . . . , n∫

[Ui,+∞)

(x− Ui)2dFi(x) ≤ ε2, i = 1, , . . . , n.

Define L = mini=1,... ,nLi, U = maxi=1,... ,n Ui; then the set S[L,U] contains an
(ε1 + ε2)-optimal solution to (PP ).

Proof. First, observe that F =
∑n
i=1 αiFi(x) for some nonnegative scalars α1, . . . ,

αn,
∑n
i=1 αi = 1.

∫
(−∞,L]

(x− L)2dF (x) =
∫

(−∞,L]

(x− L)2d

(
n∑
i=1

αiFi(x)

)

=
n∑
i=1

αi

∫
(−∞,L]

(x− L)2dFi(x).

By Lemma 3.2,∫
(−∞,L]

(x− L)2dFi(x) ≤
∫

(−∞,Li]
(x− Li)2dFi(x),
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thus∫
(−∞,L]

(x− L)2dFi(x) =
n∑
i=1

αi

∫
(−∞,Li]

(x− Li)2dFi(x) ≤
n∑
i=1

αiε1 = ε1,

and (12) follows.
A similar reasoning shows that (13) holds.

4. Concluding remarks

In this note we have shown that the problem of finding p principal points of
a random variable X can be tackled with standard tools of Global Optimization:
the objective function is d.c. (and a d.c. decomposition is available), and a simplex
known to contain an ε-optimal solution is easy to construct. This contrasts with
the literature on the field, where only local search procedures have been suggested.

5. Appendix

Table 2. AMPL code.

#
# Finding 2-principal points of a discrete variable with
# support in [LOWLIMIT,UPLIMIT]

param LOWLIMIT;
param UPLIMIT;
param SIZESUP; #size of the support
param PROBAB{1..SIZESUP};
param POINT{1..SIZESUP}; #point[i] has probability probab[i]
param P; #number of principal points sought

var C{1..P}:= Uniform(LOWLIMIT,UPLIMIT); # principal points

minimize OBJECTIVE:
sum{i in 1..SIZESUP}

(PROBAB[i] * min{j in 1..P} ((C[j]-POINT[i])^ 2));
subject to INSIMPLEX{i in 1..P-1}: C[i] <= C[i+1];
subject to INSUPPORT1: C[1] >= LOWLIMIT;
subject to INSUPPORT2: C[P] <= UPLIMIT;
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