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Abstract

In this paper we present two results on the existence of insensitizing controls for a
heat equation in a bounded domain of IRN . We first consider a semilinear heat
equation involving gradient terms with homogeneous Dirichlet boundary condi-
tions. Then a heat equation with a nonlinear term F (y) and linear boundary con-
ditions of Fourier type is considered. The nonlinearities are assumed to be globally
Lipschitz-continuous. In both cases, we prove the existence of controls insensitizing
the L2−norm of the observation of the solution in an open subset O of the domain,
under suitable assumptions on the data. Each problem boils down to a special type
of null controllability problem. General observability inequalities are proved for lin-
ear systems similar to the linearized problem. The proofs of the main results in this
paper involve such inequalities and rely on the study of these linear problems and
appropriate fixed point arguments.

Key words: controllability, nonlinear PDE of parabolic type, nonlinear gradient
terms
1991 MSC: 93B05, 35K55, 35K05

? This work has been partially financed by D.G.E.S. (Spain), Grant PB98–1134.
∗ Corresponding author.

Email addresses: Olivier.Bodart@math.univ-bpclermont.fr (O. Bodart),
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1 Setting the problems and main results

Let Ω ⊂ IRN , N ≥ 1, be a bounded connected open set with boundary ∂Ω ∈
C2. For T > 0, we denote Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ). Let ω and O
be nonempty open subsets of Ω. We first consider the nonlinear heat equation:






∂ty − ∆y + f(y,∇y) = ξ + v1ω in Q,

y = 0 on Σ, y(x, 0) = y0(x) + τ ŷ0(x) in Ω,
(1)

where f is a C1 globally Lipschitz-continuous function defined on IR × IRN ,
ξ ∈ L2(Q) and y0 ∈ L2(Ω) are given, ŷ0 ∈ L2(Ω) is unknown with |ŷ0|L2(Ω) = 1,
τ is a small unknown real number, and v ∈ L2(Q) is a control function to be
determined. Here, ∂t denotes the time derivative and 1ω is the characteristic
function of the set ω.

Let us define

Φ(y(·, ·; τ, v)) =
1

2

∫∫

O×(0,T )
|y(x, t; τ, v)|2 dx dt, (2)

where y(·, ·; τ, v) is the solution of (1) associated to τ and v. A control function
v is said to insensitize the functional Φ if

∂Φ(y(·, ·; τ, v))
∂τ

∣∣∣∣∣
τ=0

= 0, ∀ŷ0 ∈ L2(Ω) with |ŷ0|L2(Ω) = 1. (3)

This problem, originally addressed by J.-L. Lions in [1], has been studied in
the semilinear case for globally Lipschitz-continuous nonlinearities f = f(y).
In [2], the authors weakened the underlying problem, defining approximately
insensitizing controls. They proved the existence of such controls for unknown
data in both the initial and boundary conditions. In [3] two mains results are
given. On one hand, the author proves that one cannot expect the existence of
insensitizing controls for every y0 ∈ L2(Ω) when Ω \ ω 6= ∅, even if f ≡ 0. On
the other hand, for y0 = 0 and suitable assumptions on ξ, L. de Teresa proves
the existence of controls such that (3) holds (see Theorem 1 in [3]). This result
is generalized in [4] and [5] to nonlinearities with certain superlinear growth
at infinity. One of the purposes of this paper is to extend Theorem 1 in [3]
to the case of a semilinear heat equation where the nonlinearity is allowed to
depend on both the state y and its gradient. Then, an insensitivity result for
a semilinear heat equation with a nonlinear term F (y) and linear boundary
conditions of Fourier type is given.

The first insensitivity result we present in this paper is the following one:

Theorem 1.1 Assume that ω ∩ O 6= ∅ and y0 = 0. Let f : IR × IRN → IR be
a C1 globally Lipschitz–continuous function such that f(0, 0) = 0. Then, there
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exists a positive constant M depending on Ω, ω, O, T , and f such that for
any ξ ∈ L2(Q) verifying

∫∫

Q
exp

(M
t

)
|ξ|2 dx dt <∞, (4)

one can find a control function v ∈ L2(Q) insensitizing the functional Φ given
by (2).

Adapting the computations in [1] and [2] to the present case, one gets that
the existence of a control v such that (3) holds is equivalent to the existence
of a control v such that the solution (y, q) of






∂ty − ∆y + f(y,∇y) = ξ + v1ω in Q,

y = 0 on Σ, y(x, 0) = y0(x) in Ω,
(5)





−∂tq − ∆q + ∂sf(y,∇y)q −∇ · (∂pf(y,∇y)q) = y1O in Q,

q = 0 on Σ, q(x, T ) = 0 in Ω,
(6)

verifies

q(x, 0) = 0 in Ω. (7)

Here we noted (s, p) 7→ f(s, p), s ∈ IR, p ∈ IRN , ∂sf the derivative of f
with respect to s, and ∂pf the gradient of f with respect to p. Thus, so as
to prove Theorem 1.1, we will restrict our attention to solve the nonstandard
null controllability problem (5)–(7) for y0 = 0.

Let us now consider a semilinear heat equation with linear boundary condi-
tions of Fourier type and partially known initial data:






∂ty − ∆y + F (y) = ξ + v1ω in Q,

∂ny + hy = 0 on Σ, y(x, 0) = y0(x) + τ ŷ0(x) in Ω,
(8)

where F : IR → IR is a C1 globally Lipschitz-continuous function, h ∈ L∞(Σ)
(at least), ξ, y0, τ , and ŷ0 are as in (1), and v ∈ L2(Q) is again a control
function to be determined. Here, ∂n denotes the derivation with respect to the
unit outward normal to ∂Ω and the norm in L∞(Σ) will be denoted by ‖·‖∞;Σ.
The next aim in this paper is to prove the existence of controls insensitizing
the L2–norm of the observation of the solution of (8) in the open set O.

Theorem 1.2 Assume that ω ∩O 6= ∅ and y0 = 0. Let F ∈ C1(IR) be a glob-
ally Lipschitz–continuous function (with Lipschitz constant L > 0) satisfying
F (0) = 0 and let h ∈ L∞(Σ) be such that ∂th ∈ L∞(Σ). Then, there exists
a positive constant N (depending on Ω, ω, O, T , L, ‖h‖∞;Σ, and ‖∂th‖∞;Σ)
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such that, for any ξ ∈ L2(Q) verifying

∫∫

Q
exp

(N
t

)
|ξ|2 dx dt <∞, (9)

one can find a control function v ∈ L2(Q) insensitizing the functional defined
in (2), y(·, ·; τ, v) being the solution of (8) associated to τ and v.

In this case, there exists a control function v such that (3) holds if and only
if there exists a control v such that the solution (y, q) of






∂ty − ∆y + F (y) = ξ + v1ω in Q,

∂ny + hy = 0 on Σ, y(x, 0) = y0(x) in Ω,
(10)






−∂tq − ∆q + F ′(y)q = y1O in Q,

∂nq + hq = 0 on Σ, q(x, T ) = 0 in Ω,
(11)

verifies (7). To prove Theorem 1.2, it will then suffice to find an L2–control
solving this new null controllability problem for y0 = 0.

As in [2] and [5], one can expect to choose a control function v such that the
associated solution (y, q) of (5), (6) (with y0 = 0), in addition to insensitize
the functional Φ, it also verifies y(x, T ) = 0 in Ω. This can be done with an
extra assumption on ξ:

Theorem 1.3 Assume that ω∩O 6= ∅ and y0 = 0. Let f be as in Theorem 1.1.
Then, there exists M > 0 (depending on Ω, ω, O, T , and f) such that for
any ξ ∈ L2(Q) verifying

∫∫

Q
exp

(
M

t(T − t)

)
|ξ|2 dx dt <∞,

one can find a control function v ∈ L2(Q) insensitizing the functional Φ given
by (2) and such that the solution y(·, ·; τ, v)|τ=0 of (1) (with y0 = 0) satisfies

y(x, T ; τ, v)|τ=0 = 0 in Ω.

We will not give the proof of this result, since it is similar to the one of
Theorem 1.1.

The rest of this paper is organized as follows: in section 2, we first prove an
observability inequality that generalizes the one in [3]. This result is indeed
one of the main results in this work and we will use it in other forthcoming
papers (cf. [4], [5]). We also give an observability inequality for the case of
linear Fourier boundary conditions, which will also be used in [7]. In section 3,
we prove Theorems 1.1 and 1.2. We end with comments and conclusions.
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2 The Observability Inequalities

In this section we first prove an observability inequality that is a generalization
of the one given in [3] to the case of linear systems with first order terms. This
inequality will be the main tool in the proof of Theorem 1.1. We also give an
observability inequality for linear systems with linear boundary conditions of
Fourier type, which will be essential to prove Theorem 1.2.

Let us consider ϕ and ψ solving the following systems:






∂tϕ− ∆ϕ + cϕ+D · ∇ϕ = 0 in Q,

ϕ = 0 on Σ, ϕ(x, 0) = ϕ0(x) in Ω,
(12)






−∂tψ − ∆ψ + aψ −∇ · (Bψ) = ϕ1O in Q,

ψ = 0 on Σ, ψ(x, T ) = 0 in Ω,
(13)

with a, c ∈ L∞(Q), B,D ∈ L∞(Q)N , and ϕ0 ∈ L2(Ω). In the sequel, ‖ · ‖∞
will denote the norm in both L∞(Q) and L∞(Q)N . It is known (cf. [8], p. 356)
that

ϕ, ψ ∈ L2(0, T ;H1
0(Ω)) ∩ C([0, T ];L2(Ω)), ∂tϕ, ∂tψ ∈ L2(0, T ;H−1(Ω)).

The main result in this section is the following one:

Theorem 2.1 Assume that ω ∩ O 6= ∅. Then, there exist positive constants
M and H such that, for every ϕ0 ∈ L2(Ω), the corresponding solution (ϕ, ψ)
of (12) and (13) satisfies

∫∫

Q
exp

(
−M
t

)
|ψ|2 dx dt ≤ H

∫∫

ω×(0,T )
|ψ|2 dx dt.

More precisely, M = C
(
1 + TM ′

)
and

H = exp

[
C

(
M ′ +

1

T
+ T

(
1 + ‖a‖∞ + ‖c‖∞ + ‖B‖2

∞ + ‖D‖2
∞

))]
,

where C = C(Ω, ω,O) and M ′ is given by

M ′ = 1 + ‖a‖2/3
∞ + ‖c‖2/3

∞ + ‖a− c‖1/2
∞ + ‖B‖∞ + ‖B −D‖∞ + ‖B‖2

∞ + ‖D‖2
∞.

The basic tool to prove this theorem is a global Carleman inequality for linear
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systems of the form





∂tz − ∆z = F in Q,

z = 0 on Σ, z(x, 0) = z0(x) in Ω,
(14)

with z0 ∈ L2(Ω) and F in L2(Q) or in L2(0, T ;H−1(Ω)). For this we need to
introduce an auxiliary function whose existence is guaranteed by the following
result (see Lemma 1.1. in [9]):

Lemma 2.2 Let B ⊂⊂ Ω be a nonempty open subset. Then there exists a
function η0 ∈ C2(Ω) such that η0 > 0 in Ω, η0 = 0 on ∂Ω and |∇η0| > 0 in
Ω \ B. �

For a fixed nonempty open subset B ⊂⊂ Ω, let us set

α0(x) = e2C∗‖η0‖∞ − eC∗η0(x), x ∈ Ω (15)

and

α̃0(x) = e2C∗‖η0‖∞ − e−C∗η0(x), x ∈ Ω, (16)

C∗ being an appropriate positive constant depending on Ω and B. Using results
in [9] and [10], one can prove the following

Lemma 2.3 Let z be the solution of (14) associated to z0 ∈ L2(Ω). Let B be
an open subset of Ω. There exist positive constants C0, σ0, and σ0 (depending
only on Ω and B) such that:

(1) If F ∈ L2(Q), for every s ≥ s0 = σ0(Ω,B) (T + T 2) one has

1

s

∫∫

Q
e−2sαt(T − t)

(
|∂tz|2 + |∆z|2

)
+ s

∫∫

Q
e−2sαt−1(T − t)−1|∇z|2

+s3
∫∫

Q
e−2sαt−3(T − t)−3|z|2 ≤ C0



s3
∫∫

B×(0,T )
e−2sαt−3(T − t)−3|z|2

+
∫∫

Q
e−2sα|F |2



,

with α defined by α(x, t) =
α0(x)

t(T − t)
, x ∈ Ω, t ∈ (0, T ), and α0 given by

(15).
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(2) If F = f0 +
N∑

i=1

∂fi

∂xi
, with fi ∈ L2(Q), i = 0, 1, . . . , N , then

s
∫∫

Q
e−2sαt−1(T − t)−1|∇z|2 + s3

∫∫

Q
e−2sαt−3(T − t)−3|z|2

≤ C0


s3

∫∫

B×(0,T )
e−2sαt−3(T − t)−3|z|2 +

∫∫

Q
e−2sα|f0|2

+s2
N∑

i=1

∫∫

Q
e−2sαt−2(T − t)−2|fi|2



,

for s ≥ s0 = σ0(Ω,B) (T + T 2), α being as above.

The explicit dependence of s0 on T has been analyzed in [6]. Arguing in a
similar way, we can obtain the precise way s0 depends on T (also see [11]). We
will also need the following technical lemma, which proof will be given further
for the sake of clarity.

Lemma 2.4 Let α0 and α be given as in Lemma 2.3, m0 = minΩ α0, and
M0 = maxΩ α0.

(1) One has s4e−2sαt−7(T − t)−7 ≤ 22e−7

(
7

m0

)4

T−6, for every s ≥ 7T 2

23m0
and (x, t) ∈ Q.

(2) For s ≥ 3T 2

2M0
, one has e−2sαt−3(T − t)−3 ≥ As exp (−Ms/t), for (x, t) ∈

Ω × (0, T/2), with

As = 26T−6 exp
(
−4M0s/T

2
)
, Ms = 2M0s/T. (17)

(3) For every s ≥ 0, one has

e2sαt3(T − t)3 ≤ 2−6T 6 exp

(
25M0s

3T 2

)
, (x, t) ∈ Ω × (T/4, 3T/4) .

Proof of Theorem 2.1: The structure of the proof is similar to that of
Proposition 2 in [3]. In the first place, using appropriate Carleman inequal-
ities, we prove an inequality involving the functions ϕ and ψ which solve
(12) and (13). This inequality allows us to bound the function ϕ in terms of
ψ (see (32)). Combining it with energy estimates yields the result. Here we
adapt the method exhibited in [3] to the lack of regularity in the term ∇·(Bψ)
in equation (13). Moreover, the constants in the inequalities are explicit.

Let us consider two open sets B1 and B2 such that B1 ⊂⊂ B2 ⊂ ω ∩ O.
Applying Lemma 2.3 to the solution ϕ of (12) with F = −cϕ − D · ∇ϕ and
B = B1, there exist positive constants C1 = C1(Ω, B1) and σ1 = σ1(Ω, B1)
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such that

s
∫∫

Q
e−2sαt−1(T − t)−1|∇ϕ|2 + s3

∫∫

Q
e−2sαt−3(T − t)−3|ϕ|2

≤ C1 s
3
∫∫

B1×(0,T )
e−2sαt−3(T − t)−3|ϕ|2,

(18)

for every s ≥ s1, with

s1 = σ1(Ω, B1)
(
T + T 2 + T 2‖c‖2/3

∞ + T 2‖D‖2
∞

)
. (19)

Then applying Lemma 2.3 to the solution ψ of (13) with B = B1 ⊂ B2 and
F = −aψ + ∇ · (Bψ) + ϕ1O, there exist positive constants C2 = C2(Ω, B1)
and s2 = σ2(Ω, B1) (T + T 2 + T 2‖a‖2/3

∞ + T 2‖B‖2
∞) such that, for s ≥ s2, one

has

s
∫∫

Q
e−2sαt−1(T − t)−1|∇ψ|2 + s3

∫∫

Q
e−2sαt−3(T − t)−3|ψ|2

≤ C2

(
s3
∫∫

B2×(0,T )
e−2sαt−3(T − t)−3|ψ|2 +

∫∫

O×(0,T )
e−2sα|ϕ|2

)
.

(20)

In a first step, we prove an inequality which bounds ϕ with respect to ψ.
Consider a function ξ1 ∈ C∞

0 (Ω) such that

0 ≤ ξ1 ≤ 1 in Ω, ξ1 = 1 in B1, supp ξ1 ⊂ B2 ⊂ ω ∩ O, (21)

∆ξ1/ξ
1/2
1 ∈ L∞(Ω), and ∇ξ1/ξ1/2

1 ∈ L∞(Ω)N . (22)

This is achieved by setting ξ1 = ζ4, with ζ ∈ C∞
0 (Ω) verifying (21). To simplify

notations, we set
u = e−2sαs3t−3(T − t)−3. (23)

Let s ≥ s1, s1 given by (19). Multiplying (13) by ϕξ1u, integrating over Q,
and taking into account that u(0) vanishes in Ω, we have

∫∫

O×(0,T )
e−2sαs3t−3(T − t)−3|ϕ|2ξ1 =

∫∫

Q
(a− c)ϕψξ1u

+
∫∫

Q
(B −D) · ∇ϕψξ1u+ ϕψ

(
ξ1∂tu− ∆(ξ1u) +B · ∇(ξ1u)

)

−2
∫∫

Q
∇(ξ1u) · ∇ϕψ := I1 + I2 + I3 + I4 + I5 + I6.

(24)

Let us estimate each Ii, 1 ≤ i ≤ 6. In the sequel, C will denote a positive
constant depending only on Ω and B1 (thus on B2) which may change from
one line to another. In the first place, using Hölder and Young inequalities,
we have

I1 =
∫∫

Q
(a− c)ϕψξ1u ≤ δ1

∫∫

Q
ξ1u|ϕ|2 +

1

4δ1
‖a− c‖2

∞

∫∫

Q
ξ1u|ψ|2, (25)
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for any δ1 > 0. Then,

I2 =
∫∫

Q
(B −D) · ∇ϕψξ1u ≤ γ1

∫∫

Q
e−2sαst−1(T − t)−1|∇ϕ|2ξ1

+
1

4γ1

‖B −D‖2
∞

∫∫

Q
e−2sαs5t−5(T − t)−5|ψ|2ξ1,

(26)

for any γ1 > 0. Let us now observe that

|∂tu| ≤ Ts3e−2sαt−5(T − t)−5
(
Cs+ 3T 2/4

)
≤ CTs4e−2sαt−5(T − t)−5,

since s ≥ σ1(Ω, B1)T
2. Thus, we can estimate

I3 ≤
∫∫

Q
|ϕ||ψ|ξ1|∂tu| ≤

∫∫

Q
CTe−2sαs4t−5(T − t)−5|ϕ||ψ|ξ1

≤ δ2

∫∫

Q
e−2sαs3t−3(T − t)−3|ϕ|2ξ1 +

CT 2

δ2

∫∫

Q
e−2sαs5t−7(T − t)−7|ψ|2ξ1

≤ δ2

∫∫

Q
ξ1u|ϕ|2 +

C

δ2

∫∫

Q
e−2sαs7t−7(T − t)−7|ψ|2ξ1 ,

(27)
for δ2 > 0, since s ≥ σ1(Ω, B1)T .

In order to estimate I4 = −
∫∫

Q
ϕψ∆(ξ1u), let us observe that

∆(ξ1u) = s3t−3(T − t)−3
(
(∆ξ1)e

−2sα + 2∇ξ1 · ∇(e−2sα) + ξ1∆(e−2sα)
)
,

with

|∇(e−2sα)| = 2se−2sαt−1(T − t)−1|∇α0| ≤ Cse−2sαt−1(T − t)−1,

|∆(e−2sα)| ≤ 2se−2sαt−2(T − t)−2 (2s|∇α0|2 + t(T − t)|∆α0|)
≤ Cse−2sαt−2(T − t)−2(s+ T 2) ≤ Cs2e−2sαt−2(T − t)−2.

Taking these considerations and (22) into account, we have

I4 ≤ C
(∫∫

Q
e−2sαs3t−3(T − t)−3|ϕ||ψ|ξ1/2

1

+
∫∫

Q
e−2sαs4t−4(T − t)−4|ϕ||ψ|ξ1/2

1 +
∫∫

Q
e−2sαs5t−5(T − t)−5|ϕ||ψ|ξ1

)
.

We now use Hölder and Young inequalities and (21) to get

I4 ≤ δ3

∫∫

Q
ξ1u|ϕ|2 +

C

δ3

∫∫

Q
e−2sαs3t−3(T − t)−3|ψ|21B2

+
C

δ3

∫∫

Q
e−2sαs5t−5(T − t)−5|ψ|21B2 +

C

δ3

∫∫

Q
e−2sαs7t−7(T − t)−7|ψ|21B2 ,
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with δ3 > 0 to be fixed later. Notice that for any n,m ∈ IN with n ≥ m, we
have

smt−m(T − t)−m = smt−n(T − t)−n (t(T − t))n−m

≤ smt−n(T − t)−n (T 2/4)
n−m ≤ Csnt−n(T − t)−n,

(28)

since s ≥ σ1(Ω, B1)T
2. Then,

I4 ≤ δ3

∫∫

Q
ξ1u|ϕ|2 +

C

δ3

∫∫

Q
e−2sαs7t−7(T − t)−7|ψ|21B2 . (29)

We estimate I5 =
∫∫

Q
ϕψB · ∇(ξ1u) in a similar way. Remarking that

∇(ξ1u) = (∇ξ1)u− 2ξ1e
−2sαs4t−4(T − t)−4∇α0,

and proceeding as above, we get

I5 ≤ δ4

∫∫

Q
ξ1u|ϕ|2 +

C

δ4
‖B‖2

∞

∫∫

Q
e−2sαs5t−5(T − t)−5|ψ|21B2 , (30)

for any δ4 > 0. We finally estimate I6 = −2
∫∫

Q
∇(ξ1u) · ∇ϕψ. We have

I6 ≤ C
∫∫

Q
e−2sα

(
s3t−3(T − t)−3|∇ϕ||ψ|ξ1/2

1 + s4t−4(T − t)−4|∇ϕ||ψ|ξ1
)

≤ γ2

∫∫

Q
e−2sαst−1(T − t)−1|∇ϕ|2ξ1 +

C

γ2

∫∫

Q
e−2sαs7t−7(T − t)−7|ψ|21B2 ,

(31)
for γ2 > 0, using (22), (23), and (28).

Let us now set δi = 1/8, 1 ≤ i ≤ 4, and γ1 = γ2 = 1/4C1, with C1 =
C1(Ω, B1) > 0 as in (18). Taking estimates (25)–(27), (29)–(31) to (24) and
using (21), we obtain

∫∫

O×(0,T )
e−2sαs3t−3(T − t)−3|ϕ|2ξ1 ≤

1

C1

∫∫

B2×(0,T )
e−2sαst−1(T − t)−1|∇ϕ|2

+C
∫∫

B2×(0,T )
e−2sα

[
‖a− c‖2

∞s
3t−3(T − t)−3|ψ|2 + s7t−7(T − t)−7|ψ|2

]

+C (‖B‖2
∞ + ‖B −D‖2

∞)
∫∫

B2×(0,T )
e−2sαs5t−5(T − t)−5|ψ|2.

Thus, in view of (18) and (21), for s ≥ s1 we get

s3
∫∫

Q
e−2sαt−3(T − t)−3|ϕ|2 ≤ C ‖a− c‖2

∞

∫∫

B2×(0,T )
e−2sαs3t−3(T − t)−3|ψ|2

+C (‖B‖2
∞ + ‖B −D‖2

∞)
∫∫

B2×(0,T )
e−2sαs5t−5(T − t)−5|ψ|2

+C
∫∫

B2×(0,T )
e−2sαs7t−7(T − t)−7|ψ|2.
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On the other hand, taking s ≥ CT 2
(
‖a− c‖1/2

∞ + ‖B‖∞ + ‖B −D‖∞
)
, this

inequality rewrites into
∫∫

Q
e−2sαt−3(T − t)−3|ϕ|2 ≤ C

∫∫

B2×(0,T )
e−2sαs4t−7(T − t)−7|ψ|2, (32)

for every s ≥ s3, with

s3 = σ3

((
T + T 2

(
1 + ‖c‖2/3

∞ + ‖a− c‖1/2
∞ + ‖B‖∞ + ‖B −D‖∞ + ‖D‖2

∞

)))

(33)
and σ3 = σ3(Ω, B1).

Next we will prove a new Carleman type inequality for the function ψ which
does not involve ϕ. For s ≥ CT 2, we have

∫∫

O×(0,T )
e−2sα|ϕ|2 =

∫∫

O×(0,T )
e−2sαt3(T − t)3t−3(T − t)−3|ϕ|2

≤ C
∫∫

O×(0,T )
e−2sαs3t−3(T − t)−3|ϕ|2.

Thus, in view of (32), applying (20) yields

∫∫

Q
e−2sαt−3(T − t)−3|ψ|2 ≤ C

(∫∫

B2×(0,T )
e−2sαt−3(T − t)−3|ψ|2

+
∫∫

B2×(0,T )
e−2sαs4t−7(T − t)−7|ψ|2

)
,

hence
∫∫

Q
e−2sαt−3(T − t)−3|ψ|2 ≤ C

∫∫

B2×(0,T )
e−2sαs4t−7(T − t)−7|ψ|2, (34)

for any s ≥ s4, with
s4 = σ4(Ω, B1)

(
T + T 2M ′

)
, (35)

M ′ being as in the statement.

The final step of the proof will consist in combining energy estimates with
inequalities (32) and (34). Applying classical estimates for the heat equation
to systems (12) and (13), for t1, t2 ∈ [0, T ] with t1 < t2 and t ∈ [0, T ], we have

|ϕ(t2)|2L2(Ω) ≤ exp
(
(2‖c‖∞ + ‖D‖2

∞) (t2 − t1)
)
|ϕ(t1)|2L2(Ω),

|ψ(t)|2L2(Ω) ≤
∫ T

t
exp

((
1 + 2‖a‖∞ + ‖B‖2

∞

)
(s− t)

)
|ϕ(s)|2L2(O) ds.

(36)

In particular, we have

∣∣∣∣ϕ
(
t +

T

4

)∣∣∣∣
2

L2(Ω)
≤ exp

((
2‖c‖∞ + ‖D‖2

∞

) T
4

)
|ϕ(t)|2L2(Ω), ∀t ∈ [T/4, 3T/4] ,
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and hence,

∫∫

Ω×(T/2,T )
|ϕ|2 ≤ exp

((
2‖c‖∞ + ‖D‖2

∞

) T
4

) ∫∫

Ω×(T/4,3T/4)
|ϕ|2. (37)

On the other hand, from (36) we easily deduce

∫ T

t
|ψ(s)|2L2(Ω) ds ≤ (T − t) exp

((
1 + 2‖a‖∞ + ‖B‖2

∞

) T
2

) ∫ T

t
|ϕ(s)|2L2(O) ds,

for all t ∈ [T/2, T ], thus also

∫∫

Ω×(T/2,T )
|ψ|2 ≤ exp

((
2 + 2‖a‖∞ + ‖B‖2

∞

) T
2

) ∫∫

O×(T/2,T )
|ϕ|2. (38)

Let m0 = minΩ α0 and M0 = maxΩ α0 be, with α0 as in Lemma 2.3 in page 6.
Applying Lemma 2.4, for any s ≥ 3T 2/2M0 we get

∫∫

Q
e−2sαt−3(T − t)−3|ψ|2 ≥ As

∫∫

Ω×(0,T/2)
exp

(
−Ms

t

)
|ψ|2,

with As and Ms given by (17). Bounding the right hand side of (34) using
Lemma 2.4 again, we get

∫∫

Ω×(0,T/2)
exp

(
−Ms

t

)
|ψ|2 ≤ C exp

(
4M0s

T 2

) ∫∫

B2×(0,T )
|ψ|2,

for s ≥ s5, s5 given by

s5 = σ5(Ω, B1)
(
T + T 2M ′

)
, (39)

where σ5(Ω, B1) = max {σ4(Ω, B1), 3/(2M0), 7/(2
3m0)} , σ4 being as in (35),

and M ′ as in the statement of the Theorem. Then using (38), for s ≥ s5 we
have

∫∫

Q
exp

(
−Ms

t

)
|ψ|2 ≤

∫∫

Ω×(0,T/2)
exp

(
−Ms

t

)
|ψ|2 +

∫∫

Ω×(T/2,T )
|ψ|2

≤ C exp
(

4M0s

T 2

) ∫∫

B2×(0,T )
|ψ|2

+ exp
(
(2 + 2‖a‖∞ + ‖B‖2

∞)
T

2

) ∫∫

Ω×(T/2,T )
|ϕ|2,

(40)

with M0 as above. In view of (32), (37), and Lemma 2.4, we can bound the
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last integral in (40) as follows:

∫∫

Ω×(T/2,T )
|ϕ|2 ≤ exp

((
2‖c‖∞ + ‖D‖2

∞

) T
4

) ∫∫

Ω×(T/4,3T/4)
|ϕ|2

≤ exp

(
(2‖c‖∞ + ‖D‖2

∞)
T

4
+

25M0s

3T 2

)
T 6

26

∫∫

Ω×(T/4,3T/4)
e−2sαt−3(T − t)−3|ϕ|2

≤ C exp

(
(2‖c‖∞ + ‖D‖2

∞)
T

4
+

25M0s

3T 2

)
T 6
∫∫

B2×(0,T )
e−2sαs4t−7(T − t)−7|ψ|2

≤ C exp

(
(2‖c‖∞ + ‖D‖2

∞)
T

4
+

25M0s

3T 2

)∫∫

B2×(0,T )
|ψ|2,

for s ≥ max {s3, 7T
2/(23m0)}, s3 given by (33). Thus, combining this last

estimate with (40), we obtain

∫∫

Q
exp

(
−Ms

t

)
|ψ|2 ≤ C exp

(
4M0s

T 2

) ∫∫

B2×(0,T )
|ψ|2

+C exp

(
(1 + ‖a‖∞ + ‖c‖∞ + ‖B‖2

∞ + ‖D‖2
∞)T +

25M0s

3T 2

)∫∫

B2×(0,T )
|ψ|2,

for any s ≥ s5, with s5 defined by (39). Finally, setting s = s5 in the previous
inequality and recalling the definition of Ms in (17) and the fact that B2 ⊂ ω,
we obtain the result. �

For the sake of completeness, we now prove Lemma 2.4.

Proof of Lemma 2.4: Let α0, α, m0 and M0 be as in the statement. Then

s4e−2sαt−7(T − t)−7 ≤ s4 exp

(
− 2m0s

t(T − t)

)
t−7(T − t)−7 := fs(t) =

1

gs(t)
,

for s > 0, t ∈ (0, T ). We will determine a lower bound of gs(t), for t in

(0, T ). The computation of g′s(t) shows that, for s ≥ 7T 2

23m0
, the function gs

is strictly decreasing in (0, T/2) and strictly increasing in (T/2, T ). Thus, in
this case, for t ∈ (0, T ) we have fs(t) ≤ fs(T/2) = 214T−14G(s), with G(s) =
s4 exp (−8m0s/T

2). The function G(s) strictly decreases in (T 2/2m0,+∞),
which proves the first part of the lemma.

Now, writing
1

t(T − t)
=

1

T t
+

1

T (T − t)
, ∀t ∈ (0, T ), we have

e−2sαt−3(T − t)−3 ≥ exp
(
−2M0s

T t

)
t−3Hs(t),

and Hs(t) = (T − t)−3 exp

(
− 2M0s

T (T − t)

)
. It is easy to see that, for every
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s ≥ 3T 2/2M0, Hs is decreasing in (0, T/2). Therefore a simple computation
gives the second part of the lemma.

Finally, observing that
1

t(T − t)
≤ 24

3T 2
for all t ∈ (T/4, 3T/4), we get

e2sαt3(T − t)3 ≤ exp

(
2M0s

t(T − t)

)
2−6T 6 ≤ 2−6T 6 exp

(
25M0s

3T 2

)
,

for x ∈ Ω, t ∈ (T/4, 3T/4), which ends the proof. �

We will devote the rest of this section to the case of Fourier boundary condi-
tions. Let ϕ and ψ be the solutions of





∂tϕ− ∆ϕ+ cϕ = 0 in Q,

∂nϕ+ kϕ = 0 on Σ, ϕ(x, 0) = ϕ0(x) in Ω,
(41)






−∂tψ − ∆ψ + aψ = ϕ1O in Q,

∂nψ + hψ = 0 on Σ, ψ(x, T ) = 0 in Ω,
(42)

with a, c ∈ L∞(Q), h, k ∈ L∞(Σ), and ϕ0 ∈ L2(Ω). One has

ϕ, ψ ∈ L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)), ∂tϕ, ∂tψ ∈ L2(0, T ;H−1(Ω)).

In order to obtain the observability inequality required in this case, we will
recall another global Carleman inequality, which can be found in [9]. Let us
consider linear systems of the form





∂tz − ∆z = F in Q,

∂nz + bz = 0 on Σ, z(x, 0) = z0(x) in Ω,
(43)

with z0 ∈ L2(Ω) and F ∈ L2(Q). The following result holds:

Lemma 2.5 Assume that b, ∂tb ∈ L∞(Σ). Let z be the solution of (43) asso-
ciated to z0 ∈ L2(Ω) and F ∈ L2(Q). Let B be a nonempty open subset of Ω.
Then there exist positive constants C0 and s0 depending on Ω, B, T , ‖b‖∞;Σ

and ‖∂tb‖∞;Σ such that

1

s

∫∫

Q
ρt(T − t)

(
|∂tz|2 + |∆z|2

)
+ s

∫∫

Q
ρt−1(T − t)−1|∇z|2

+ s3
∫∫

Q
ρt−3(T − t)−3|z|2 ≤ C0

(∫∫

Q
ρ|F |2 + s3

∫∫

B×(0,T )
ρt−3(T − t)−3|z|2

)
,

for s ≥ s0, with ρ(x, t) = e−2sα(x,t) + e−2sα̃(x,t), α as in Lemma 2.3, α̃ given by

α̃(x, t) =
α̃0(x)

t(T − t)
, x ∈ Ω, t ∈ (0, T ) and α̃0 defined in (16).
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Applying this Lemma and following the proof of Theorem 2.1, we can prove
its equivalent for systems (41), (42):

Theorem 2.6 Assume that ω ∩ O 6= ∅, a, c ∈ L∞(Q), and h, k, ∂th, ∂tk ∈
L∞(Σ). Then, there exist positive constants N and K (depending on Ω, ω, O,
T , ‖a‖∞, ‖c‖∞, ‖h‖∞;Σ, ‖k‖∞;Σ, ‖∂th‖∞;Σ and ‖∂tk‖∞;Σ) such that

∫∫

Q
exp

(
−N
t

)
|ψ|2 dx dt ≤ K

∫∫

ω×(0,T )
|ψ|2 dx dt,

for every ϕ0 ∈ L2(Ω), where ψ solves (42), ϕ being the solution of (41) asso-
ciated to ϕ0.

Proof: We consider two open sets B1 and B2 such that B1 ⊂⊂ B2 ⊂ ω ∩O.
Applying Lemma 2.5 to the solution ϕ of (41) with F = −cϕ and B = B1,
there exist two positive constants C1 = C1(Ω, B1, T, ‖k‖∞;Σ, ‖∂tk‖∞;Σ) and
s1 = s1(Ω, B1, T, ‖c‖∞, ‖k‖∞;Σ, ‖∂tk‖∞;Σ) such that

s
∫∫

Q
ρt−1(T − t)−1|∇ϕ|2 + s3

∫∫

Q
ρt−3(T − t)−3|ϕ|2

≤ C1 s
3
∫∫

B1×(0,T )
ρt−3(T − t)−3|ϕ|2,

(44)

for every s ≥ s1. Secondly, we apply Lemma 2.5 to the solution ψ of (42)
(with F = −aψ+ϕ1O and B = B1). Then, there exist positive constants C2 =
C2(Ω, B1, T, ‖h‖∞;Σ, ‖∂th‖∞;Σ) and s2 = s2(Ω, B1, T, ‖a‖∞, ‖h‖∞;Σ, ‖∂th‖∞;Σ)
such that, for any s ≥ s2, one has

s
∫∫

Q
ρt−1(T − t)−1|∇ψ|2 + s3

∫∫

Q
ρt−3(T − t)−3|ψ|2

≤ C2

(
s3
∫∫

B2×(0,T )
ρt−3(T − t)−3|ψ|2 +

∫∫

O×(0,T )
ρ|ϕ|2

)
.

(45)

Let s ≥ s1 and let ξ1 ∈ C∞
0 (Ω) be a function satisfying (21) and (22). Multiply

the equation in (42) by ϕξ1(u + ũ), with u given by (23) and ũ defined by

ũ = e−2sα̃s3t−3(T − t)−3 (α̃ as in Lemma 2.5). Integrating over Q, one gets

∫∫

O×(0,T )
ρs3t−3(T − t)−3|ϕ|2ξ1 =

∫∫

Q

(
−∂tψ − ∆ψ + aψ

)
ϕξ1(u+ ũ)

:= I1 + Ĩ1 + I3 + Ĩ3 + I4 + Ĩ4 + I6 + Ĩ6,
(46)

with Ii as in (24) and Ĩi defined as Ii, with u replaced by ũ. Each Ĩi can be
bounded exactly as the corresponding Ii was in the proof of Theorem 2.1.
First, we have

I1+Ĩ1 =
∫∫

Q
(a−c)ϕψξ1(u+ũ) ≤ δ

∫∫

Q
ξ1(u+ũ)|ϕ|2+‖a− c‖2

∞

4δ

∫∫

Q
ξ1(u+ũ)|ψ|2,
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for δ > 0. We can also obtain the corresponding estimates for Ii + Ĩi, i =
3, 4, 6, similar to (27), (29) and (31), respectively, and valid for any s ≥
max {s1, C(T + T 2)} , with C > 0 depending only on Ω and B1. Taking such
estimates to (46) and using (44) (and (21)), we can estimate

s3
∫∫

Q
ρt−3(T − t)−3|ϕ|2 ≤ C ‖a− c‖2

∞

∫∫

B2×(0,T )
ρs3t−3(T − t)−3|ψ|2

+C
∫∫

B2×(0,T )
ρs7t−7(T − t)−7|ψ|2,

for s ≥ max {s1, C(T + T 2))}. Then, if

s ≥ s3 = max
{
s1, C

(
T + T 2 + T 2‖a− c‖1/2

∞

)}
,

the following estimate for ϕ holds

∫∫

Q
ρt−3(T − t)−3|ϕ|2 ≤ C3

∫∫

B2×(0,T )
ρs4t−7(T − t)−7|ψ|2, (47)

with C3 > 0 depending on Ω, B1, T , ‖k‖∞;Σ, and ‖∂tk‖∞;Σ. Now, using (45)
and (47), a new estimate for ψ analogous to (34) is obtained. More precisely,
there exists C4 = C4 (Ω, B1, T, ‖h‖∞;Σ, ‖∂th‖∞;Σ, ‖k‖∞;Σ, ‖∂tk‖∞;Σ) > 0 such
that ∫∫

Q
ρt−3(T − t)−3|ψ|2 ≤ C4

∫∫

B2×(0,T )
ρs4t−7(T − t)−7|ψ|2, (48)

for any s ≥ s4, with

s4 = max
{
s1, s2, C

(
T + T 2 + T 2‖a− c‖1/2

∞

)}
. (49)

On the other hand, multiplying the equation in (41) by ϕ and integrating
over Ω, we get

1

2

d

dt

∫

Ω
|ϕ(t)|2 +

∫

Ω
|∇ϕ(t)|2 ≤ ‖k‖∞;Σ

∫

∂Ω
|ϕ(t)|2 dσ + ‖c‖∞

∫

Ω
|ϕ(t)|2, (50)

for t a.e. in (0, T ). We claim that

d

dt
|ϕ(t)|2L2(Ω) ≤ K1|ϕ(t)|2L2(Ω), a.e. in (0, T ), (51)

K1 being a positive constant depending on ‖c‖∞ and ‖k‖∞;Σ. Indeed, in view
of the chain of embeddings

H1(Ω) ⇒ Hγ(Ω) ↪→ L2(Ω), γ < 1,

the first one being compact, for any ε > 0 there exists C(ε) > 0 such that

‖u‖2
Hγ(Ω) ≤ ε

∫

Ω
|∇u|2 dx+ C(ε)|u|2L2(Ω), ∀u ∈ H1(Ω).

16



Taking also into account the continuous embedding of Hγ(Ω) into L2(∂Ω), for
γ > 1/2, there exists C(‖k‖∞;Σ) > 0 such that

‖k‖∞;Σ

∫

∂Ω
|ϕ(t)|2 dσ ≤ 1

2

∫

Ω
|∇ϕ(t)|2 + C(‖k‖∞;Σ)|ϕ(t)|2L2(Ω),

for 1/2 < γ < 1. Combining this estimate with (50), yields (51), with K1 given
by K1 = 2(C(‖k‖∞;Σ) + ‖c‖∞). Then

|ϕ (t+ T/4)|2L2(Ω) ≤ exp (K1T/4) |ϕ(t)|2L2(Ω), ∀t ∈ (T/4, 3T/4) ,

and hence ∫∫

Ω×(T/2,T )
|ϕ|2 ≤ exp (K1T/4)

∫∫

Ω×(T/4,3T/4)
|ϕ|2. (52)

Now, multiply the equation in (42) by ψ and integrate over Ω. Using again a
compactness–uniqueness argument, we obtain

− d

dt
|ψ(t)|2L2(Ω) ≤ K2|ψ(t)|2L2(Ω) + |ϕ(t)|2L2(O), a.e. in (0, T ),

with K2 = K2(‖a‖∞, ‖h‖∞;Σ) > 0. Then

|ψ(t)|2L2(Ω) ≤
∫ T

t
exp (K2(s− t)) |ϕ(s)|2L2(O) ds, ∀t ∈ (0, T ),

whence ∫∫

Ω×(T/2,T )
|ψ|2 ≤ exp (K2T )

∫∫

O×(T/2,T )
|ϕ|2. (53)

The form of the weight function ρ defined in Lemma 2.5 allows one to prove
estimates similar to those in Lemma 2.4, with e−2sα replaced by ρ, valid for
s ≥ CT 2. Let us fix s = max {s4, CT

2}, with s4 given by (49). We can thus
bound both sides of (48) and deduce

∫∫

Ω×(0,T/2)
exp

(
−N
t

)
|ψ|2 ≤ C5

∫∫

B2×(0,T )
|ψ|2, (54)

with N > 0 and C5 > 0 depending on Ω, B1, T , ‖a‖∞, ‖c‖∞, ‖h‖∞;Σ, ‖k‖∞;Σ,
‖∂th‖∞;Σ, and ‖∂tk‖∞;Σ. In addition, due to (53), (52), and (47), we can also
estimate (see a similar proof in page 12)

∫∫

Ω×(T/2,T )
exp

(
−N
t

)
|ψ|2 ≤ exp

(
K1

T

4
+K2T + C6

) ∫∫

B2×(0,T )
|ψ|2, (55)

with C6 > 0 depending on Ω, T , ‖a‖∞, ‖c‖∞, ‖h‖∞;Σ, ‖k‖∞;Σ, ‖∂th‖∞;Σ,
‖∂tk‖∞;Σ, and B1, thus on ω and O. Finally, gathering (54) and (55) yields
the desired observability inequality, since B2 ⊂ ω, with N as in (54) and
K = C5 + exp (K1T/4 +K2T + C6). �
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3 Proof of Theorems 1.1 and 1.2

We devote this section to prove Theorems 1.1 and 1.2. Both proofs, which are
inspired in those of other known controllability results for nonlinear systems
(see [12], [13], [3], [14],...), rely on controllability results for linear problems
similar to the linearized system and appropriate fixed point arguments. The
proof of Theorem 1.2 is similar to the one of Theorem 1.1 and it will be omitted
here.

Proof of Theorem 1.1: We start with the existence of approximately
insensitizing controls for a linearized version of (5), (6) for y0 = 0. For given
a, c ∈ L∞(Q), B,D ∈ L∞(Q)N and ξ ∈ L2(Q), we consider the linear systems





∂ty − ∆y + ay +B · ∇y = ξ + v1ω in Q,

y = 0 on Σ, y(x, 0) = 0 in Ω,
(56)






−∂tq − ∆q + cq −∇ · (Dq) = y1O in Q,

q = 0 on Σ, q(x, T ) = 0 in Ω,
(57)

and the corresponding adjoint systems (12) and (13). The following result
holds:

Proposition 3.1 Assume that ω ∩ O 6= ∅. Let M and H be the positive
constants provided by Theorem 2.1. For any ε > 0, there exists a control
function vε ∈ L2(ω × (0, T )) such that the associated solution (yε, qε) of (56),
(57) satisfies

|qε(0)|L2(Ω) ≤ ε. (58)

In addition, if ξ ∈ L2(Q) satisfies

∫∫

Q
exp

(
M

t

)
|ξ|2 dx dt <∞, (59)

then the controls {vε}ε>0 are uniformly bounded in L2(ω × (0, T )). More pre-
cisely,

‖vε‖L2(ω×(0,T )) ≤
√
H
(∫∫

Q
exp

(
M

t

)
|ξ|2 dx dt

)1/2

, ∀ε > 0. (60)

Proof: The structure of the proof being identical to the one in [2] and [3], we
will not go into details. For fixed ε > 0, we introduce the functional defined
on L2(Ω)

J(ϕ0; a, c, B,D) =
1

2

∫∫

ω×(0,T )
|ψ|2 + ε|ϕ0|L2(Ω) +

∫∫

Q
ξψ, (61)
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where ψ solves (13), ϕ being the solution of (12) with initial data ϕ0 ∈ L2(Ω).
In view of a unique continuation property for the adjoint systems (which
follows, for instance, from Theorem 2.1), the continuous and convex functional
J(·; a, c, B,D) is strictly convex and satisfies

lim inf
|ϕ0|

L2(Ω)→+∞

J(ϕ0; a, c, B,D)

|ϕ0|L2(Ω)

≥ ε. (62)

Thus, J(·; a, c, B,D) is coercive and therefore it reaches its minimum at a
unique ϕ0

ε ∈ L2(Ω). Set
vε = ψε1ω, (63)

(ϕε, ψε) solving (12), (13) with initial data ϕ0
ε. Then, the solution (yε, qε) of

(56), (57) associated to vε satisfies (58). Indeed, vε is the unique control of
minimal L2–norm solving (56)–(58).

Now, assume that ξ satisfies (59). The optimality condition for ϕ0
ε and Theo-

rem 2.1 give

∫∫

ω×(0,T )
|ψε|2 + ε|ϕ0

ε|L2(Ω) = −
∫∫

Q
ξ ψε

≤
(
H
∫∫

ω×(0,T )
|ψε|2

)1/2 (∫∫

Q
exp

(
M

t

)
|ξ|2

)1/2

,

which yields, together with (63), the uniform estimate (60). �

Remark 1 In view of (60), for any ξ ∈ L2(Q) verifying (59), one can prove
the existence of a control v ∈ L2(ω × (0, T )) such that the associated solution
(y, q) of (56), (57) satisfies (7). Moreover, this control v satisfies the estimate

‖v‖L2(ω×(0,T )) ≤
√
H
(∫∫

Q
exp

(
M

t

)
|ξ|2 dx dt

)1/2

,

with M and H as above. That is to say, an insensitivity result in the linear
case can also be proved.

We now apply a fixed point argument to prove an approximate insensitivity
result in the nonlinear case.

Proposition 3.2 For fixed ε > 0, under the assumptions in Theorem 1.1,
there exist a positive constant M (depending on Ω, ω, O, T , and f) such that
for any ξ ∈ L2(Q) satisfying (4), one can find a control vε ∈ L2(ω × (0, T ))
so that the associated solution (yε, qε) of (5), (6) satisfies (58). Furthermore,

‖vε‖L2(ω×(0,T )) ≤ H
(∫∫

Q
exp

(M
t

)
|ξ|2 dx dt

)1/2

, ∀ε > 0, (64)

H being a new positive constant depending on Ω, ω, O, T , and f .
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Proof: For a given function f as in Theorem 1.1, we can write

f(s, p) = g(s, p)s+G(s, p) · p for all (s, p) ∈ IR × IRN ,

where g : IR × IRN → IR and G : IR × IRN → IRN are the bounded continuous
functions defined by

g(s, p) =
∫ 1

0
∂sf(σs, σp) dσ, G(s, p) =

∫ 1

0
∂pf(σs, σp) dσ. (65)

Since it is a fixed parameter, the dependence on ε will be omitted in this
proof. For any z ∈ L2(0, T ;H1

0(Ω)), we consider the linear systems (56) and
(57), with a = az = g(z,∇z), c = cz = ∂sf(z,∇z) ∈ L∞(Q) and B = Bz =
G(z,∇z), D = Dz = ∂pf(z,∇z) ∈ L∞(Q)N . Indeed, the hypothesis on f gives

‖az‖∞, ‖cz‖∞, ‖Bz‖∞, ‖Dz‖∞ ≤ L, ∀z ∈ L2(0, T ;H1
0(Ω)), (66)

where L > 0 is a bound of ∂sf and ∂pf in IR× IRN . In view of Proposition 3.1,
there exists a control vz ∈ L2(ω× (0, T )) such that the corresponding solution
(yz, qz) of these systems satisfies

|qz(0)|L2(Ω) ≤ ε. (67)

Let Mz and Hz be the positive constants provided by Theorem 2.1 for a = az,
c = cz, B = Bz, and D = Dz. Recalling the expressions of Mz and Hz, and
using (66), there exist positive constants M and H of the form






M = C(Ω, ω,O) (1 + T (1 + L2)) ,

H = exp
[
C(Ω, ω,O)

(
1 +

1

T
+ T + (1 + T )L2

)]
,

(68)

such that, for all z ∈ L2(0, T ;H1
0(Ω)), Mz ≤ M and

√
Hz ≤ H. Then, if ξ

satisfies (4), using (60) we have the following estimate (uniform with respect
to z and ε)

‖vz‖L2(ω×(0,T )) ≤ H
(∫∫

Q
exp

(M
t

)
|ξ|2

)1/2

, ∀z ∈ L2(0, T ;H1
0(Ω)). (69)

We now consider the mapping Λε : L2(0, T ;H1
0(Ω)) → L2(0, T ;H1

0(Ω)) defined
by Λε(z) = yz, yz being the solution of (56) associated to the potentials a = az

and B = Bz and the control vz provided by Proposition 3.1. We will apply
the Schauder fixed point theorem to prove that Λε possesses at least one fixed
point. First, by classical regularity results on the heat equation, yz lies in the
space Y = {u : u ∈ L2(0, T ;H2(Ω) ∩H1

0 (Ω)), ∂tu ∈ L2(Q)}, with

‖yz‖Y ≤ exp
[
C
(
1 +

(
T + T 1/2

)
‖az‖∞ + T‖Bz‖2

∞

)] (
‖ξ + vz1ω‖L2(Q)

)
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(here ‖yz‖Y = ‖yz‖L2(H2∩H1
0 ) + ‖∂tyz‖L2(Q) and ‖ · ‖L2(H2∩H1

0 ) denotes the norm

in L2(0, T ;H2(Ω) ∩H1
0 (Ω))). Taking into account (66) and (69), one deduces

that Λε maps L2(0, T ;H1
0(Ω)) into a bounded set of Y . This space being com-

pactly embedded in L2(0, T ;H1
0(Ω)), there exists a fixed compact set K in

L2(0, T ;H1
0(Ω)) such that

Λε(L
2(0, T ;H1

0(Ω))) ⊂ K. (70)

Thus, Λε is a compact mapping.

Now, let {zj} ⊂ L2(0, T ;H1
0(Ω)) be such that zj → z in L2(0, T ;H1

0(Ω)). From
(66) and the regularity assumptions on f , one has

azj
= g(zj,∇zj) ⇀ az, czj

= ∂sf(zj,∇zj) ⇀ cz weak-? in L∞(Q),

Bzj
= G(zj,∇zj) ⇀ Bz, Dzj

= ∂pf(zj,∇zj) ⇀ Dz weak-? in L∞(Q)N .

(71)
Let ϕ̂0 (resp. ϕ̂0

j , j ≥ 1) be the unique minimizer in L2(Ω) of the functional J
defined by (61) with a = az, c = cz, B = Bz and D = Dz (resp. with a = azj

,
c = czj

, B = Bzj
and D = Dzj

). Reasoning as in [12] and [15], the coercivity
property (62) is proved to be hold uniformly on potentials a, c, B and D
uniformly bounded. Then, one can see that the sequence {ϕ̂0

j} is bounded in
L2(Ω) and, finally, one proves that

ϕ̂0
j → ϕ̂0 in L2(Ω). (72)

Let now (ϕ̂, ψ̂) (resp. (ϕ̂j, ψ̂j), j ≥ 1) be the solution of (12), (13) with a = az,
c = cz, B = Bz, D = Dz (resp. a = azj

, c = czj
, B = Bzj

, D = Dzj
) and the

initial condition ϕ̂0 (resp. ϕ̂0
j). From (71) and (72), we have

ϕ̂j → ϕ̂, ψ̂j → ψ̂ in L2(Q). (73)

By definition of Λε, Λε(z) (resp. Λε(zj), j ≥ 1) is the solution of (56) associated

to the control v̂ = ψ̂1ω (resp. v̂j = ψ̂j1ω) with a = az, c = cz, B = Bz and
D = Dz (resp. a = azj

, c = czj
, B = Bzj

, and D = Dzj
). From (73) one has

v̂j → v̂ in L2(Q), so that from (71) one gets that Λε(zj) → Λε(z) in L2(Q)
and also in L2(0, T ;H1

0(Ω)), due to (70). This proves the continuity of Λε.

All the assumptions of the Schauder theorem being fulfilled, Λε possesses at
least one fixed point yε ∈ L2(0, T ;H1

0(Ω)). Then, the control vε = vyε
is such

that yε solves





∂tyε − ∆yε + g(yε,∇yε)yε +G(yε,∇yε) · ∇yε = ξ + vε1ω in Q,

yε = 0 on Σ, yε(x, 0) = 0 in Ω,
(74)
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and the solution qε of





−∂tqε − ∆qε + ∂sf(yε,∇yε)qε −∇ · (∂pf(yε,∇yε)qε) = yε1O in Q,

qε = 0 on Σ, qε(x, T ) = 0 in Ω,
(75)

satisfies (58). In other words, we have found a control function vε ∈ L2(ω ×
(0, T )) such that the associated solution of (5), (6) (with y0 = 0) verifies
(58). Finally, estimate (64) follows readily from (69), which ends the proof of
Proposition 3.2. �

We will end the proof of Theorem 1.1 by passing to the limit in (74), (75),
and (58). Since the controls vε provided by Proposition 3.2 are uniformly
bounded in L2(ω× (0, T )) and (66) holds, due to the regularizing effect of the
heat equation, {(yε, qε)} lies in a bounded set of Y ×W (0, T ) (Y defined in
page 20 and W (0, T ) := {u : u ∈ L2(0, T ;H1

0(Ω)), ∂tu ∈ L2(0, T ;H−1(Ω))})
and accordingly, in a compact set of L2(0, T ;H1

0(Ω)) × L2(Q). Then, up to a
subsequence, one has

vε ⇀ v weakly in L2(ω × (0, T )),

(yε, qε) → (y, q) in L2(0, T ;H1
0(Ω)) × L2(Q), qε(0) → q(0) in L2(Ω),

for some v ∈ L2(ω × (0, T )), y ∈ Y , q ∈ W (0, T ). Due to the continuity of g
and G, one can pass to the limit in (74) and (75), deducing that (y, q) solves
(5), (6) with control term v and initial datum y0 = 0. Moreover, from (58),
the function q satisfies (7). Thus, the function v is an insensitizing control for
the functional Φ given by (2). Finally, (64) and the convergences above allow
one to estimate

‖v‖L2(ω×(0,T )) ≤ H
(∫∫

Q
exp

(M
t

)
|ξ|2 dx dt

)1/2

, (76)

with M and H given by (68) and the proof is complete. �

Remark 2 The method used in Theorem 1.1 to obtain such a control v pro-
vides an upper bound of the cost of insensitizing the functional Φ. Indeed, in
the proof of the theorem it is shown that the control function v can be chosen
satisfying estimate (76), with M and H given by (68). Inspired in [6], denote
by Uad the nonempty set

Uad = {v ∈ L2(ω × (0, T )) : (y, q) satisfies (5)–(7) with y0 = 0}.

Thus, the quantity Cins = inf{‖v‖L2(ω×(0,T )) : v ∈ Uad}, which measures the
cost of insensitizing the functional Φ, can be estimated as follows

Cins ≤ H
(∫∫

Q
exp

(M
t

)
|ξ|2 dx dt

)1/2

.
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4 Comments and conclusions

Boundary Fourier conditions. Proving an insensitivity result for the sys-
tem: 




∂ty − ∆y + f(y,∇y) = ξ + v1ω in Q,

∂ny + hy = 0 on Σ, y(x, 0) = τ ŷ0(x) in Ω,

with a C1 globally Lipschitz-continuous function f is a much more difficult
problem. Let us observe that such an insensitivity result is equivalent to the
following null controllability problem:






∂ty − ∆y + f(y,∇y) = ξ + v1ω in Q,

∂ny + hy = 0 on Σ, y(x, 0) = 0 in Ω,






−∂tq − ∆q −∇ · (∂pf(y,∇y)q) + ∂sf(y,∇y)q = y1O in Q,

∂nq + hq + (∂pf(y,∇y) · n) q = 0 on Σ, q(x, T ) = 0 in Ω,

q(x, 0) = 0 in Ω.

This leads us to analyze the null controllability problem for the cascade
linear system






∂ty − ∆y + ay +B · ∇y = ξ + v1ω in Q,

∂ny + hy = 0 on Σ, y(x, 0) = 0 in Ω,
(77)






−∂tq − ∆q −∇ · (Dq) + cq = y1O in Q,

∂nq + (h+D · n) q = 0 on Σ, q(x, T ) = 0 in Ω,
(78)

under the hypothesis a, c ∈ L∞(Q) and B,D ∈ L∞(Q)N (which are the
natural assumptions on these potentials for the given function f). For this,
an observability inequality for the corresponding adjoint problem should be
proved. This adjoint problem is:






∂tϕ− ∆ϕ + cϕ+D · ∇y = 0 in Q,

∂nϕ+ hϕ = 0 on Σ, ϕ(x, 0) = ϕ0 in Ω,






−∂tψ − ∆ψ −∇ · (Bψ) + aψ = ϕ1O in Q,

∂nψ + (h+B · n)ψ = 0 on Σ, ψ(x, T ) = 0 in Ω.

In order to obtain such an observability inequality, we need a Carleman
inequality for these adjoint problems. The presence of the term (B · n)ψ
in the boundary condition for ψ and the unique hypothesis B ∈ L∞(Q)N

makes it quite difficult (even in the case of a null controllability problem for
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a unique linear heat equation with the same kind of boundary conditions)
and this is out of the scope of this paper.

Superlinear nonlinearities. The observability results proved in this paper
are of wider use than the scope of this article. First, Theorem 2.1 is used
in [4] and [5] for a semilinear heat equation with a superlinear nonlinear-
ity f(y). Theorem 2.6 is also used in [7] for the case of nonlinear Fourier
boundary conditions. It is of interest to notice that in Theorem 2.6, the
dependency of the constants with respect to the boundary data h and k
is not explicit. This comes from the proof of Lemma 2.5 (see Lemma 1.2
in [9]).

In view of known null controllability results, it is natural to think of
extending Theorem 1.1 to C1 locally Lipschitz-continuous functions f such
that f(0, 0) = 0 and

lim
|(s,p)|→∞

|g(s, p)|
log3/2(1 + |s| + |p|)

= 0, lim
|(s,p)|→∞

|G(s, p)|
log1/2(1 + |s| + |p|)

= 0,

with g and G the functions given by (65) (see Theorem 1.1 in [11]). Observe
that such nonlinearities may lead to blow-up phenomena. However, the idea
in [11] of taking short control times to avoid blow-up to occur fails here (even
if G ≡ 0), since the initial and final times are fixed in insensitivity problems.

In [4] and [5] the authors introduce a new technique and prove an insen-
sitivity result for nonlinearities f = f(y) with certain superlinear growth at
infinity, e.g. for f such as |f(s)| = |p1(s)| logα(1+|p2(s)|) for all |s| ≥ s0 > 0,
with α ∈ [0, 1), p1 and p2 being first order real polynomial functions. The
crucial point in these works is the construction, in the linear case, of regular
controls starting from insensitizing controls in L2. The idea is as follows.
Let us consider two open sets B0 and B such that B0 ⊂⊂ B ⊂ ω ∩ O. Let
v̂ be an L2–control, with supp v̂ ⊂ B0 × [0, T ], such that the correspond-
ing solution (ŷ, q̂) of (56), (57) for B = D = 0 satisfies (7). Then, setting
q = (1 − θ)q̂, y = (1 − θ) ŷ + 2∇θ · ∇q̂ + (∆θ)q̂, with θ ∈ D(B) such that
θ ≡ 1 in a neighborhood of B0, it is possible to furnish a regular insensitizing
control v supported on B × [0, T ]. This construction uses local regulariza-
tion properties of the heat equation. This technique does not apply to the
case involving gradient terms because of the lack of regularity introduced
by the term −∇ · (Dq) in (57). Indeed, in this case, the expression of the
regular control we wish to build contains some terms, which are not regular
enough to make the state y lie in a suitable space to apply a fixed point
argument. This is why in Theorem 1.1 we cannot consider nonlinearities of
higher order.

In [7], a local result on the existence of insensitizing controls for a semi-
linear heat equation with nonlinear boundary conditions of Fourier type is
proved. Such boundary conditions lead to seek a fixed point, thus also con-
trol functions, in certain Hölder spaces. A construction similar to that used
in [4] and [5], allows one to build, in the linear case, controls with hölderian
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regularity starting from L2–controls. Again, this is one of the essential points
in the referenced work.
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