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January 26, 2009

Abstract

We present a generalization of the Kalman rank condition to the case of

n×n linear parabolic systems with constant coefficients and diagonalizable

diffusion matrix. To reach the result, we are led to prove a global Car-

leman estimate for the solutions of a scalar 2n−order parabolic equation

and deduce from it an observability inequality for our adjoint system.
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1 Introduction. The main result

Controllability of linear ordinary differential systems is well-known. In particu-
lar we have at our disposal the famous Kalman rank condition (see for example
[17, Chapter 2, p. 35]), that is to say, if n,m ∈ N with n,m ≥ 1 and A ∈ L(Rn)
and B ∈ L(Rm,Rn), then the linear ordinary differential system Y ′ = AY +Bu
is controllable at time T > 0 if and only if

(1.1) rank [A |B] = rank
[
An−1B |An−2B | · · · |B

]
= n.

The main goal of our work is to give an extension of this algebraic condition
to a class of parabolic systems of partial differential equations where the controls
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act on a subdomain of the domain where the parabolic system is posed. To this
end, let Ω ⊂ R

d be a bounded open set with a C2-boundary ∂Ω, let ω ⊂ Ω be
a nonempty open subset and assume T > 0. Let us consider the second order
elliptic self adjoint operator given by

(1.2) R =

N∑

i,j=1

∂i (rij(x)∂j) + c(x)

with {
rij ∈W 1,∞(Ω), c ∈ L∞(Ω) (1 ≤ i, j ≤ d),

rij(x) = rji(x) a.e. in Ω,

and the coefficients rij satisfy the uniform elliptic condition

(1.3)

d∑

i,j=1

rij(x)ξiξj ≥ a0|ξ|
2, ∀ξ ∈ R

d, a.e. in Ω,

for a positive constant a0.
For n,m ∈ N

∗ and T > 0, we consider the following n× n parabolic system

(1.4)

{
∂ty = (DR+A)y +Bv1ω in ΩT = Ω× (0, T ),

y = 0 on ΣT = ∂Ω× (0, T ), y(·, 0) = y0(·) in Ω,

where D ∈ L(Rn), A = (aij)1≤i,j≤n ∈ L(Rn) and B ∈ L (Rm,Rn) are given,
v ∈ L2(ΩT )

m (ΩT = Ω × (0, T )) and y0 = (y0,i)1≤i≤n ∈ L2(Ω)n. In (1.4),
y = (yi)1≤i≤n is the state variable while 1ω denotes the characteristic function
of the open subset ω.

All along this work we will assume that the diffusion matrix D is diagonaliz-
able with positive real eigenvalues, i.e., for J = diag (di)n×n with d1, d2, ..., dn >
0, one has

(1.5) D = P−1JP, with P ∈ L(Rn), detP 6= 0.

Let us observe that, thanks to the assumptions on the operator R and the
diffusion matrixD, for every y0 ∈ L2(Ω)n and v ∈ L2(ΩT ) system (1.4) possesses
a unique solution y ∈ L2(0, T ;H1

0(Ω)
n) ∩ C0([0, T ];L2(Ω)n).

The exact controllability to zero of system (1.4) reads as follows: For given
T > 0 and y0 ∈ L2(Ω)n can we find v ∈ L2(ΩT )

m such that the corresponding
solution y of (1.4) satisfies y(T ) = 0 a.e. in Ω? In the linear case, this property
is equivalent to the exact controllability to the trajectories, that is to say, to
the following property: for every trajectory y∗ ∈ C0([0, T ];L2(Ω)n) of (1.4)
(i.e., a solution to (1.4) corresponding to v∗ ∈ L2(ΩT )

m and y∗0 ∈ L2(Ω)n) and
y0 ∈ L2(Ω)n, there exists a control v ∈ L2(ΩT )

m such that the corresponding
solution y to (1.4) satisfies

y(·, T ) = y∗(·, T ) in Ω.
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Finally, it will be said that (1.4) is approximately controllable in L2(Ω)n at
time T if, for any y0, yd ∈ L2(Ω)n and any ε > 0, there exists a control function
v ∈ L2(ΩT )

m such that the solution y ∈ C0([0, T ];L2(Ω)n) to (1.4) satisfies

||y(·, T )− yd||L2(Ω)n ≤ ε.

Let us remark that in the scalar case, i.e., when n = 1, the controllability
properties of system (1.4) are well known (see for instance [18], [11] and [10]).
To be precise, under the previous assumptions and for every ω ⊂ Ω and T > 0, if
B 6= 0, system (1.4) is exactly controllable to the trajectories, null controllable
and approximately controllable in L2(Ω) at time T > 0. Therefore we will
concentrate on the study of the controllability properties of system (1.4) in the
non scalar case and all along this paper we will assume that n ≥ 2 and m ≥ 1.

The study of the controllability properties of system (1.4) is a mathemati-
cal interesting problem. Moreover, systems as (1.4) arise, for example, in the
modeling of biological phenomena as the growth of tumors. In this context, the
control v represents a therapy which only acts on some of the variables of the
systems.

There are few results providing sufficient conditions for the exact controlla-
bility to the trajectories of system (1.4) (when n > 1 and 1 ≤ m < n) and most
of them are proved for n = 2 and B = (1, 0)∗: see, for instance, [22], [1], [4], [12]
and [14] (also see [9] and [7] for similar controllability results of cascade system
of parabolic-hyperbolic equations). The most general result in this direction
seems to be the one in [13] where the authors study a cascade parabolic system
of n equations. Finally we also point out [3] where the authors provide a suf-
ficient condition on the coupling matrices for obtaining the null controllability
on the time interval (T0, T1), with 0 ≤ T0 < T1 ≤ T , of the non-autonomous
parabolic linear system:

{
∂ty = L(t)y +A(t)y +B(t)v1ω in Ω× (T0, T1),

y = 0 on ∂Ω× (T0, T1),

where A(·) ∈ Cn−1([0, T ];L(Rn)), B(·) ∈ Cn([0, T ];L(Rm,Rn)) and L(t) is a
scalar time-dependent elliptic second order operator given by





L(t)y(x, t) = −

N∑

i,j=1

∂

∂xi

(
aij(x, t)

∂y

∂xj
(x, t)

)
+

N∑

i=1

bi(x, t)
∂y

∂xi
(x, t)

+ d(x, t)y(x, t),

where aij ∈ W 1,∞(ΩT ), bi, d ∈ L∞(ΩT ), aij(x, t) = aji(x, t) a.e. in ΩT (1 ≤
i, j ≤ N), and

N∑

i,j=1

aij(x, t)ξiξj ≥ ã0|ξ|
2, ∀ξ ∈ R

N , a.e. in ΩT ,

for a positive constant ã0.
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For obtaining a necessary and sufficient condition for the controllability of
system (1.4), let us introduce the Kalman operator. We denote by L the op-
erator given by L := DR + A. Thanks to (1.5), we deduce D(L) = D(R)n =(
H2(Ω) ∩H1

0 (Ω)
)n
. Then the Kalman operator associated with (L,B) is the

matrix operator

{
K := [L |B] : D(K) ⊂ L2(Ω)nm → L2(Ω)n, with

D(K) := {u ∈ L2(Ω)nm : Ku ∈ L2(Ω)n},

where
[L |B] =

[
Ln−1B |Ln−2B | ... |LB |B

]
.

Our main result is the following:

Theorem 1.1. Let us assume that D satisfies (1.5). Then, system (1.4) (with
R given by (1.2)) is exactly controllable to trajectories at any time T if and only
if the Kalman operator K satisfies

(1.6) Ker (K∗) = {0} .

As said above the Kalman rank condition (1.1) is a necessary and sufficient
condition for the controllability of linear ordinary differential systems (see [24]).
The first attempt to extend this condition to the case of an infinite dimensional
systems are described and discussed in [23].

The closest result to Theorem 1.1 we know is due to H. Leiva [19] which gives
a necessary and sufficient condition for the approximate controllability of
(1.4) in the case in which D is a diagonalizable matrix whose eigenvalues have
positive real part, A ≡ 0 and B(x) ∈ L2(Ω;L(Rm;Rn)).

Thanks to (1.2), it is well known that the operator −R with Dirichlet bound-
ary conditions admits a sequence of eigenvalues

0 < λ1 < λ2 ≤ ... ≤ λp ≤ λp+1 ≤ ... , λp → ∞,

such that the associated sequence of normalized eigenfunctions (φp)p∈N∗ is an

orthonormal basis of L2(Ω). With the previous notations, we will see that, in
fact, condition (1.6) can be easily checked since it is equivalent to the algebraic
condition

(1.7) rank [(−λpD +A) |B] = n, ∀p ≥ 1

(see Proposition 2.2; we have used the notation

[(−λpD +A) |B] = [(−λpD +A)
n−1

B | (−λpD +A)
n−2

B | · · · |B]).

Remark 1.1. It is interesting to observe that system (1.4) can be exactly
controlled to the trajectories with one control force even if A ≡ 0. Indeed,
let us assume that D = diag (di)n×n, with di > 0 for every 1 ≤ i ≤ n, and
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B = (b1, ..., bn)
∗ ∈ R

n. Then, in order to apply Theorem 1.1 we should check
condition (1.6), i.e., condition (1.7). So,

[(−λpD +A) |B] =




(−λpd1)
n−1 b1 (−λpd1)

n−2 b1 · · · b1
(−λpd2)

n−1 b2 (−λpd2)
n−2 b2 · · · b2

...
...

. . .
...

(−λpdn)
n−1 bn (−λpdn)

n−2 bn · · · bn


 ∈ L(Rn),

and (1.7) holds if and only if bi 6= 0 for every i and the diffusion coefficients di
are distinct.

Remark 1.2. Let us remark that the controllability properties of system (1.4)
when the diffusion matrix D given by D = β0Id, with β0 > 0, have been already
studied in [3]. To be precise, in [3] it is proved that system (1.4) (with D = β0Id)
is exactly controllable to the trajectories if and only if rank [A |B] = n. On
the other hand, for D = β0Id, it is not difficult to see that condition (1.7) is
independent of the eigenvalues λp and is equivalent to rank [A |B] = n. As a
consequence, in this work we recover the results on controllability of system (1.4)
proven in [3] in the caseD = β0Id, with β0 > 0, A ∈ L(Rn) and B ∈ L(Rm;Rn).
It is also interesting to point out that the techniques developed in this work are
completely different from those used in [3].

In order to study the exact controllability to the trajectories of system (1.4),
we will consider the corresponding adjoint problem

(1.8)

{
−∂tϕ = (D∗R+A∗)ϕ in ΩT ,

ϕ = 0 on ΣT , ϕ(x, T ) = ϕ0 in Ω,

where ϕ0 ∈ L2(Ω)n. It is by now well known that the exact controllability to the
trajectories of system (1.4) is equivalent to the existence of a positive constant
C such that, for every ϕ0 ∈ L2(Ω)n, the solution ϕ ∈ C0([0, T ];L2(Ω)n) to the
adjoint system (1.8) satisfies the observability inequality:

(1.9) ||ϕ(·, 0)||2L2(Ω)n ≤ C

∫∫

ωT

|B∗ϕ(x, t)|2,

where we have introduced the notation ωT = ω × (0, T ).
The observability inequality (1.9) will be deduced from an appropriate global

Carleman inequality satisfied by the solutions to the adjoint problem (1.8) (see
Theorem 1.3). In order to state this Carleman inequality we will reason as
follows: firstly we will show a global Carleman inequality (see Theorem 1.2)
which bounds a weighted global integral of K∗ϕ by means of a weighted local
integral of B∗ϕ (ϕ is the solution to the adjoint problem (1.8) corresponding
to ϕ0). Secondly, and using condition (1.6), we will be able to deduce from the
previous inequality the appropriate global Carleman inequality for the solutions
to the adjoint problem and, in particular, (1.9).

Our second result reads as follows:
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Theorem 1.2. Let us assume that D satisfies (1.5). Then, given τ ∈ R and
k ≥ (n− 1)(2n− 1), there exist a positive function β0 ∈ C2(Ω) (only depending
on Ω and ω), r = r(n) ∈ N and two positive constants C and σ (only depending
on Ω, ω, n, (rij)1≤i,j≤N , D, A, k and τ) such that for every ϕ0 ∈ L2(Ω)n the
corresponding solution ϕ to (1.8) satisfies

(1.10)

∫ T

0

(sρ)τe
−2sM0
t(T−t) ||RkK∗ϕ||2L2(Ω)nm ≤ C

∫∫

ωT

(sρ)τ+K+re−2sη |B∗ϕ|
2
,

for every s ≥ σ
(
T + T 2 + T 2||c||

2/3
∞

)
. In (1.10), ρ, η, M0 and K are respec-

tively given by: ρ(t) = t−1(T − t)−1, η(x, t) = β0(x)/t(T − t), M0 = maxΩ β0
and K = 4k + n− 4.

Remark 1.3. Let us observe that if ϕ0 ∈ L2(Ω)n, the corresponding solu-
tion ϕ to (1.8) satisfies ϕ ∈ C∞((0, T ];D(Rk)n), for every k ≥ 1. Indeed,
A is a constant matrix and the operator D∗R + A∗ with domain D(D∗R) =(
H2(Ω) ∩H1

0 (Ω)
)n
, is the generator of an analytic semigroup on L2(Ω)n (see

Section 2 and Subsection 3.2.

Finally, in our third result we state a global Carleman inequality for the
solutions to (1.8). At this point we use condition (1.6) in an essential way:

Theorem 1.3. In addition to the assumptions in Theorem 1.2, we assume
condition (1.6). Then, given τ ∈ R and k ≥ (n − 1)(2n − 1), there exist two
positive constants C and σ (only depending on Ω, ω, n, (rij)1≤i,j≤N , D, A, k
and τ) such that for every ϕ0 ∈ L2(Ω)n the corresponding solution ϕ to (1.8)
satisfies
(1.11)∫∫

ΩT

(sρ)τe
−2sM0
t(T−t) |Rk−(n−1)(2n−1)ϕ|2 ≤ C

∫∫

ωT

(sρ)τ+K+re−2sη |B∗ϕ|2 ,

for every s ≥ σ
(
T + T 2 + T 2||c||

2/3
∞

)
. In (1.11), ρ, η, M0, K and r(n) are as

in Theorem 1.2.

The plan of the paper is the following: In section 2, we will address some
properties of the unbounded Kalman operator K and prove the continuity (in
a suitable sense) of its inverse, when it exists. Then, in section 3, a proof of
Theorem 1.2 is given using a global Carleman estimate for a scalar parabolic
equation of order 2n (see Theorem 3.2). In section 4 we give some comments
and open problems.

The results that we present in this work have been announced in [2].

2 Properties of the Kalman operator

Define

D =

∞⋂

p=0

D(Rp).
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It is well-known that D is dense in D(Rp) for every p ≥ 0 and straightfor-
ward that Dnm ⊂ D(K). Thus, D(K) = L2(Ω)nm and K∗ is well-defined from
D(K∗) ⊂ L2(Ω)n into L2(Ω)nm. The formal adjoint operator of K, again de-
noted by K∗, is given by

K
∗ =




B∗ (L∗)
n−1

...
B∗L∗

B∗


 ,

and it coincides with the adjoint operator of K on Dn.
This section will be devoted to the proof of the following result which con-

tains two crucial properties of the Kalman operator K:

Theorem 2.1. There exists a positive constant C such that:

1. Continuity of K and K∗: If u ∈ D(Rn−1)nm (resp. u ∈ D(Rn−1)n)
then Ku ∈ L2(Ω)n (resp. K

∗u ∈ L2(Ω)nm) and

‖Ku‖
2
L2(Ω)n ≤ C

∥∥Rn−1u
∥∥2
L2(Ω)nm ,

(resp. ‖K∗u‖
2
L2(Ω)nm ≤ C

∥∥Rn−1u
∥∥2
L2(Ω)n

).

2. Invertibility of K∗ and continuity of the inverse: Assume that
condition (1.6) is fulfilled and let k ∈ N with k ≥ (2n − 1)(n − 1).
Then, for every ϕ ∈ L2(Ω)n satisfying K∗ϕ ∈ D(Rk)nm, one has ϕ ∈
D(Rk−(2n−1)(n−1))n and

(2.12)
∥∥∥Rk−(2n−1)(n−1)ϕ

∥∥∥
2

L2(Ω)n
≤ C

∥∥RkK∗ϕ
∥∥2
L2(Ω)nm .

Remark 2.1. Let us remark that, in general, the operator K (resp. K∗) is
not onto, even if KerK = {0}. Indeed, assume that n ≥ 2, m = 1 and take,
for instance, D = diag (di)n×n (d1, d2, ..., dn > 0) and B ≡ e1. We consider
f ≡ (Ae1) g ∈ L2(Ω)n with g ∈ H1

0 (Ω) such that Rg 6∈ L2(Ω). If we pose the
equation

x ∈ D(K) such that Kx = f,

we readily see that it admits the solution x = (0, ..., 0, x1, x0)
t with x1 = g ∈

L2(Ω) and x0 = −d1Rx1 6∈ L2(Ω):

Kx = LBx1 +Bx0 ≡ (d1Rx1 + x0) e1 + (Ae1)x1 ≡ f.

Thus, the previous equation has no solution in D(K) and K is not onto.

Before proving Theorem 2.1, let us introduce some notations. We recall
that (λp)p∈N∗ is the sequence of eigenvalues of the operator −R with Dirichlet
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boundary conditions and (φp)p∈N∗ the associated sequence of eigenfunctions.
For any j, p ∈ N

∗, we consider the projection operator

P j
p : Ψ = (Ψk)1≤k≤j ∈ L2(Ω)j → P j

p (Ψ) = ((Ψk, φp))1≤k≤j ∈ R
j ,

where (·, ·) stands for the scalar product in L2(Ω). All along this paper we
denote by | · | the euclidian norm in R

j . Thus, if j ∈ N
∗, a characterization of

Dj is:

Dj =



Ψ =

∑

p≥1

Ψpφp : Ψp ∈ R
j and

∑

p≥1

λ2mp |Ψp|
2
<∞, ∀m ≥ 0



 .

For p ∈ N
∗, let us denote Lp = −λpD +A ∈ L(Rn) and

Kp = [Lp |B] = [Ln−1
p B |Ln−2

p B | · · · |B] ∈ L(Rnm,Rn).

It is not difficult to show the equalities

{
L (bφp) = (Lpb)φp, ∀b ∈ R

n, ∀p ≥ 1 and

K (bφp) = (Kpb)φp, ∀b ∈ R
nm, ∀p ≥ 1.

From these identities and taking into account that L and K are closed un-
bounded operators, a direct computation gives





Ly =
∑

p≥1

LpP
n
p (y)φp, ∀y ∈ D(L),

Ku =
∑

p≥1

KpP
nm
p (u)φp, ∀u ∈ D(K),

and then,

D (K) =

{
u ∈ L2(Ω)nm :

∑

p≥1

∣∣KpP
nm
p (u)

∣∣2 <∞

}
.

In the same way, we also have:





K∗ =
∑

p≥1

K
∗
pP

n
p (·)φp, K

∗
p = [Lp |B]∗

D (K∗) =

{
ϕ ∈ L2(Ω)n :

∑

p≥1

∣∣K∗
pP

n
p (ϕ)

∣∣2 <∞

}
.

Finally, we define the operator KK∗ : D(KK∗) ⊂ L2(Ω)n → L2(Ω)n, with
domain

D(KK∗) = {ϕ ∈ L2(Ω)n : K∗ϕ ∈ D(K), KK∗ϕ ∈ L2(Ω)n}.
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Note that KK
∗ is a closed unbounded operator and, again, a simple calculation

provides the equalities:





KK∗ϕ =
∑

p≥1

KpK
∗
pP

n
p (ϕ)φp,

D (KK∗) =



ϕ ∈ L2(Ω)n :

∑

p≥1

∣∣K∗
pP

n
p (ϕ)

∣∣2 ,
∑

p≥1

∣∣KpK
∗
pP

n
p (ϕ)

∣∣2 <∞



 .

With these notations, it is easy to show that:

Proposition 2.2. The following conditions are equivalent:

1. Ker (K∗) = {0}.

2. Ker (KK∗) = {0}.

3. detKpK
∗
p 6= 0 for every p ≥ 1.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1.

1. From the expression of Kp (resp. K∗
p), it is not difficult to prove that for

some positive constant we have

(2.13) |Kpb| ≤ Cλn−1
p |b|, ∀b ∈ R

nm and p ≥ 1,

(resp. |K∗
pb| ≤ Cλn−1

p |b|, for every b ∈ R
n and p ≥ 1). Now, if u ∈ D(Rn−1)nm,

one has




‖Ku‖
2
L2(Ω)n =

∑

p≥1

∣∣KpP
nm
p (u)

∣∣2 ≤ C
∑

p≥1

λ2(n−1)
p

∣∣Pnm
p (u)

∣∣2

= C
∥∥Rn−1u

∥∥2
L2(Ω)nm .

The proof for K∗ can be obtained in a similar way.

2. Let us consider ϕ ∈ L2(Ω)n with K∗ϕ ∈ D(Rr)nm and let us set u ≡ K∗ϕ ∈
D(Rr)nm. This last equality can be equivalently written as

K∗
pP

n
p (ϕ) = Pnm

p (u), ∀p ≥ 1.

Applying Kp, we get:

(2.14) KpK
∗
pP

n
p (ϕ) = KpP

nm
p (u), ∀p ≥ 1.

Let us remark that the elements of the matrix [−λD +A | B] [−λD +A | B]∗

are polynomials of degree 2(n− 1). Therefore, we can write

[−λD +A | B] [−λD +A | B]
∗
= [M1(λ), · · · ,Mn(λ)] ,
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with Mj(λ) = (pij(λ))1≤i≤n, 1 ≤ j ≤ n, and pij(λ) polynomials of degree
2(n− 1). For λ ∈ R, Z ∈ R

n and 1 ≤ i ≤ n we introduce
{
F (λ) = det [−λD +A | B] [−λD +A | B]

∗
and

Fi(λ, Z) = det [M1(λ), · · · ,Mi−1(λ), Z,Mi+1(λ), · · · ,Mn(λ)] .

The function F (λ) is a polynomial of degree 2n(n− 1) and taking into account
the condition (1.6) and Proposition 2.2 we deduce

F (λp) = detKpK
∗
p 6= 0, ∀p ≥ 1.

Thus, F (λ) is not the null polynomial and we deduce that, in particular, there
is C > 0 such that

|F (λp)| ≥ C > 0, ∀p ≥ 1.

On the other hand, Fi(λ, Z) is a linear functional with respect to Z and a
polynomial of degree 2(n− 1)2 with respect to λ. We can easily verify that, for
some C > 0, we have

|Fi(λ, Z)| ≤ C (|λ|+ 1)
2(n−1)2

|Z|, ∀(λ, Z) ∈ R× R
n.

Coming back to (2.14) we have (Kramer’s rule)

(
Pn
p (ϕ)

)
i
=
Fi(λp,KpP

nm
p (u))

F (λp)
, 1 ≤ i ≤ n.

This last inequality together with (2.13) and the properties of F and Fi give
∣∣Pn

p (ϕ)
∣∣ ≤ Cλ2(n−1)2

p

∣∣KpP
nm
p (u)

∣∣ ≤ Cλ(2n−1)(n−1)
p

∣∣Pnm
p (u)

∣∣ , ∀p ≥ 1.

Since u ≡ K∗ϕ ∈ D(Rr)nm and k ≥ (2n− 1)(n− 1) we deduce
∑

p≥1

λ2k−2(2n−1)(n−1)
∣∣Pn

p (ϕ)
∣∣2 ≤

∑

p≥1

λ2kp
∣∣Pnm

p (u)
∣∣2 <∞,

i.e. (2.12). This ends the proof of Theorem 2.1.

The previous proof in particular shows the following property.

Corollary 2.3. Either there exists p0 ∈ N
∗ such that rankKp = n for every

p > p0 or rankKp < n for every p ∈ N
∗.

Proof. The alternative comes from the fact that either the polynomial F (λ) is
identically 0, either it is far from 0 for any λ sufficiently large.

Remark 2.2. From the previous corollary we deduce that if for some p̂ ≥ 1 the
condition rank [(−λp̂D +A) |B] = n holds, then there exists p0 ≥ 1 such that

rank [(−λpD +A) |B] = n, ∀p ≥ p0.

Under the previous hypothesis we will see in the last section that we can show
that system (1.4) is exactly controllable to the trajectories when condition (1.6)
is not fulfilled and the initial data y0 and y∗0 belong to an appropriate infinite-
dimensional subspace of L2(Ω)n.
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3 Proof of Theorems 1.2 and 1.3. The Carleman

inequality

This section is devoted to prove Theorems 1.2 and 1.3. To this end, we will
also prove a Carleman inequality for the solutions of a scalar parabolic equation
of order 2n. We will deduce Theorem 1.2 from this result and Theorem 1.3
combining this result and condition (1.6).

First of all let us recall the notations for Carleman’s estimate (see [11] and
[16]). We introduce the following functions:





η(x, t) :=
β0(x)

t(T − t)
, ∀(x, t) ∈ ΩT = Ω× (0, T ),

ρ(t) :=
1

t(T − t)
, ∀t ∈ (0, T ).

where β0 ∈ C2(Ω). Then, for τ ∈ R we define the functional
(3.15)

I(τ, ϕ) =

∫∫

ΩT

(sρ)τ−1e−2sη
(
|ϕt|

2 + |Rϕ|2 + (sρ)2 |∇ϕ|2 + (sρ)4 |ϕ|2
)
.

Let ω′ be a non-empty open subset of Ω such that ω′ ⊂⊂ ω ⊂ Ω. Using the
notation ω′

T = ω′ × (0, T ), we have the following

Theorem 3.1. Let τ ∈ R and d > 0 be fixed. Then, there exist a positive
function β0 ∈ C2(Ω) (only depending on Ω and ω′) and two positive constants

σ̃0 > 0 and C̃0 (which only depend on Ω, ω′, (rij)1≤i,j≤N , d and τ) such that for
every ϕ ∈ L2(0, T ;H1

0(Ω)) with ∂tϕ± dRϕ ∈ L2(ΩT ), the following (Carleman)
estimate holds

I(τ, ϕ) ≤ C̃0

(∫∫

ΩT

(sρ)τe−2sη |∂tϕ± dRϕ|2 +

∫∫

ω′

T

(sρ)τ+3e−2sη |ϕ|2
)
,

for all s ≥ s̃0 = σ̃0

(
T + T 2 + T 2||c||

2/3
∞

)
.

The proof of this result can be found in [16] although the authors do not
specify the way the constant s0 depends on T . This explicit dependence can be
obtained arguing as in [10].

3.1 A Carleman estimate for a scalar parabolic equation

of order 2n

In this subsection we will consider φ, with Ri∂jtφ ∈ L2(0, T ;H2(Ω)∩H1
0 (Ω)) for

every i, j ∈ N, a solution of the following scalar parabolic equation of order 2n

(3.16)

{
P (∂t,∇)φ = 0 in ΩT ,

Rkφ = 0 on ΣT , ∀k ≥ 0,

11



where P (∂t,∇) is the operator given by P (∂t,∇) = det (∂tId+D∗R+A∗).
Using (1.5) we can compute this determinant and obtain





P (∂t,∇) = det
(
∂tId+ P ∗J(P ∗)−1R +A∗

)
= det

(
∂tId+ JR+ (P ∗)−1AP ∗

)

= Pn · · ·P1 +

n−1∑

p=2

∑

1≤i1<···<ip≤n

αi1,...,ipPi1 . . . Pip +

n∑

i=1

αiPi + α,

Pi ≡ ∂t + diR, 1 ≤ i ≤ n, di > 0,

and αi1,...,ip , αi, α ∈ R depend on the entries of D and A.
The objective of this section is to prove a Carleman estimate for the function

φ, solution to (3.16):

Theorem 3.2. Let us fix k1, k2 ∈ N and τ0 ∈ R. Then, there exist two positive
constants C0 and σ0 (only depending on Ω, ω, n, (rij)1≤i,j≤N , D, A, τ0, k1 and
k2) and r = r(n) ∈ N such that the following inequality

(3.17)

k1∑

i=0

k2∑

j=0

I(τ0 − 4(i+ j), Ri∂jt φ) ≤ C0

∫∫

ωT

(sρ)τ0+re−2sη|φ|2,

holds for all s ≥ σ0

(
T + T 2 + T 2||c||

2/3
∞

)
and for every φ solution to (3.16) that

satisfies Ri∂jt φ ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)) for every i, j ∈ N. In (3.17), I(τ, φ)

is given by





I(τ, φ) = I(τ + 3(n− 1), φ) +

n∑

i=1

I(τ + 3(n− 2), Piφ)

+

n−1∑

p=2

∑

1≤i1<···<ip≤n

I(τ + 3(n− p− 1), Pip . . . Pi1φ),

where I(·, ·) is defined in (3.15).

Proof: All along the proof, C will be a generic constants that may depend on Ω,
ω, n, the matrix (rij)1≤i,j≤N , D, A, τ0, k1 and k2. For the reader’s convenience
we will divide the proof in several steps:

Step 1: Let us denote

(3.18) F (φ) = −




n−1∑

p=2

∑

1≤i1<···<ip≤n

αi1,...,ipPi1 . . . Pip +
n∑

i=1

αiPi + α


φ

and consider the following change of variables:

(3.19)

{
ψ1 = φ

ψi = Pi−1ψi−1 = (∂t + di−1R)ψi−1, 2 ≤ i ≤ n.

12



Taking into account the regularity assumptions on φ, (3.16) and (3.18), it is
not difficult to check that ψi, F (φ) ∈ L2(ΩT ) for every i, 1 ≤ i ≤ n, and
Ψ = (ψ1, ..., ψn)

∗ satisfies the cascade system

(3.20)





(∂t + d1R)ψ1 = ψ2 in ΩT ,

(∂t + d2R)ψ2 = ψ3 in ΩT ,

...

(∂t + dnR)ψn = F (φ) in ΩT ,

ψi = 0 on ΣT , ∀i : 1 ≤ i ≤ n.

In a first step, we will establish the inequality

(3.21)





n∑

i=1

I(τ0 + 3(n− i), ψi) ≤ C

( n∑

i=1

∫∫

ω′

T

(sρ)τ0+3(n−i+1)e−2sη |ψi|
2

+

∫∫

ΩT

(sρ)τ0e−2sη |F (φ)|
2

)

for every s ≥ σ1

(
T + T 2 + T 2||c||

2/3
∞

)
and where C and σ1 are positive con-

stants which depend Ω, ω, n, (rij)1≤i,j≤N , D and τ0.
Indeed, applying Theorem 3.1 to each function ψi (1 ≤ i ≤ n), solution to

system (3.20), with τ = τ0 + 3(n − i), we obtain the existence of a constant
σ1 > 0 (depending on Ω, ω, n, (rij)1≤i,j≤N , D and τ0) such that





I(τ0 + 3(n− i), ψi) ≤ C

(∫∫

ΩT

(sρ)τ0+3(n−i)e−2sη|ψi+1|
2

+

∫∫

ω′

T

(sρ)τ0+3(n−i+1)e−2sη|ψi|
2

)
, 1 ≤ i ≤ n− 1,

and

I(τ0, ψn) ≤ C

(∫∫

ΩT

(sρ)τ0e−2sη |F (φ)|
2
+

∫∫

ω′

T

(sρ)τ0+3e−2sη |ψn|
2

)
,

hold for every s ≥ σ1

(
T + T 2 + T 2||c||

2/3
∞

)
. Thus a suitable combination of

these inequalities leads to (3.21).
Note that for the moment, F (φ) depends itself on φ = ψ1. So in the next

step, we will prove that we can get rid of the local terms and the term corre-
sponding to F (φ) in the right-hand-side of (3.21).

Step 2: In this step we will reduce the number of observations (local integrals)
in inequality (3.21). To be precise, we will prove that there exist C and σ2 (σ2
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depending on Ω, ω, n, (rij)1≤i,j≤N , D, A and τ0) such that

(3.22)





I(τ0 + 3(n− 1), φ) +

n∑

i=1

I(τ + 3(n− 2), Piφ)

+
n−1∑

p=2

∑

1≤i1<···<ip≤n

I(τ + 3(n− p− 1), Pip . . . Pi1φ)

≤ C

∫∫

ωT

(sρ)τ0+re−2sη |φ|2 ,

for every s ≥ σ2

(
T + T 2 + T 2||c||

2/3
∞

)
.

The starting point of the proof is estimate (3.21). For i = 1, . . . , n we
introduce a family of bounded open sets (ωi)1≤i≤n and an associated family of
truncation functions (δi)1≤i≤n satisfying

ωn := ω′ ⊂⊂ ωn−1 ⊂⊂ · · · ⊂⊂ ω1 := ω ⊂ Ω,

δi ∈ C2
c (ω

i−1), δi = 1 in ωi and 0 ≤ δi ≤ 1 in ωi−1.
Let us fix ℓ ≥ 3 and k ∈ {2, ..., n}. Let us also consider the equation for ψk−1

in system (3.20), i.e., the equation ∂tψk−1+dk−1Rψk−1 = ψk. Multiplying then

this equation by θδkψk with θ(x, t) = (sρ(x, t))τ0+ℓ e−2sη, we obtain that
(3.23)



∫∫

ωk
T

(sρ)
τ0+ℓ

e−2sη|ψk|
2 ≤

∫∫

ΩT

θδk|ψk|
2

=

∫∫

ΩT

θδk (∂tψk−1 + dk−1Rψk−1)ψk = I1 + I2.

In order to bound I1 and I2, we will reason as in [22] and [12]. All along

this second step we will assume that s ≥ σ1

(
T + T 2 + T 2||c||

2/3
∞

)
. In particular

s ≥ σ1(T + T 2) and, then, for every µ, ν ∈ R, ν ≤ µ, and for every (x, t) ∈ ΩT ,
one has

(3.24)





(sρ)
ν
≤ (sρ)

µ
,
∣∣∇
[
(sρ)

ν
e−2sη

]∣∣ ≤ C (sρ)
ν+1

e−2sη,

∣∣∂t
[
(sρ)ν e−2sη

]∣∣+
N∑

i,j=1

∣∣∂2ij
[
(sρ)ν e−2sη

]∣∣ ≤ C (sρ)ν+2 e−2sη.

Thus




I1 = −

∫∫

ΩT

δk (∂tθ)ψk−1ψk −

∫∫

ΩT

δkθψk−1∂tψk

≤ C

(∫∫

ΩT

δk (sρ)
τ0+ℓ+2

e−2sη|ψk−1||ψk|+

∫∫

ΩT

δkθ|ψk−1||∂tψk|

≤
ε

2
I(τ0 + 3(n− k), ψk) +

C

ε

∫∫

ωk−1
T

(sρ)τ0+2ℓ−3(n−k)+1 e−2sη|ψk−1|
2,
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where ε > 0 is fixed and where ωk−1
T = ωk−1 × (0, T ). On the other hand,

I2 = dk−1

∫∫

ΩT

ψk−1R (δkθψk) .

But using (3.24),





|R (δkθψk) | =

∣∣∣∣(Rδk)θψk + 2
N∑

i,j=1

rij (∂jδk) (∂iθ)ψk + δk(Rθ)ψk

+ 2

N∑

i,j=1

rij (∂iδk) θ (∂jψk) + δkθ(Rψk)

+ 2

N∑

i,j=1

rijδk (∂iθ) (∂jψk)

∣∣∣∣

≤ C1ωk−1
T

(sρ)
τ0+ℓ

e−2sη
[
(sρ)

2
|ψk|+ sρ|∇ψk|+ |Rψk|

]
,

and therefore

I2 ≤
ε

2
I(τ0 + 3(n− k)) +

C

ε

∫∫

ωk−1
T

(sρ)
τ0+2ℓ−3(n−k)+1

e−2sη|ψk−1|
2.

Coming back to (3.23) we get
∫∫

ωk
T

(sρ)
τ0+ℓ

e−2sη|ψk|
2 ≤ εI(τ0 + 3(n− k)) +

C

ε

∫∫

ωk−1
T

(sρ)
K
e−2sη|ψk−1|

2

with ε > 0 and K = τ0 + 2ℓ− 3(n− k) + 1.
In order to show (3.22) we apply this last inequality with ℓ = 3, k = n and

ε = 1/2C (C as in (3.21)). So, from (3.21), we infer





n∑

i=1

I(τ0 + 3(n− i), ψi) ≤ C

( n−1∑

i=1

∫∫

ωn−1
T

(sρ)τ0+K(i)e−2sη |ψi|
2

+

∫∫

ΩT

(sρ)τ0e−2sη |F (φ)|
2

)
,

for every s ≥ σ1

(
T + T 2 + T 2||c||

2/3
∞

)
. In this inequality, C is a new positive

constant and K(i) = max{7, 3(n− i+ 1)} (1 ≤ i ≤ n− 1).
We can repeat this process and show the existence of a constant C > 0 and

an integer r = r(n) ∈ N such that





n∑

i=1

I(τ0 + 3(n− i), ψi) ≤ C

(∫∫

ωT

(sρ)τ0+re−2sη |ψ1|
2

+

∫∫

ΩT

(sρ)τ0e−2sη |F (φ)|2
)
,
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for all s ≥ σ1

(
T + T 2 + T 2||c||

2/3
∞

)
, which in view of (3.19) implies

(3.25)





I(τ0 + 3(n− 1), φ) +

n∑

i=2

I(τ0 + 3(n− i), Pi−1 . . . P1φ)

≤ C

(∫∫

ωT

(sρ)τ0+re−2sη |φ|
2
+

∫∫

ΩT

(sρ)τ0e−2sη |F (φ)|
2

)
.

Note, at this level, that we have got rid of the local terms in the right-hand-
side of (3.21) but the left-hand-side of (3.25) does not contains enough terms
to absorb the term corresponding to F (φ).

So let Π denote then any permutation of {1, 2, . . . , n} and consider, instead
of (3.19), the new change of variable

{
ψ1 = φ
ψi = PΠ(i−1)ψi−1 =

(
∂t + dΠ(i−1)R

)
ψi−1, 2 ≤ i ≤ n.

Then system (3.20) becomes





(
∂t + dΠ(1)R

)
ψ1 = ψ2 in ΩT ,(

∂t + dΠ(2)R
)
ψ2 = ψ3 in ΩT ,

...(
∂t + dΠ(n)∆

)
ψn = F (φ) in ΩT ,

ψi = 0 on ΣT

and the same procedure as above leads to a similar estimate as (3.25) which
reads then




I(τ0 + 3(n− 1), φ) +
n∑

i=2

I(τ0 + 3(n− i), PΠ(i−1) . . . PΠ(1)φ)

≤ C

(∫∫

ωT

(sρ)τ0+re−2sη |φ|
2
+

∫∫

ΩT

(sρ)τ0e−2sη |F (φ)|
2

)
,

for all s ≥ σ1

(
T + T 2 + T 2||c||

2/3
∞

)
, where C is a new positive constant.

Thus, considering all such possible permutations with associated change of
variable, we finally obtain
(3.26)



I(τ0 + 3(n− 1), φ) +

n∑

i=1

I(τ0 + 3(n− 2), Piφ)

+
n−1∑

p=2

∑

1≤i1<···<ip≤n

I(τ0 + 3(n− p− 1), Pip . . . Pi1φ)

≤ C

(∫∫

ωT

(sρ)τ0+re−2sη |φ|
2
+

∫∫

ΩT

(sρ)τ0e−2η |F (φ)|
2

)
,
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where s ≥ σ1

(
T + T 2 + T 2||c||

2/3
∞

)
and C is a new positive constant.

Now, we are going to prove that the term corresponding to F (φ) can be
absorbed by the left-hand-side of (3.26). Using the definition of F (φ) (see (3.18))
we have that:

(3.27)





∫∫

ΩT

(sρ)τ0e−2sη |F (φ)|
2
≤ C

∫∫

ΩT

(sρ)τ0e−2sη

(
|φ|

2
+

n∑

i=1

|Piφ|
2

+

n−1∑

p=2

∑

1≤i1<···<ip≤n

∣∣Pi1 . . . Pipφ
∣∣2
)
,

where C is a new positive constant (observe that C also depends on A through
the coefficients αi1,...,ip , αi, α).

Finally, choosing s ≥ σ2

(
T + T 2 + T 2||c||

2/3
∞

)
, with σ2 depending on Ω, ω,

n, (rij)1≤i,j≤N , D, A and τ0, we deduce

C(sρ)τ0 ≤
1

2
(sρ)τ0+3(n−p), ∀p : 0 ≤ p ≤ n− 1,

and (3.22) from (3.26) and (3.27).

Remark 3.1. In view of steps 1 and 2, instead of (3.16), one can consider the
following system {

P (∂t,∇)φ = f in ΩT ,

Rkφ = 0 on ΣT , ∀k ≥ 0,

with f ∈ L2(ΩT ). It is a direct application to deduce:





I(τ0 + 3(n− 1), φ) +

n∑

i=1

I(τ + 3(n− 2), Piφ)

+

n−1∑

p=2

∑

1≤i1<···<ip≤n

I(τ + 3(n− p− 1), Pip . . . Pi1φ)

≤ C

∫∫

ωT

(sρ)τ0+re−2sη |φ|
2
+

∫∫

ΩT

(sρ)τ0e−2sη |f |
2
,

for every s ≥ σ2

(
T + T 2 + T 2||c||

2/3
∞

)
.

Step 3: It is interesting to remark that, thanks to the regularity assumptions
imposed on φ, if 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2, R

i∂jtφ also fulfills equation (3.16)
and the two previous steps developed for φ can be repeated forRi∂jt φ. Therefore,
from (3.22), if we take τ ∈ R we deduce the existence of two positive constants
Cτ and στ , which depend on Ω, ω, n, (rij)1≤i,j≤N , D, A and τ , such that

I(τ, Ri∂jt φ) ≤ Cτ

∫∫

ωT

(sρ)τ+re−2sη
∣∣∣Ri∂jt φ

∣∣∣
2

,
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for every s ≥ στ

(
T + T 2 + T 2||c||

2/3
∞

)
(we recall that I(τ, φ) is defined in the

statement of Theorem 3.2).
On the other hand, it is easy to check that for any ψ ∈ L2(0, T ;D(R)) with

∂tψ ∈ L2(ΩT )
∫∫

ωT

(sρ)τ+re−2sη
(
|Rψ|2 + |∂tψ|

2
)
≤ I(τ + 4, ψ) ≤ I(τ + 4, ψ),

(I(·, ·) is given by (3.15)). Thus, if s ≥ στ

(
T + T 2 + T 2||c||

2/3
∞

)
, one has

{
I(τ, Ri∂jt φ) ≤ CτI(τ + 4, Ri−1∂jt φ),

I(τ, Ri∂jt φ) ≤ CτI(τ + 4, Ri∂j−1
t φ).

Now, if we successively apply these last inequalities for 1 ≤ i ≤ k1 and 1 ≤
j ≤ k2 we deduce the existence of two positive constants C̃τ and σ̃τ (depending
on Ω, ω, n, (rij)1≤i,j≤N , D, A, τ , k1 and k2) for which

I(τ, Ri∂jtφ) ≤ C̃τI(τ + 4(i+ j), φ)

holds for every s ≥ σ̃τ

(
T + T 2 + T 2||c||

2/3
∞

)
and for every i, j with 0 ≤ i ≤ k1

and 0 ≤ j ≤ k2. Finally, choosing τ = τ0 − 4(i + j) and taking into account
inequality (3.22), we obtain (3.17).

Remark 3.2. As far as the Carleman estimate is concerned, it is enough to
assume that the diffusion coefficients satisfy di 6= 0 for 1 ≤ i ≤ n.

3.2 Proof of Theorem 1.2. The Carleman inequality for

the adjoint problem

We will devote this section to show the Carleman estimate for the adjoint prob-
lem (1.8) stated in Theorem 1.2. Let us recall that D stands for the space
D =

⋂∞
p=0D(Rp), a space which is dense in L2(Ω).

The starting point relies on the following observation.

Proposition 3.3. Let us consider ϕ0 ∈ Dn and let ϕ = (ϕ1, · · · , ϕn)
∗
be the

corresponding solution of problem (1.8). Then, ϕ ∈ Ck([0, T ];D(Rp)n) for every
k, p ≥ 0, and, for every i (with 1 ≤ i ≤ n) ϕi solves (3.16).

Proof. Assume ϕ0 ∈ Dn and let ϕ = (ϕ1, · · · , ϕn)
∗ be the corresponding

solution of problem (1.8). Setting P ∗ψ(x, t) = ϕ(x, T − t) for (x, t) ∈ ΩT , ψ
solves problem:

{
∂tψ = (JR + (P ∗)

−1
A∗P ∗)ψ in ΩT ,

ψ = 0 on ΣT , ψ(x, 0) = (P ∗)
−1
ϕ0 in Ω,

(see (1.5) for the definition of J and P ). The operator JR with domainD(JR) =(
H2(Ω) ∩H1

0 (Ω)
)n
, is dissipative and self adjoint on the space L2(Ω)n: it is then
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the generator of an analytic semigroup. Since (P ∗)
−1
A∗P ∗ is a bounded linear

operator on L2(Ω)n, by the perturbation theory of analytic semigroups (see [21,

Corollary 2.2., p. 81]), the operator JR+(P ∗)
−1
A∗P ∗ is also the generator of an

analytic semigroup. Since D((JR + (P ∗)
−1
A∗P ∗)p) = D(Rp)n, the regularity

part follows from the semigroup theory.
Let Q(η, ξ) = ηI + D∗ξ + A∗ for (η, ξ) ∈ R

2 and set Q(∂t,∇) = ∂t +
D∗R + A∗ := (Qij(∂t,∇))1≤i,j≤n. As operators acting on C∞([0, T ];Dn), all

the entries Qij(∂t,∇) live this space invariant and commute between them. So,
as it is done in [15, I.VI.4, p. 144], in the system Q(∂t,∇)ϕ = 0, we carry out the
(Gauss) algebraic elimination process as if the operators were constants. With
P (∂t,∇) = det Q(∂t,∇), the conclusion follows.

Proof of Theorem 1.2: Firstly, we will assume that ϕ0 ∈ Dn. Let ϕ be the
solution to (1.8) corresponding to ϕ0. We can then apply Proposition 3.3 and
deduce that ϕ ∈ Cℓ([0, T ];D(Rp)n), for every ℓ, p ≥ 0, and ϕi satisfies (3.16)
for every i, 1 ≤ i ≤ n. Also, (B∗ϕ)j lies in Cℓ([0, T ];D(Rp)n) and solves (3.16),
for all j (with 1 ≤ j ≤ m).

Thus Theorem 3.2 can be applied to φ = (B∗ϕ)i (1 ≤ i ≤ m) with k1 = k,
k2 = n − 1 and τ0 = τ − 4k − n + 4 deducing the existence of two positive
constants C̃ and σ̃ (only depending on Ω, ω, n, (rij)1≤i,j≤N , D, A, k and τ)
such that

k∑

l=0

n−1∑

j=0

I(τ0 − 4(l+ j), Rl∂jt (B
∗ϕ)i) ≤ C̃

∫∫

ωT

(sρ)τ0+re−2sη |B∗ϕ|
2

for every s ≥ s̃ := σ̃
(
T + T 2 + T 2||c||

2/3
∞

)
. Observe that thanks to (3.24), if

s ≥ s̃ we can affirm

(sρ(t))τ ≤ C(sρ(t))τ0−4(l+j)+3n, ∀t ∈ (0, T ),

for every l, j with 0 ≤ l ≤ k, 0 ≤ j ≤ n − 1. The definition of I (see the
statement of Theorem 3.2) and K leads immediately to

(3.28)

n−1∑

j=0

∫∫

ΩT

(sρ)τe−2sη
∣∣∣Rk∂jt (B

∗ϕ)i

∣∣∣
2

≤ C̃

∫∫

ωT

(sρ)τ+K+re−2sη |B∗ϕ|
2
,

for every s ≥ σ̃
(
T + T 2 + T 2||c||

2/3
∞

)
and i = 1, · · · ,m. In (3.28), r = r(n) is

as in the statement of Theorem 3.2 and K = 4k + n− 4.
On the other hand, using (1.8) and the expression of K∗ we get:

K
∗ϕ(·, t) ≡

(
(−1)n−1∂n−1

t B∗ϕ, (−1)n−2∂n−2
t B∗ϕ, · · · ,−∂tB

∗ϕ,B∗ϕ
)∗

(·, t)

in [0, T ). Now, if we set M0 = maxΩ β0 and use (3.28) we infer (1.10) for every

s ≥ σ̃
(
T + T 2 + T 2||c||

2/3
∞

)
. This concludes the proof in the case ϕ0 ∈ Dn.

The general case can be easily obtained from a density argument. Indeed, if
ϕ0 ∈ L2(Ω)n there exists a Cauchy sequence {ϕℓ

0}ℓ≥1 ⊂ Dn such that ϕℓ
0 → ϕ0
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in L2(Ω)n. If ϕℓ and ϕ are, respectively, the solution to (1.8) corresponding to
ϕℓ
0 and ϕ0, we have ϕℓ → ϕ in L2(Q)n and RkK∗ϕℓ → RkK∗ϕ in D′(ΩT )

n for
every k ≥ 0. Observe that (ϕℓ, ϕℓ

0) satisfies inequality (1.11) for every ℓ ≥ 1.
Also, inequality (1.11) implies that {RkK∗ϕℓ}ℓ≥1 is a Cauchy sequence in the

weighted space L2((sρ)τ/2e
−sm0
t(T−t) ; ΩT ). These previous considerations permit

to pass to the limit in the Carleman inequality (1.11) satisfied by (ϕℓ, ϕℓ
0) and

obtain the result in the general case. This ends the proof.

We end the section with the proof of Theorem 1.3. As said above, at this
point we will use the assumption (1.6).

Proof of Theorem 1.3: It is a direct consequence of the assumption on
K∗: taking account (2.12) and (1.10), if k ≥ (2n − 1)(n − 1) we deduce
the existence of a new positive constant C for which (1.11) holds for every

s ≥ σ̃
(
T + T 2 + T 2||c||

2/3
∞

)
. This finalizes the proof.

4 The Kalman condition. Proof of Theorem 1.1

We will devote this section to the proof of Theorem 1.1.

Proof of Theorem 1.1: Let us begin by proving the necessary part of The-
orem 1.1: It is well-known that the null-controllability is equivalent to the ob-
servability estimate (1.9) for any solution of the adjoint problem (1.8).

Suppose that Ker (K∗) 6= {0}. From Proposition 2.2 it follows that there
exists p0 ∈ N

∗ such that

rankKp0 = rank [(−λp0D +A) |B] < n.

Therefore, thanks to Kalman’s rank condition applied to the ordinary differential
system y′ = (−λp0D +A) y + Bv we infer that this system is not controllable.
Thus, there exists a non zero solution zp0(t) ∈ R

n to the associated adjoint
system

− z′ = (−λp0D
∗ +A∗)z in (0, T ),

satisfying B∗zp0(t) = 0 for every t ∈ [0, T ]. Then, letting ϕ0 = zp0(T )φp0 , where
φp0 is the normalized eigenfunction associated with λp0 , it is easy to check that
the function ϕ(t, x) = zp0(t)φp0 (x) is the solution of (1.8) corresponding to ϕ0.
It is non zero and satisfies B∗ϕ(x, t) = 0 in ΩT . Obviously this solution does not
satisfy the observability inequality (1.9), and thus (1.4) is not null controllable.

Remark 4.1. Observe that, if condition (1.6) is not satisfied, then system (1.4)
is not null controllable even if ω = Ω.

We turn now to the sufficient part of Theorem 1.1. As said above, the
exact controllability to the trajectories of system (1.4) is equivalent to the null
controllability of this system. Therefore, it is enough to show the observability
inequality (1.9) for the solutions of the adjoint problem (1.8). Following [10],
we show inequality (1.9) combining the global Carleman inequality (1.11) and
the energy inequality satisfied by the solutions to the adjoint problem.
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Let ϕ ∈ L2(0, T ;H1
0 (Ω)

n) be the solution to (1.8) corresponding to ϕ0 ∈
L2(Ω)n. Thanks to the hypothesis (1.6), we can apply Theorem 1.3 with τ = 0
and k = (n− 1)(2n− 1) obtaining

∫ 3T/4

T/4

∫

Ω

e
−2sM0
t(T−t) |ϕ|2 ≤ C

∫∫

ωT

(sρ)le−2sη |B∗ϕ|2 ,

for every s ≥ σ
(
T + T 2 + T 2||c||

2/3
∞

)
, with l = 4(n− 1)(2n− 1) + n+ r and r

as in Theorem 1.2. It can be easily verified that

e
−2sM0
t(T−t) ≥ exp

(
−25sM0/(3T

2)
)
, ∀t ∈ (T/4, 3T/4),

and, if we take s ≥ (l/8m0)T
2, also

(sρ)le−2sη ≤ sl22lT−2l exp
(
−23m0s/T

2
)
≤

(
l

2em0

)l

, ∀(x, t) ∈ ΩT ,

where m0 = minΩ β0. From this three last inequalities, we readily deduce

(4.29)

∫ 3T/4

T/4

∫

Ω

|ϕ|2 ≤ CeCs/T 2

∫∫

ωT

|B∗ϕ|2,

for every s ≥ σ1

(
T + T 2 + T 2||c||

2/3
∞

)
and σ1 = max{σ, (l/8m0)} (C is a posi-

tive constant depending on Ω, ω, n, (rij)1≤i,j≤N , D and A).
On the other hand, taking into account the assumptions imposed to the

operator R and the matrix D (see (1.2) and (1.5)), it is not difficult to get the
following energy inequality satisfied by ϕ

d

dt

(
eC(1+||c||∞)t||ϕ(·, t)||2L2(Ω)n

)
≥ 0, ∀t ∈ (0, T ),

with C a positive constant depending on D and A. From this last inequality we
also obtain





||ϕ(·, 0)||2L2(Ω)n ≤ eC(1+||c||∞)T/4||ϕ(·, T/4)||2L2(Ω)n

≤
2

T
eC(1+||c||∞)3T/4

∫ 3T/4

T/4

∫

Ω

|ϕ|2.

This last inequality together with (4.29) (with s = σ1

(
T + T 2 + T 2||c||

2/3
∞

)
)

imply the observability inequality for the solutions to the adjoint problem (1.8):

(4.30) ||ϕ(·, 0)||2L2(Ω)n ≤ eC(1+1/T+||c||2/3
∞

+T+T ||c||∞)
∫∫

ωT

|B∗ϕ(x, t)|2,

with C > 0 a constant which depends on Ω, ω, n, (rij)1≤i,j≤N , D and A. This
finalizes the sufficient part and Theorem 1.1.
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5 Some additional comments, results and open

problems

1. Approximate controllability. As a consequence of Theorem 1.1, we can
prove that condition (1.6) also is a necessary and sufficient condition for the
approximate controllability of system (1.4). In fact, one has

Theorem 5.1. Let us assume that D satisfies (1.5). Then, system (1.4) (with
R given by (1.2)) is approximately controllable at time T if and only if the
Kalman operator K satisfies (1.6)

Proof: The sufficient part can be proved taking into account the global Car-
leman inequality (1.11). Indeed, it is well known that system (1.4) is approxi-
mately controllable at time T if and only if the adjoint problem (1.8) satisfies
the following unique continuation property:

“If ϕ ∈ C0([0, T ];L2(Ω)n) is a solution to (1.8) and B∗(t)ϕ ≡ 0 in ω × (0, T ),
then ϕ ≡ 0 in Q.”

This property is a direct consequence of (1.11).
Finally, the necessary condition can be deduced arguing as in the proof of

Theorem (1.1).

2. When condition (1.6) is fulfilled, it is also possible to compute the cost of
the exact controllability to the trajectories of system (1.4). As a consequence of
the observability inequality (4.30) and following the ideas of [10] we can prove:

Theorem 5.2. Let us assume that R is given by (1.2) and D satisfies (1.5).
Let y∗ ∈ L2(0, T ;H1

0(Ω)
n) ∩ C0([0, T ];L2(Ω)n) be a trajectory of system (1.4)

and let us fix y0 ∈ L2(Ω)n. Then, if (1.6) holds, there exists v ∈ L2(ΩT )
m

such that the solution to (1.4) satisfies y(·, T ) = y∗(·, T ) in Ω. Moreover, for
a positive constant C (which only depends on Ω, ω, n, (rij)1≤i,j≤N , D and A)
one has

||v||2L2(Ω)m ≤ exp
(
C
(
1 + 1/T + ||c||2/3∞ + T + T ||c||∞

))
||y0 − y∗(·, 0)||2L2(Ω)n .

3. It is possible to give a result on exact controllability to trajectories of sys-
tem (1.4) when condition (1.6) is not fulfilled but there exists p̂ ∈ N

∗ such that
rank [(−λp̂D +A) |B] = n. To be precise, let us consider

{
J = {p ∈ N

∗ : rank [(−λpD +A) |B] = n} and

X = span {φp : p ∈ J} ⊂ L2(Ω).

Thanks to Remark 2.2 we can conclude that J is an infinite set whence we
deduce that X is an infinite-dimensional closed subspace of L2(Ω). On the
other hand, let us fix y0 ∈ L2(Ω)n and a trajectory y∗ ∈ L2(0, T ;H1

0 (Ω)
n) ∩

C0([0, T ];L2(Ω)n) of system (1.4). Thus, one has:
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Theorem 5.3. Under the previous assumptions, if y0 − y∗(·, 0) ∈ Xn, then
there exists v ∈ L2(ΩT )

m such that the solution y to system (1.4) satisfies

y(·, T ) = y∗(·, T ) in Ω.

Proof: This result is a consequence of the following observability inequality for
the solutions ϕ of the adjoint problem (1.8) associated to initial data ϕ0 ∈ Xn:

(5.31) ||ϕ(·, 0)||2L2(Ω)n ≤ C

∫∫

ωT

|B∗ϕ(x, t)|2,

where C is a positive constant. So, let us prove this inequality.
Firstly, observe that thanks to the previous assumptions we can repeat the

proof of Theorem 2.1 and infer the existence of a constant C > 0 such that
for every ψ ∈ Xn satisfying K∗ψ ∈ D(Rk)nm (k ≥ (2n − 1)(n − 1)) one has
ψ ∈ D(Rk−(2n−1)(n−1))n and

∥∥∥Rk−(2n−1)(n−1)ψ
∥∥∥
2

L2(Ω)n
≤ C

∥∥Rk
K

∗ψ
∥∥2
L2(Ω)nm .

Secondly, we readily obtain that if ϕ0 ∈ Xn then the solution ϕ to (1.8)
satisfies ϕ(·, t) ∈ Xn for every t ∈ [0, T ]. Taking into account the two previous
considerations and inequality (1.10) (with τ = 0 and k = (2n− 1)(n − 1)), we
get ∫∫

ΩT

e
−2sM0
t(T−t) |ϕ|2 ≤ C

∫∫

ωT

(sρ)K+re−2sη |B∗ϕ|
2
,

for every s ≥ σ
(
T + T 2 + T 2||c||

2/3
∞

)
(M0, ρ, K, r and η are as in the statement

of Theorem 1.2).
Finally, The observability inequality (5.31) can be obtained from the previ-

ous Carleman inequality reasoning as in the proof of Theorem 1.1. This ends
the proof.

4. Theorems 1.1, 1.2 and 1.3 are still valid if in (1.4) we consider Neuman
boundary conditions instead of Dirichlet boundary conditions.

5. In our analysis we have strongly used the structure of the diffusion matrix
D. It would be very interesting to extend the results of this work to the case in
which D is a general positive definite matrix. Observe that, in this case, even
the case B ≡ Id ∈ L(Rn) (i.e., a distributed control in each equation of the
system) is still open.

6. The non autonomous problem. To our knowledge, the null controllability
problem of (1.4) when the operators and the coupling matrices A and B are
time-dependent is still open. We will address in details this question in the case
D = Id in a forthcoming paper (see [3]). On the other hand, the case in which
A and B depend on x seems to be much more complicated. A necessary and
sufficient condition for the exact controllability to the trajectories of system (1.4)
is open.
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7. Boundary controls. In view of known controllability results for a linear
heat equation, it would be natural to wonder whether the controllability result
for system (1.4) remains valid when one considers boundary controls exerted on
a relative open subset γ of the boundary ∂Ω. Nevertheless, there exist negative
results for some 1-d cascade linear coupled parabolic systems with n = 2 which
are null controllable in (0, T ) when we apply a distributed control e1v1ω and they
are not if we take y = e1v1γ on ∂Ω× (0, T ) as boundary control (cf. [8]). These
counterexamples reveal the different nature of the controllability properties for
a single heat equation and for coupled parabolic systems.

8. Extension to non smooth diffusion operators. Inspection of the proof
of Theorem 1.1 shows that the operator R has to satisfy only two conditions

• R must be self-adjoint and uniformly elliptic as (1.3),

• R must satisfy a Carleman estimate as in Theorem 3.1.

According to [6], [5] and [20], our result extends to operators R as (1.2) with
non smooth coefficients rij (see [6], [5] and [20] for exact assumptions).
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