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Abstract

In this paper we review some recent results concerning thdysof the
asymptotic behavior of viscous fluids in rough domains assgiNavier boundary
conditions on the rough boundary. Our main interest is talystihe relation
between both the adherence and the Navier boundary comdlitiothe case of
a boundary with weak rugosities. We show that the roughnetsoa the fluid as a
friction term. In particular, if the roughness is sufficigrgtrong, Navier condition
implies adherence condition. This generalizes previosiglt®of other authors.
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1 Introduction

A relevant problem in fluid mechanics is the appropriate chaf the boundary
conditions. For a viscous fluid in an open §etc R3, a well accepted hypothesis is
that if the boundary is impermeable, then the fluid adheregdetely to it. Denoting
by u the velocity of the fluid inf, this adherence condition becomes

u=0 onof. (D)

However, some other boundary conditions are often used. highsense, for
a viscous fluid governed by the Stokes or Navier-Stokes sygteith viscosity
coefficient equals one), Navier proposed the slip-frichonndary condition, see [22]:

u-v =0, T(%—pu—i—vu)zo onof, 2)
v

wherep is the pressurey is the unitary outside normal vector foon 992, T is the
orthogonal projection on the tangent space)fd and~ is a nonnegative constant.
In (2) we are assuming that the boundary is impermeable gsadhmal component
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of the velocity,u - v, vanishes 0df2), and that it exerts to the fluid a friction force
opposite and proportional to the velocity. Writing the ditpnium forces equation on
the boundary, but only in the tangential components, anatiteg by ~+ the friction
coefficient, this gives the second equation in (2).

Taking into account thapyr is orthogonal to the tangent space df, the Navier
boundary condition can be also written as

du

u-v =0, T(@V

+ wu) =0 ondf. 3)
Due to the freedom of choice of boundary conditions, a naguastion is if there

is any relationship between conditions (1) and (3). In tkisse, it was considered in

[10] a three-dimensional domaf®. with a rough boundary described by the equation

(see Figure 1)

3

x/
xg3 = —eVU <—) , V' ew, (4)

(along this paper a point € R? is decomposed as= (2/, z3) with 2’ € R?, 23 € R)
with w a bounded open set & and¥ a smooth periodic function such that

Span({V¥(2): 2’ € R*}) =R>. (5)

It was proved that if.. is bounded in energy and satisfies- v = 0 on the boundary
described by (4), then the weak limitof u. vanishes ow x {0}. So, in this case, the
Navier and adherence conditions are asymptotically etgrita This means that the
adherence condition, which is experimentally observed, Ingedue to the existence of
microrugosities.

Generalizations of this result have been obtained in [3&foon-periodic boundary
described by

x3 =0 (2'), Vi’ €w,

where®. converges weakly-to zero inWW!:°°(w) and it is such that the support of the
Young'’s measure associated¥b. contains two linearly independent vectors. Re-
mark that this last condition implies th&®. does not converge to zero it (w)?.

Our main goal in the present paper is to study the relatiowdsen the Navier and
the adherence boundary conditions in the case of weak tiggsthe article, which is
a review of the results which appear in the Ph.D. Thesis ofStidrez-Grau (see [24]),
is organized as follows

In Section 2, we study the asymptotic behavior of viscouslflim the open seb.
described by (see Figure 2)

/
Qs—{I—(I/,SCg)ELUXRZ —55LI7(I—><I3<1}, (6)
g
wherew C R? is a Lipschitz bounded open sét,c Wi’c"o (R?) is periodic of period

- 0
7' = (0,1)2, andd. > 0 satisfieslim — = 0.
e—=0 €
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We impose the Navier condition on the oscillating boundaryof periode and
amplituded. (with . < ¢) given by (see Figure 2)

/
FE—{x—(x/,xg)ewa::C3——55U7(x—>}, (7
g
and, to simplify, the adherence condition on the rest of tnenblaryo. \ T..

Remark that in our casé. = 65\11(%) converges strongly to zero i (w)
and therefore the results in [3] do not apply.

Denoting by
A= lim 6—§ € [0, +o0], (8)

e—0 g2

(the limit exists at least for a subsequence) we show

e If A\ = 400 and (5) holds, then the Navier and adherence boundary conslire
asymptotically equivalent. This extends the result olgdiim [10] ford. = ¢ to the

case when. /e tends to zero andig/s% tends to infinity.

e If A = 0, the roughness is so small that it has no effect on the linoib jam.

e If A € (0,40c0), the roughness is not strong enough to obtain the adherence
condition, but it is large enough to make appear a new fricterm. Namely, we
obtain the following Navier boundary condition in the limit

uz =0, —0su’ +~yu + M NRu' =0, onw x {0},

where R € R?*2 is a symmetric and nonnegative matrix. The new texfi
is similar to thestrange termobtained by D. Cioranescu and F. Murat in [17] for
the homogenization of Dirichlet problems in perforated doms. This case can be
considered as the general case, because it provides thetwthenes tending\ to
infinity or zero.

Related to this result, it has been studied in [6] the asytigob@havior of viscous
fluids confined in general rough domains, not necessarilipgier In the particular
case of a domain with a rough bottom described by

x3 =V (), V2’ €w,

with ¥, converging weakly to zero inW>(w), the results in [6] imply that the
limit boundary condition is

ug =0, —03u +~u' +Hu'p=0, onwx {0},

wherey is a nonnegative Borel measure, which can be infinity in carhpats ofw,
and H is a u-measurable matrix evaluated function. Our results pead example
where the extra termi/ «’ . is not zero. Another example of different nature for a ribbed
boundary described by; = ¢¥(%) is given in [4] and [5].
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In Section 3 we consider the case of a thin don§¥fiti” of small height:. tending
to zero described by

/
Qghi" = {:1: =@, 23) ewxR: —6.¥ <%) <w3 < hs} , (9)

with w and¥ as above, and the parametérsandd. satisfying

lim — =0, lim = =0. (10)

We obtain a Reynolds system in the limit which shows that ttrearough bottoni’.
the behavior of the fluid is similar to the one obtained in Bec? for fluids confined
in domains of height one but with replaced by

5. 1
Apin = lim 2E 2. (11)

e—0 £2
Remark that = M\, if he = 1.

The results obtained in Sections 2 and 3 show that the Nawiendary condition,
which can be also written as

Ooue

ue(x) € Te(z), %

(z) + yue(z) € To(x)*, onTy, (12)

with 7. (x) the tangent space in the pointe I, provides a new term in the limit
equation. In Section 4 we study this phenomena in a more gesetting. Instead of
the Stokes or Navier-Stokes system, we consider a sequéfinear elliptic systems
of M equations posed in varying open s@tsc R”, not necessarily periodic, with a
boundary condition similar to (12), whe¥e(x) is replaced by an arbitrary linear space
V.(z) ¢ RM. This abstract formulation contains a lot of classical kiany conditions.
For instance it allows us to study the asymptotic behavidinefar elliptic systems in
rough domaing2. where we impose Dirichlet and Neumann boundary conditions o
varying subsets a¥€2.. This problem has been studied in [7] and [8] far = 2 fixed.

The results of Section 4 could be extended to viscous fluids. the particular
choiceV.(z) = T.(x), it would recover the results in [6].

To finish this introduction, we refer some open problems iiciviwe are starting
working and we hope provide results in the near future:

e Extension to non-Newtonian viscous fluids, which are inedlin Biology.

e Behavior of fluids in thin rough domains described by (9),uassg different
behaviors for the parameters from the imposed in (10).

e Problems with free boundaries and applications to lubnoand Oceanography.
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2 Asymptotic behavior of viscous fluids in rough domains withfixed height

Given a Lipschitz bounded connected open.set R? and a functiont € W, (R?2),

loc

periodic of periodZ’ = (0,1)?, we define the domaif?. by (6) and the rough portion
of the boundary’; by (7). We also defin@ = w x (0,1) andI" = w x {0}.

In Q., we consider the solutiofu., p.) of the following Stokes system satisfying
the Navier condition on the rough boundaryand the adherence condition on the rest
of the boundarypQ. \ T,

—Au. +Vp. = finQ., divu. =0in Q.

u.-v=0onl., T. <% +'yu5) =0onT. (13)

u: =0 ondQ. \ Iy,

wherey > 0 is a friction coefficienty denotes the unitary outside normal vector to
Q. onT., T. is the orthogonal projection on the tangent spacE toand the second
memberf is in L?(w x R)3 (more general second members can be considered).

The system (13) has a unique solution, p.) € H' ()3 x L3(Q:) (L3(k)
denotes the space of functionsfif({2.) whose integral if2. is zero). Moreover, we
prove that there exists > 0 such that

luellzro.ys + lPell2oy < €, Ve >0.

Our problem is to describe the asymptotic behavior of theisegesu. andp.. This
is given by the following theorem which is the main resulttubtsection.

Theorem 1 The solution(u., p.) of (13) satisfies
ue — u in H'(Q)3, pe — p in L*(),
with (u, p) the unique solution of
—Au+Vp=finQ, divu=0inQ
{ uz=00nT, u=00ndN\T,

plus a boundary condition for” which depends on the parametemdefined by (8).
More precisely we have

i) If A=0,then

(14)

—0su' +~yu' =0 onT. (15)
i) If A € (0, +00), then definindé?,3?), i = 1,2, as the solution of
—ALG 4+ V.3 =0, div.d’ =0 inR? x (0,+0c0)
$i(2,0) + 0., 0(z) = 0, 0.,(3")(z',0) =0, ae.z' €R? .
$'(.,23), 7'(., z3) periodic of periodZ’, a.e.zz € (0, 400)
o' € H'(Z' x (0,400))%, 3" € L*(Z' x (0, +00)),
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and R € R?*2 py
Rij :/ D.¢': D.didz, Vi, je{1,2}, (17)
Z'x(0,400)

we have
—03u’ +yu' + N°Ru’ =0 onT. (18)

i) If A = 400, then defining
W = Span({V¥ () : 2/ € Z'}), (19)

we have
w € Wt onl, —0su'+~u' € W, onI’ (20)

Remark 1 For A = 0, Theorem 1 shows that the roughnesd'pfis very slight and
so the solutionu., p.) of (13) behaves as if'. coincides with the plane boundary
I'. For A € (0,400) (critical size), the boundary condition satisfied by theitlim
of u. on the tangent space 0 contains the new termy? Rv’. In this case, the effect
of the roughness df. is not worthless and it makes to appear this new term in the
limit. Finally, for A = 400 the roughness df. is so strong that the limit. of u. does
not only satisfies the conditiany; = 0 onT', but also its tangent velocity dn, ’, is
orthogonal to the vector§¥ ¥ (z’), with 2’ € Z’. In patrticular, if the spacéV defined
by (19) has dimension 2, then satisfies the adherence conditian= 0 onT'. This
extends to the case where

de

lim — =0, lim — =400,
e—0 ¢ e—=0 g3

the results obtained in [10] fof. = ¢.

Remark 2 The case\ € (0, +oc0) can be considered as the general one. In fach, if
tends to zero or infinity ii18) we get(15) or (20) respectively.

Sketch of the proof of Theorem 1 Since(u., p.) is bounded inFH 1 (2.)? x L?(€.)

it is clear that (at least for a subsequence) it convergeglwéa H'(Q)% x L2()

to some(u, p) which is a solution of the Stokes system (14). The difficudtyhien to
obtain the boundary condition in the tangent spack.t&or this purpose we need to
study more carefully the behavior af nearl'.. This is carried out using an original
adaptation of the unfolding method, [2], [9], [16], which\sry related to the two-
scale convergence method, [1], [21], [23]. The idea is tmuhice suitable changes of
variables which transform every periodic cell into a simpleference set by using a
supplementary variable (microscopic variable). In ouecasven(u., p.) solution of
(13), and defining

A~ 6 1
we= |J (kK +e2), Ks—{zeZ’xR:—f\I/(Z’)<23<g}v

K’ ez?
ek!/+eZ/Cw
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we introducel, : . x K. — R3, p. : @ x K. — Rby

G (2, 2) = Z ue(ek’ + 2’ e23) Xer 1oz (7).
sk’liseg’sz

Observe thati. is obtained transforming every colunth N ((ek’ + ¢Z’) x R) in
the setK. by using the change of variables= ((z’ — ¢k’)/e, x3/¢). Here,z' is the
macroscopic variable andthe microscopic one. Moreover, the 9€t converges to
the setZ’ x (0, +00), while (k' +eZ") xR converges to the empty set. The asymptotic
behavior ofu. nearT’. is obtained by studying the asymptotic behaviofigof Namely,
from u. bounded inf/1 (2. )3, we deduce

1
—/ |D . |*da’dz < C
€ Joex K.

and thus (for a subsequence)

1
e(e/,2) = <as<x’,z> - [ a0 dp’) — (21)
in L?(w; HY(Z' x (0, M))?), for everyM > 0, with @ € L*(w; H'(Z' x (0, M))?),
D, € L*(w; L*(Z' x (0, +00))3*3). Moreover, we can prove thatis periodic with
respect to:’.
Observing that

1
[t p0de =5 [ w0dy, o ek vz,
’ ck'+eZ’

we also deduce from (21) that
e (2, 2) = u in L (w; HY(Z' x (0, M))3), VM > 0. (22)
On the other hand, the conditian - » = 0 onT'. allows us to show

6—§V\I!(z') cal(x,2,0) + e z(z’,2',0) = 0 in L2 (w x Z'). (23)
£2

In order to obtain the boundary condition for the limit systm the tangent space
to I" the reasoning depends on the lirhiof 55/53.

e If A = 400, then (23) and (22) prove that belongs tolV+ a.e. onI’, which
gives the first assertion in (20). The second one is obtaisadjuest functions in
(13) which a.e. il satisfyvs = 0,7 € W+,

e If X € (0, +00), passing to the limit in (23) we deduce

AV (') -/ (2',0) + w3 (2, 2',0) = 0.

On the other hand, (21) and periodic inz’ suggest that..(x) behaves as(z) +
Vew(x', £). The proof of (18) is obtained using test functions in (13) feé form
ve(x) = v(z) + /eo(a', z /€) (slightly modified to have. - v = 0 onT.) with v’ =0
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on 9N\ T, v3 = 0 0n 9N, v periodic inz’, 6(a’, z) = 0 if z3 is large, and satisfying
03(2’,2',0) = =X\'(2’,0). In particular this proves the equality
(2, 2) = up (2',0)D (2) + uz (2, 0)B%(2), a.e.inw x Z' x (0, +00).

e If A = 0, we considew as above, such that = 0 on9Q \ T, v3 = 0 on 9N and
then, we use as test function
!
o) = (V@) te) - LU V@)
19 g g
with ¢ a smooth function such thgft) = 0in (—oo,0), {(t) = 1in (1, +00). O

Theorem 1 gives an approximation(af., p.) in the weak topology off* ()3 x
L?(Q). Indeed, we have the following result relative to the straogvergence of
(Ducxa.,pexa.) in H(2)2 x L2(Q) (corrector result).

Theorem 2 Under the assumptions of Theorem 1 we have

i) If A =0o0r+o0, then
Ty (HUEHHl(QE\Q)?’ + llpell2@ae) + llue — ullm@)s + llpe _p””(“)) =0

iy If A € (0,+00), then, taking(¢', %), i = 1,2, as the solution 0f(16), and
definingu? andp® by

we have
. A b, T
lim, (HUEHHI(QE\Q)3+||UE_UHL2(Q)+||Du€_Du_$Dzu (z, E)HL2(Q)3X3) =0,

. A T
glg% (”paHL2(QE\Q) + |lpe —p — ﬁpb(% g)||L2(sz)) =0.

This corrector result can be improved obtaining an estirf@t¢he difference of
(ue,pe) and its corrector. We focus in the casdee (0,+4o0) which, as we said
in Remark 2, can be considered as the general one. Assudping Ae2, with
A € (0, 4+00), we prove the following theorem

Theorem 3 If the functionu defined by (14) and (18) belongs 6°(2)3, with
s > 3/2, then we have

x
lluc |l 51 (o) + [Jue —u — MWeub(z, E)HHl(Q)?’ < Cyfe,

A T
pell20Q) + lIPe =P — ﬁpb(% g)||L2(sz) < Cye.
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Sketch of the proof. The proof consists in showing that the péit.,p.) = (u +
Meub(z, 2),p + %pb(x, L)) satisfies a Stokes system with right-hand side and
boundary conditions close to the ones satisfieddayp.). Then, usual estimates for
the Stokes problem applied to the difference of the equasatisfied byu., p.) and

(te, pe) give the result. O

In order to apply Theorem 3, we need the solutioof (14) and (18) inH*(£2)3,
s > 3/2. Aresult in this sense is given by the following proposition

Proposition 4 The solution (u,p) of (14)-(18)is iF%(O x (0,1))* x H(O x (0, 1)),
for every open sab completely contained is.

Sketch of the proof. Since v’ belongs toH%(F)Q, there exists (see e.g. [20])
21w x (0,1) — R2, with 2/ € H?(O x (0,1))?, for every open seD completely
contained inw, such that’ = 0 onw x {1}, 932/ = M2 Ru’ onT. Then, defining
v=(u—2"us3),g=(f+ A7, f3) in Qand extending, p, g, 2 tow x (—1,1) by
taking

’Ul(xlaxi’)) = ’Ul(xlv _:E3)7 ’U3(.T/,.I'3) = —’U3(.I'/, _:E3)7 p(l’l,(E?,) = p(‘rl _‘T3)a
g2’ x3) = g'(a', —x3), g3(2',23) = —g3(a’, —x3), 2'(2',23) =2

for 2’ € w, z3 € (—1,0), we deduce thaw, p) satisfies

v=00onw x {—1,1}, pdz = 0.

{ —Av+Vp=ginwx (-1,1), divv=—divy2 inwx (-1,1)
wx(—1,1)

Classical estimates for the Stokes problem with Dirichtatditions (see e.g. [19])
show then the result. [

The complete proofs of Theorems 1 and 2 and their generialiato the Navier-
Stokes system appear in [11]. For the proofs of Theorem 3 amgbBition 4 we refer
to [13].

3 Asymptotic behavior of viscous fluids in rough domains withsmall height

In this section we consider the case of a viscous fluid confimnede thin rough do-
main 24" defined by (9). Remark th&t!*" has a rough bottom which agrees with
I'. defined by (7). We still denote = w x (0,1) andl' = w x {0}.

Analogously to Section 2, we consider the Stokes systeftfif* together with
the Navier boundary condition din. and the adherence condition on the rest of the
boundarypQtin \ T, that is

—Au, 4+ Vp. = f in QM divu, =0 in Qthin,

Ooue 5y B
% + h_su8> =0 onl,, (24)

us v =0 onl,, T5<

ue =0 ondQhm\ T,
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wherey > 0 is a friction coefficienty denotes the unitary outside normal vector to
Qthin onT, Ty is the orthogonal projection on the tangent spadé.tand the second
memberf belongs toC(R; L?(w))? (more general second members can be consid-
ered).

The system (24) has a unique solutiom.,p.) € H(Qh")3 x L3(Qthin).
Moreover, the following estimates hold

1
|Qéh1’ﬂ,| Q;hin

1

2 4
ue|“de < C'h —_—
| E| - &’ |Q§}”n| Q;hin

|Duc|*dx < C hZ,

) (25)

2
—_— de <C, V 0.
|Q§hzn| thin |p5| xz — bl £ >
Remark 3 The proof of estimates (25) far. andp. easyly follows taking:. as test
function in(24) and then using the inequalities

0]l L2(quriny < Che|| Vol p2(quninys, Vv € H'(Q:), v=00nz3 = he.

C .
g/l L2(qininy < h_HVQHH*l(Qy”'")f*v Vg e L*(Q) with / gdzx = 0.
€ Qe
Our goal is to study the asymptotic behaviougfandp. whene tends to zero. For
this purpose, as usual, we use a dilatation in the variapte have functions defined
in an open set of fixed height. Namely, we defines H'(Q)3, p. € L3(Q) by

e (y) = ue(y', heys), Pe(y) =pe(y', heys), ae.y e . (26)

Then, the problem becomes in studying the asymptotic beha¥ithe functionsi.
andp.. This is given by

Theorem 5 Let (ue,p.) € HY(Q")3 x L2(Qhin) be the solution of the Stokes
systen(24) and leta., p. be defined by (26). Then, there exise H(0, 1; L?(w))?,
w € H?(0,1; H *(w)) andp € H'(w), with null integral, such that

~ ~/

Ye L 0in HYQ)3, Lo o/ in HY(0,1; L3 ()2,
he h2

Ue,3
3
h

—win H*(0,1; H ' (w)), (27)

Pe — pin L2(€2),
where the functions’, w andp satisfy the following simplified Stokes system

—0;, V' +Vyp=f(y,0) inQ

Y3 Y3
divy v + dy,w =0 inQ
1 (28)
/ v'(y,y3)dys v =0 ondw
0

w(y',0)=w(y,1)=0 inw, '(y,1)=0 inw.
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Moreover, according to the value of,,;, defined by (11)y’ satisfies the following
boundary condition of':

i) If Ansn = 0, then we have

—03v" +4v' =0, onTl. (29)
ii) If Mpin € (0,400), then we have
—030 + 40 + A}, R’ =0, onT, (30)
whereR is defined by (17).
i) If A\¢pinn = +00, then we have
—dsv" + 40 e W, o eWwt, onT, (31)
wherelV is defined by (19).
Sketch of the proof. Since(u., p.) satisfies (25), andivu. = 0 in ., we get the

estimates
2 ﬂs ,as 2

7] an=c /Q<Dy/(ht> @s(h—z))dyﬁa
u

-, -
pe’dy < C,  divy, <h—§) + Oy, (%) =0 inQ,
Q 5 5

2
+

Ue

h?

(32)

for everye > 0. This implies the existence of € H'(0,1;L*(w))?, w €
H?(0,1; H Y(w)) andp € H'(w), such that (27) holds. Then, taking into account
thata. = 0 on 90 \ T, and using as test function in (24) a sequence of the form
ze = h2(v(2',z3/¢),0) with v/ smooth and vanishing oiX2, we easily get (28). In
order to finish the proof of Theorem 5 it only remains to obtamboundary condition
satisfied by?’ onT". This follows reasoning similarly to the proof of Theoremy b
introducing the sequende : . x K. — R? as

Ge(2',2) = Z us(ek’ + 2’ e23) Xer 1oz (7))

K/ €22
ek’/+eZ/Cw

) h
Qe = U (ek' +e2"), ng{zeZ/xR:—fﬁ/(z')<23<f}.

k' ez2
ek!/+eZ/'Cw

O
We remark thap only depends on the horizontal variables, pe= p(z’). From
(28), (29), (30) and (31), as usual in the asymptotic studjuals in thin domains, we
can obtain a Reynolds problem forindeed, we have the following result
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Corollary 6 Let (u.,p.) € HY(Qh")3 x LE(Q") be the solution of the Stokes
systerm(24). Then, depending on the value)gf,;,, defined by (11), the functions$, w
andp in Theorem 5 are given by

(i) If A\epin = 0, pis the solution of the Reynolds problem
. 1 _ .
saivy (5 @0 ) (Fyp 00 ) =0ine

<<% +(1 +7)1> (Vyp— f’(y’vo))> v =0 ondw,

the functionv’ is given by

1 _
V) =5 (B + 1+ ) (Tp) - F00), aeyeq
and the distributionu is zero.
(i) If Mpin € (0,400), then definingR by (17), we have thap satisfies the
following Reynolds problem
. 1 - .
—divy, <(gf + (LN + A R) 1) (Vyp— 1y, 0))> =0inw

(@H (141 + AfhmR)l) (Vyp - f'<y’,o>>) v =0 ondw,

the functionw’ is given by

'U/(y) — (y32/: 1)

a.e.y € Q, and the distributiono is given by

(32 + (L NI+ 20, B) ) (Vyrpy) = 10, 0)).

Y3
w(y) = —/ divyv(y’,s)ds in Q. (33)
0

(iii) If Agnin = +o00, then denoting by, . the orthogonal projection frori? to the
orthogonal space oft defined by19), we have thap is given as the solution
of the Reynolds problem

—div, ((%14— (1 +7)—1PWL> (Vyp — f’(y',()))> =0 inw

((%I +(1+ 7)1Pw¢) (Vyp =1, 0))) v="0 ondw,

the functionw’ is given by

o) = B g+ () R ) (0 — £ 0),

a.e.y € Q, and the distributionv by (33).
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Remark 4 The parameteh,;, in Theorem 5 plays a similar role to that afdefined

in Theorem 1, i.e. ity = 0 the roughness is too slight and it has no effect on
the solution. If\;,;, = +oo, the roughness is so strong that,lin v’ belongs to the
orthogonal space otV defined by (19). The case;:, € (0,+o0) is the critical
case where the roughness is not strong enough to imipty W= in the limit, but it

is enough to produce a new friction terkd,;,, Rv’, whereR is the matrix obtained in
Theorem 1.

Remark 5 We remark that taking. = 1 in (11), the parametera and \;;;,, agree.
In the case of thin domains, the expression\gf;,, does not only depend on the
parameterss., ¢ which definel', but also on the height. of Q. This is due
to the fact that far of the rough boundary the behavior of thalfis different from the
corresponding one in Section 2.

Finally, we give corrector results for the velocity and thegsure in the following
theorem.

Theorem 7 Assumey € C? and f(«',0) € H'(w)?. Let(uc,p.) € H'(Q1")? x
L3(QLhin) be the solution of the Stokes syst@4#). Then we have

i) If Anin = 0 OF +00, definingii. by

U () = (h?v’(w’, %),0) , a.e.r e Qihin

€

we have
1 v 12 1 ~ 2
75 Jom |ue — te|*dz — 0, 7 o |D(ue — tic)|°de — 0,  (34)
= 27.77, & 15:11’".
1 2
w -~ |pe —p|“dz — 0. (35)
€ thin

i) If M\nin € (0, +00), the above assertions still hold replacitig by

e (2) = (hiv’(x’, %), 0) FAhin hE VE (v’l(w’, 0)'(

T
€ 9

)+ 0@, 00F(D))

with ¢, i = 1,2, the solutions of (16).

The results given in this section were announce in [12]. Térmegalization of these
results to Navier-Stokes system will appear in a forthcapaper [14].

4 Asymptotic behavior of elliptic systems in general rough dmains

In the previous sections we have shown that the Navier bayratandition for the
Stokes system provides a new term in the limit problem. Ia sieiction we study this
phenomena for linear elliptic systems in rough domatsc RY, whereQ). has not
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necessarily a periodic structure.

We consider a sequence of Lipschitz open $&tsc R™ which converges to a
Lipschitz open sef2 ¢ R in the following sense: For every > 0, there exists
g0 > 0 such that for every € (0, ¢y), we have (see Figure 3)

0 = {reQ:d,00) >p}CQ C{zeRY:dx0) <p}=0"". (36)
We denote bfl an open set containing completély

In Q., we consider the following homogenization problem

{ —divADu. = f inq.
(37)

uc(x) € Vo(x), Vo €0Q., ADu.(x) ve Vi(z)t Ve .,

where A belongs toL>(Q; Tarxn) (Tazx is the space of linear functions from the
space of matriced1 ;v into itself), V- (x) is an arbitrary sequence of functions from
09 into the set of linear subspaces®t, and the second membgis a function in
L2 ()M

We also assume the following ellipticity condition: thesgésts o > 0 such that

al|v)|3 o v < / ADv : Dvdx,
HY(Q.) o (38)

Vo e H (Q)M, v(z) € Vo(x), a.e.x € 09..

Observe that this ellipticity condition is written in an égral form instead of in a
pointwise one. This is more convenient for systems, wheggthintwise and integral
ellipticity conditions are not equivalent. In particulapermits to deal with the linear
elasticity system, where the tensor only depends on the gfrimpart of the deriva-
tive.

Assuming thal(z) = T.(x), with T, (z) the tangent space in the poini 9.,
the oscillating boundary condition in (37) is similar to tNavier boundary condition
(see (12)) considered in Sections 2 and 3. Some other chafitesre also interesting.
For example, taking. an arbitrary subset @f()., and definind/; asV.(z) = {0} for
r € S.,andV.(z) = RY forz € 9. \ S., the homogenization problem reads

—divADu, = f. in€,
ue=0 onS., ADu.(z)-v=0 ondQ.\ S..

In this case, we are studying the homogenization of elljpditial systems with Dirich-
let and Neumann conditions on varying subsets of the boyndihrs problem has been
studied in [7] and [8] in the particular cask = €.

Our main result in this section is the following theorem
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Theorem 8 There exist a subsequence=pktill denoted by, a Borel measurg: in
092 which vanishes on the sets of null capacity;-aneasurable functioi : 092 —
M s ar, with

RE-€>0, |RE-n| < B(RE-€)2(Rn-n)2, YE&neRM, prae. indQ,

for somes > 0, and a functionl” from 9 into the set of linear subspaces&f,
satisfying

a||v|\§{1(Q)M < / ADv : Dvdzx + Rv-vdu
Q o9

Voe H{(QM, veVage o,

with the following property: For every € L2(2)M, the unique solution 0{37)
converges weakly i/ 1 (2* ), for everyp > 0, to the unique solution € H*(Q)M
of problem

—divADu=f inQ

u eV, q.e indf, Ru - udp < 400 (39)
o0

ADu-v+ Rup € V=, qg.e.indQ.

Remark 6 The solution of (39) is understood as the solution of theowalhg
variational problem,

ue H'(QM, u(z) € V(z) g.e. indQ, / Ru - udp < 00
o9

ADu:Dvd:c+/

Ru-vdp= | f-vdx (40)
a0 Q

Q

Voe H (QM, v(z) € V(z) g.e. indQ, Rv-vdu < 4o0.
X9)

Remark 7 Theorem 8 applies for instance to study the behavior of th&tielty system
ue € HY(Q)N, u. € Vo(z) g.e. indQ.
/ Be(ue) : e(v)dx = / frude
V;EE HY(Q)N, ve V:(l;) g.e. indQ.,
where the rough domaifi. is described by
Qe={z=("an)eRY : 2/ cw, &.(2) <an <1},

with w c RM~! is a Lipschitz open set an®. convergingx-weakly to zero in
Wheo(w).

Here,Q = w x (0,1), B € L°°((~2; Tn.s) (Tw s is the space of linear applications
from the space of symmetric matrices of ordérx N, My s, into itself) is such that
there existsy > 0 satisfying

B(z)¢:€> al¢?, VE€ My, ae.x € dQ,
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andV is a sequence of applications frapf). into the set of linear subspaceskf’
such that; (+/,1) = {0} for everyz’ € w.

Remark 8 Theorem 8 can also be extended to the Stokes system. In $kistaking
Ve(x) = T.(z), we would recover the results in [6].

Sketch of the proof of Theorem 8.The proof of this result is given in [15], where we
also prove that problem (40) is stable by homogenizatiore itlea is the following
one:

Thanks to assumption (38), the norm of the solutian of problem (37) in
H'(Q.)™ is bounded. Then, by a diagonal procedure, we can extratiseguence of
e, still denoted by, such that for every € L?(Q)M, there exists, € H' ()™, such
that the solutionu. of (37) converges weakly ta in H'(2* )M, for everyp > 0.
We defineWw < H'(Q2)M as the space of functions € H'(Q)* which are the
limit in the previous sense of a sequengesolution of (37), for som¢g € LQ(Q)M
We considen:!, u? € W, and sequences., u2 solutions of (37) withf replaced by
somef!, f2 € L?(Q)M, such that? converges weakly ta’ in H'(Q?" )M for every
p>0,i=1,2. Forp € C'(Q), we takeuZy as test function in the equation faf.
Then, passing to the limit, we easily get

ADu' : D(u?p)dx + lim AD(ul —u') : D(u? —u?)pdr = | fluipdr.
Q =0 Jq, Q

The conclusion of Theorem 8 follows proving that the bilinkeenctionr from W x W/
into the space of Radon measure§irdefined as

/ odv(u',u?) = lim AD(ul —u') : D(u? —u?) pdx
O e—0 o

is in the conditions of Theorem 4.1 in [15] (which is a variasft an integral
representation result given in [18]). This proves the exise ofV, 1 an R in the
conditions of the statement of Theorem 8, such tatis dense in the space of
functionsu € H' ()" with Ru - u € L},(9Q) and such that

/ﬁcpdy(ul,UQ) = /69 Ru'-w?pdu, Yul,u?eW,Vyee Q).
This proves that' satisfies
ADu' : D(u2<p)d:17+/

Q o0
and then that the limit of the solutionu. of (37) is the solution of (40). O

Ru'u? pdy = / flulpde, Yu?eW,YeeClQ)
Q
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Figure 1: Rough domaift. with a rough bottom described by (4).
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Figure 2: Rough domaift. described by (6).



22

J. Casado-Diaz, M. Luna-Laynez, F.J. Suarez-Grau

Figure 3: Convergence of the rough dom&indefined by (36).
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