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Abstract

In this paper we consider a semilinear heat equation (in a bounded domain
Ω of IRN ) with a nonlinearity that has a superlinear growth at infinity. We
prove the existence of a control, with support in an open set ω ⊂ Ω, that
insensitizes the L2−norm of the observation of the solution in another open
subset O ⊂ Ω when ω ∩ O 6= ∅, under suitable assumptions on the nonlinear
term f(y) and the right hand side term ξ of the equation. The proof, involving
global Carleman estimates and regularizing properties of the heat equation,
relies on the sharp study of a similar linearized problem and an appropriate
fixed-point argument. For certain superlinear nonlinearities, we also prove an
insensitivity result of a negative nature. The crucial point in this paper is
the technique of construction of Lr–controls (r large enough) starting from
insensitizing controls in L2.
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1 Introduction and main results

Problem formulation

Let Ω ⊂ IRN , N ≥ 1, be a bounded connected open set with boundary ∂Ω ∈ C2. Let
f be a C1 function defined on IR. Let ω and O be two open subsets of Ω (thought
to be small, in practice). For T > 0, we denote Q = Ω× (0, T ) and Σ = ∂Ω× (0, T ).

We consider a semilinear heat equation with partially known initial condition

{

∂ty − ∆y + f(y) = ξ + v1ω in Q,

y = 0 on Σ, y(x, 0) = y0(x) + τ ŷ0(x) in Ω,
(1)

where ξ ∈ L2(Q) is a given heat source, y0 ∈ L2(Ω) is a given initial data (although,
by the reasons which will be seen later, we will address in this paper the case y0 = 0),
ŷ0 ∈ L2(Ω) is unknown with ‖ŷ0‖L2(Ω) = 1, τ is an unknown small real number and
v ∈ L2(Q) is a control function to be determined. Here 1ω is the characteristic
function of the control set ω.

Let us define

φ(y) =
1

2

∫∫

O×(0,T )

|y(x, t; τ, v)|2 dx dt, (2)

y = y(·, ·; τ, v) being a solution to (1) associated to τ and v. A control function v is
said to insensitize φ if

∂φ(y(·, ·; τ, v))

∂τ

∣

∣

∣

∣

τ=0

= 0, ∀ŷ0 ∈ L2(Ω) with ‖ŷ0‖L2(Ω) = 1. (3)

This insensitivity condition means that we seek a control function v, acting on
ω × (0, T ), such that φ is locally insensitive to small perturbations in the initial
condition.

In [3] and [15], the existence of a control v satisfying (3) is proved to be equivalent
to the existence of a control v solving the following problem:

{

∂ty − ∆y + f(y) = ξ + v1ω in Q,

y = 0 on Σ, y(x, 0) = y0(x) in Ω,
(4)

{

−∂tq − ∆q + f ′(y)q = y1O in Q,

q = 0 on Σ, q(x, T ) = 0 in Ω,
(5)

q(x, 0) = 0 in Ω. (6)
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Thus the problem of seeking a control that insensitizes φ boils down to a non-classical
null controllability problem. First, it is a null controllability problem of backward-
forward nature for a cascade system of heat equations, the first one of semilinear
type. In addition, the control enters on the second equation only indirectly through
the first one, while q is the function we want to lead to zero after a time interval of
length T .

Preliminaries and existing results

This problem, addressed by J.-L. Lions in [15], has been studied for globally Lipschitz-
continuous nonlinearities and ω ∩O 6= ∅ (this last hypothesis is absolutely essential
and to our knowledge nothing is known when the intersection is empty). First, in
[3] the authors relaxed the notion of insensitizing controls, introducing the so–called
ε–insensitizing controls: Given ε > 0, a control v is said to ε–insensitize φ if

∣

∣

∣

∣

∂φ(y(·, ·; τ, v))

∂τ

∣

∣

∣

∣

τ=0

∣

∣

∣

∣

≤ ε, ∀ŷ0 ∈ L2(Ω) with ‖ŷ0‖L2(Ω) = 1.

In the above-mentioned paper, the existence of ε–insensitizing controls for partially
known data, both in the initial and boundary conditions, was proved. This problem
is equivalent to an approximate controllability problem for a system of coupled heat
equations and it was solved by using the techniques in [9].

The first results on the existence and non-existence of insensitizing controls were
proved in [16]. To be precise, the author showed that when f ≡ 0 and Ω\ω 6= ∅, there
exists y0 ∈ L2(Ω) such that, for every v ∈ L2(Q), the corresponding solution (y, q)
to (4)–(5) satisfies q(0) 6= 0, that is to say, the functional φ cannot be insensitized
(see Theorem 2 in [16]). On the other hand, when ω ∩ O 6= ∅, y0 = 0 and f
is a C1 globally Lipschitz-continuous function such that f(0) = 0, in [16] it is
proved: If ξ ∈ L2(Q; exp(M/2t)) with M > 0 large enough, there exists v ∈ L2(Q)
such that the solution (y, q) to (4)–(5) satisfies (6) (see Theorem 1 in [16]). Here
L2(Q; exp(M/2t)) stands for the weighted Hilbert space

L2(Q; exp(M/2t)) = {ξ ∈ L2(Q) : ‖ exp(M/2t)ξ‖L2(Q) < ∞}.

The proof combines a similar null controllability result for linear coupled parabolic
systems and an appropriate fixed-point argument. More precisely, the author first
linearizes the system and shows its null controllability with controls uniformly
bounded in L2(Q) when the potentials of the linearized system lie in a bounded
set of L∞(Q). Since f is a globally Lipschitz-continuous function, this fact suffices
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for proving that the fixed-point mapping maps L2(Q) into a convex compact set of
L2(Q).

The main goal of the present paper is to analyze the existence of controls that
insensitize φ, that is to say, to study the null controllability properties of the coupled
system (4)–(5) when f has a superlinear growth at infinity. In accordance with
Theorems 1 and 2 in [16], we will assume from now on that y0 = 0 and ω ∩ O 6= ∅.

In the study of the null controllability of semilinear parabolic systems with su-
perlinear nonlinearities, additional technical difficulties arise. Let us recall what
happens in the simpler case of one semilinear heat equation. During the last years,
the controllability properties of

{

∂ty − ∆y + f(y) = v1ω in Q,

y = 0 on Σ, y(x, 0) = y0(x) in Ω,
(7)

with a superlinear nonlinearity f(y) has been thoroughly studied by several au-
thors. As in the sublinear case, the technique to deal with this problem combines a
fixed-point reformulation together with the study of the null controllability of linear
problems of the form

{

∂ty − ∆y + ay = v1ω in Q,

y = 0 on Σ, y(x, 0) = y0(x) in Ω,

where a ∈ L∞(Q). Due to the superlinear growth of the nonlinearity it is necessary,
to perform a fixed point argument, that the solution of the controlled linear problem
belongs to L∞(Q). To this aim controls in Lr(Q), with r > (N + 2)/2, must be
built. Moreover, in the linear case it is necessary to analyze how the Lr–norm of
the controls depends on ‖a‖∞. Let us mention some papers on this issue:

1. In [2], V. Barbu obtained null Lr(N)–controls v such that

‖v‖Lr(N)(Q) ≤ C(‖a‖∞)‖y0‖L2(Ω),

with r(N) ∈

[

2,
2(N + 2)

N − 2

]

if N ≥ 3, r(N) ∈ [2,∞) if N = 2, and r(N) ∈

[2,∞] if N = 1. The proof of this estimate is based on a global Carleman
inequality for the adjoint problem

{

−∂tϕ − ∆ϕ + aϕ = 0 in Q,

ϕ = 0 on Σ, ϕ(x, T ) = ϕ0(x) in Ω,
(8)
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due to A.V. Fursikov and O.Yu. Imanuvilov (see [11]). In fact, the author
proved a sharp estimate of the constant appearing on the right-hand side of
the Carleman inequality with respect to ‖a‖∞. Nevertheless, this technique
can only be applied to the study of the null controllability of the superlinear
heat equation (7) when N < 6. For other controllability results proved in a
similar way, see [1].

2. A second approach was developed by E. Fernández-Cara and E. Zuazua in [10].
They proved the “refined” observability inequality

‖ϕ(0)‖2
L2(Ω) ≤ C(T, ‖a‖∞)

(
∫∫

ω×(0,T )

|ϕ| dx dt

)2

, (9)

for the solutions to (8), which implies the existence of a null control v ∈ L∞(Q)
satisfying

‖v‖L∞(Q) ≤ C(T, ‖a‖∞)‖y0‖L2(Ω).

In this case, the observability inequality (9) was deduced combining a global
Carleman estimate for the adjoint problem and the regularizing effect of the
heat equation. The authors give the explicit dependence on T and ‖a‖∞ of
the constant C(T, ‖a‖∞) in (9), which is essential to prove their nonlinear null
controllability result. This technique was later used in [8] for a nonlinear heat
equation with a superlinear term f(y,∇y).

The study of the null controllability properties of the superlinear coupled system
(4)–(5) is more intricate. In this case, as in [1], [2] and [10], null Lr–controls (with
r > (N+2)/2) for the corresponding coupled linear system must also be built. Again,
Lr–estimates of the controls are needed. The technique introduced by V. Barbu
could be applied in this case if the condition N < 6 is imposed (which does not
seem to be a natural restriction on N). On the other hand, the approach proposed
by E. Fernández-Cara and E. Zuazua cannot be applied since the regularizing effect
of the associated linear adjoint problem involves two functions ϕ and ψ (see (21)–
(22)) while the corresponding “refined” observability inequality should only involve
ψ (recall that the control v only appears in (4)).

In [4], the authors introduced a new technique of construction of null Lr–controls
for coupled linear parabolic systems. This strategy made it possible to generalize
Theorem 1 in [16] to more general nonlinearities. The proof of this insensitivity
result as well as the above-mentioned technique, sketched in [4], are developed in
the present paper. To our knowledge, this is the first insensitivity result in the
literature for semilinear heat equations with a superlinear nonlinearity.
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Main results

The first relevant result in this paper is the following one:

Theorem 1.1 Assume that ω ∩ O 6= ∅ and y0 = 0. Let f be a C1 function defined
on IR verifying f ′′ ∈ L∞

loc(IR), f(0) = 0 and

lim
|s|→∞

f ′(s)

log(1 + |s|)
= 0. (10)

Let r ∈

(

N

2
+ 1,∞

)

be given. Then, for any ξ ∈ Lr(Q) such that

∫∫

Q

exp

(

1

t3

)

|ξ|2 dx dt < ∞, (11)

there exists a control function v ∈ Lr(Q) insensitizing the functional φ given by (2).
¤

Condition (11) means that the given source term ξ is asked to decay rapidly
to zero close to the initial time t = 0. As seen before, a similar assumption, if a
weaker one, is required in the case when a globally Lipschitz-continuous nonlinearity
is considered. Observe that hypothesis f(0) = 0 is in accordance with assumptions
on ξ (see [16] for both considerations).

As usual in the study of controllability problems for nonlinear equations, a con-
trollability result for a linearized version of (4)–(6) will be first proved. We will then
apply a fixed-point argument to deal with the general case. The structure of the
proof is quite general (for other controllability results proved in a similar way, see
[10], [17], ...).

Remark 1 Hypothesis (10) is fulfilled by certain superlinear nonlinearities f such
as

|f(s)| = |p1(s)| logα(1 + |p2(s)|) for all |s| ≥ s0 > 0,

with α ∈ [0, 1), where p1 and p2 are real affine functions.
For nonlinearities f ∈ C1(IR) satisfying hypothesis (10), system (1) admits a

global solution when the data ξ, v, y0 and ŷ0 are regular enough. For instance, by
linearization and the later application of a fixed-point argument, one can prove that
for given ξ and v in Lr(Q) and y0, ŷ0 ∈ W 2−2/r,r(Ω) ∩ W 1,r

0 (Ω), with r > N/2 + 1,
system (1) possesses a unique solution in Lr(0, T ; W 2,r(Ω)). Let us remark that
throughout the paper, this regularity will be assumed on the data. ¤
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Our second main result is of a negative nature.

Theorem 1.2 There exist C1 functions f verifying f ′′ ∈ L∞
loc(IR), f(0) = 0 and

|f(s)| ∼ |s| logα(1 + |s|) as |s| → ∞, (12)

with α > 2, and there exist source terms ξ ∈ Lr(Q) satisfying (11), for which it is
not possible to find control functions insensitizing the functional φ given by (2). ¤

For the proof of this result, we choose

f(s) =

∫ |s|

0

logα (1 + |σ|) dσ for all s ∈ IR

and we prove a localized estimate in Ω\ω of the corresponding solution y of (4) that
shows that for certain source terms ξ, the control v cannot compensate the blow up
phenomena occurring in Ω \ ω.

In view of Theorems 1.1 and 1.2, it would be interesting to analyze what happens
when f satisfies (12), with 1 ≤ α ≤ 2 (see Subsection 6.4 for further comments).

The rest of this paper will be organized as follows. In the following Section,
we present some technical results which will be proved in an appendix. Section 3
provides an exhaustive study of the linear case. In Section 4, we analyze the non-
linear case and prove Theorem 1.1. The fifth Section is devoted to the proof of
Theorem 1.2. In Section 6 we give other insensitivity results and discuss some open
problems.

2 Some technical results

In this Section we state some technical results which will be used later. They are
known results on the local regularity for the solutions to the linear heat equation.
Nevertheless, we include the proof of these results in an appendix so as to obtain
the explicit dependence of the constants on the potentials, which will be essential
in our analysis.

First, let us present the following notation, which is used all along this paper.
For r ∈ [1,∞] and a given Banach space X, ‖ · ‖Lr(X) will denote the norm in
Lr(0, T ; X). For simplicity, the norm in Lr(Q) will be represented by ‖ · ‖Lr , for
r ∈ [1,∞), and ‖ · ‖∞ will denote the norm in L∞(Q). For r ∈ [1,∞) and any open
set V ⊂ IRN , we will consider the Banach space

Xr(0, T ;V) =
{

u ∈ Lr(0, T ; W 2,r(V)) : ∂tu ∈ Lr(0, T ; Lr(V))
}

,
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and its norm, defined by

‖u‖Xr(0,T ;V) = ‖u‖Lr(W 2,r(V)) + ‖∂tu‖Lr(Lr(V)).

In particular, we will consider the space Xr = Xr(0, T ; Ω) and its norm, denoted by
‖ · ‖Xr . The norm in the space L2(0, T ; H2(Ω)) ∩ C([0, T ]; H1(Ω)) will be denoted
by ‖ · ‖L2(H2)∩C(H1).

On the other hand, for α ∈ (0, 1) and u ∈ C0(Q), we define the quantity

[u]α, α
2

= sup
Q

|u(x, t) − u(x′, t)|

|x − x′|α
+ sup

Q

|u(x, t) − u(x, t′)|

|t − t′|
α
2

.

We will consider the space Cα, α
2 (Q) =

{

u ∈ C0(Q) : [u]α, α
2

< ∞
}

, which is a Banach
space with its natural norm |u|α, α

2
;Q = ‖u‖∞ + [u]α, α

2
. We will also consider the

Banach space defined by

C1+α, 1+α
2 (Q) =

{

u ∈ C0(Q) :
∂u

∂xi

∈ Cα, α
2 (Q) ∀i, sup

Q

|u(x, t) − u(x, t′)|

|t − t′|
1+α

2

< ∞

}

.

The following holds:

Proposition 2.1 Let a ∈ L∞(Q) and F ∈ L2(Q) be given. Let us consider a
solution y ∈ L2(0, T ; H2(Ω)) ∩ C([0, T ]; H1(Ω)) to

{

∂ty − ∆y + ay = F in Q,

y = 0 on Σ, y(x, 0) = 0 in Ω.
(13)

a) Let V ⊂ Ω (resp. B ⊂⊂ Ω) be an open set. Let us suppose that F ∈
Lr(0, T ; Lr(V)) (resp. F ∈ Lr(0, T ; Lr(Ω \ B)), with r ∈ (2,∞). Then, for
any open set V ′ ⊂⊂ V (resp. B ⊂⊂ B′ ⊂⊂ Ω) one has

y ∈ Xr(0, T ;V ′) (resp. y ∈ Xr(0, T ; Ω \ B′)).

Moreover, there exist positive constants C = C(Ω, T,N, r,V ,V ′) (resp. C =
C(Ω, T,N, r,B,B′)) and K = K(N) such that

‖y‖Xr(0,T ;V ′) ≤ C (1 + ‖a‖∞)K
[

‖F‖Lr(Lr(V)) + ‖y‖L2(H2)∩C(H1)

]

. (14)

(resp. ‖y‖Xr(0,T ;Ω\B′) ≤ C (1 + ‖a‖∞)K
[

‖F‖Lr(Lr(Ω\B)) + ‖y‖L2(H2)∩C(H1)

]

).
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b) Assume, in addition, that F ∈ Lr(0, T ; W 1,r(V)), with r as above, and ∇a ∈
Lγ(Q)N , with

γ =















max

(

r,
N

2
+ 1

)

if r 6=
N

2
+ 1,

N

2
+ 1 + ε if r =

N

2
+ 1,

(15)

and ε being an arbitrarily small positive number. Then, for any open set
V ′ ⊂⊂ V, one has

y ∈ Lr(0, T ; W 3,r(V ′)), ∂ty ∈ Lr(0, T ; W 1,r(V ′))

and, for a new positive constant C = C(Ω, T,N, r,V ,V ′), the following esti-
mate holds

‖y‖Lr(W 3,r(V ′)) + ‖∂ty‖Lr(W 1,r(V ′)) ≤ C H
[

‖F‖Lr(W 1,r(V)) + ‖y‖L2(H2)∩C(H1)

]

,

where

H = H(N, ‖a‖∞, ‖∇a‖Lγ ) = (1 + ‖a‖∞)K+1(1 + ‖∇a‖Lγ ),

K = K(N) being as in (14). ¤

We will also use the following result, which is immediately obtained rewriting
Lemma 3.3, p. 80, in [14] with our notation.

Lemma 2.2 Let Ω ⊂ IRN , N ≥ 1, be an open set with ∂Ω ∈ C2. The following
continuous embeddings hold:

i. If r <
N

2
+ 1, then Xr →֒ Lp(Q), where

1

p
=

1

r
−

2

N + 2
.

ii. If r =
N

2
+ 1, then Xr →֒ Lq(Q) for all q < ∞.

iii. If
N

2
+ 1 < r < N + 2, then Xr →֒ Cβ, β

2 (Q), with β = 2 −
N + 2

r
.

iv. If r = N + 2, then Xr →֒ C l, l
2 (Q) for all l ∈ (0, 1).

v. If r > N + 2, then Xr →֒ C1+α, 1+α
2 (Q), where α = 1 −

N + 2

r
. ¤
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3 The linear case

Let us consider the linear systems:
{

∂ty − ∆y + ay = ξ + v1ω in Q,

y = 0 on Σ, y(x, 0) = 0 in Ω,
(16)

{

−∂tq − ∆q + bq = y1O in Q,

q = 0 on Σ, q(x, T ) = 0 in Ω,
(17)

where a, b ∈ L∞(Q), ξ ∈ L2(Q) and the open sets ω, O are given.
Recall that ω ∩ O 6= ∅. The aim of this Section is to build a control v ∈ Lr(Q),

with r as in the statement of Theorem 1.1, such that the solution to (16)–(17) verifies

q(x, 0) = 0 in Ω. (18)

The estimate of ‖v‖Lr with respect to the potentials is also given. To this end,
additional assumptions on a, b and ξ will be required. The regularity of v, thus of
y and q, will enable us to deal with the nonlinear case.

We will proceed in two steps. First, using an appropriate observability inequality,
we will construct controls in L2(Q). This will be done in Subsection 3.1. Then, in
view of the results in the precedent Section, we will exhibit more regular controls
(see Subsection 3.2).

3.1 Insensitizing controls in L2(Q)

We actually seek a regular control supported in ω ∩ O 6= ∅. In the sequel, B0 will
be a fixed open set such that B0 ⊂⊂ ω ∩O and we will omit the dependence of the
constants on B0.

Under suitable assumptions on the given heat source ξ, the following result pro-
vides a control function v̂ in L2(Q) with support in B0 × [0, T ]. The L2- norm of v̂
is also estimated with respect to ξ.

Proposition 3.1 Let a, b ∈ L∞(Q) be given and let ξ ∈ L2(Q) verify

∫∫

Q

exp

(

CM

t

)

|ξ|2 dx dt < ∞, (19)

with C = C(Ω, ω,O) and M = M(T, ‖a‖∞, ‖b‖∞) as in Proposition 3.2. Then,
there exists a control function v̂ ∈ L2(Q) such that supp v̂ ⊂ B0 × [0, T ] and the
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corresponding solution (ŷ, q̂) to (16)–(17) satisfies (18). Moreover, v̂ can be chosen
in such a way that

‖v̂‖L2 ≤ exp

(

C

2
H

)(
∫∫

Q

exp

(

CM

t

)

|ξ|2 dx dt

)1/2

, (20)

H = H(T, ‖a‖∞, ‖b‖∞) being as in Proposition 3.2.

The proof of this result can be found in [16] and it will be omitted here. The
key point in this proof is to obtain an appropriate observability inequality for the
corresponding adjoint systems:

{

∂tϕ − ∆ϕ + bϕ = 0 in Q,

ϕ = 0 on Σ, ϕ(x, 0) = ϕ0(x) in Ω,
(21)

and
{

−∂tψ − ∆ψ + aψ = ϕ1O in Q,

ψ = 0 on Σ, ψ(x, T ) = 0 in Ω,
(22)

with ϕ0 ∈ L2(Ω) and a, b ∈ L∞(Q). The following result establishes the above-
mentioned observability inequality:

Proposition 3.2 Let us assume that ω∩O 6= ∅. Let B0 be an arbitrary open subset
of ω ∩ O. Then, there exist positive constants C, M and H such that, for every
ϕ0 ∈ L2(Ω), the corresponding solution (ϕ, ψ) to (21)–(22) satisfies

∫∫

Q

exp

(

−
CM

t

)

|ψ|2 dx dt ≤ exp (CH)

∫∫

B0×(0,T )

|ψ|2 dx dt,

with

M = M(T, ‖a‖∞, ‖b‖∞) = 1 + T
(

1 + ‖a‖2/3
∞ + ‖b‖2/3

∞ + ‖a − b‖1/2
∞

)

,

H = H(T, ‖a‖∞, ‖b‖∞) = 1+
1

T
+T (1 + ‖a‖∞ + ‖b‖∞)+‖a‖2/3

∞ +‖b‖2/3
∞ +‖a−b‖1/2

∞

and C = C(Ω, ω,O, B0). ¤

This inequality was first proved in [16] as a consequence of a global Carleman
inequality for the heat equation (cf. [11]). In [5], the result is extended to the heat
equation involving first order terms and the explicit dependence of the constants
M and H on T and the size of the potentials is given. This is crucial to prove
the existence of insensitizing controls in the nonlinear case when f is not a globally
Lipschitz-continuous function.
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3.2 Insensitizing controls in Lr(Q)

In this Subsection we prove that, under additional assumptions on ξ and the po-
tentials a and b, starting from an insensitizing control v̂ ∈ L2(Q) supported in
B0 × [0, T ], we can build a more regular insensitizing control with a slightly larger
support. Furthermore, we estimate the norm of the new control with respect to
‖v̂‖L2 .

We proceed as follows. Let B, B1 and B2 be three open sets such that

B0 ⊂⊂ B1 ⊂⊂ B2 ⊂⊂ B ⊂ ω ∩ O,

B0 being the open set considered in the previous Subsection. For a, b ∈ L∞(Q)
and ξ ∈ L2(Q) satisfying (19), let v̂ be a control (associated to B0) provided by
Proposition 3.1 and let (ŷ, q̂) be the corresponding solution to (16)–(18).

Our goal is to construct a regular control supported in B × [0, T ]. To this end,
let us consider a function θ ∈ D(B) such that θ ≡ 1 in B2. We set

q = (1 − θ) q̂ (23)

and
y = (1 − θ) ŷ + 2∇θ · ∇q̂ + (∆θ)q̂. (24)

We will see that, under appropriate regularity assumptions on the data ξ, a and
b, (y, q) solves (16)–(18) with the control function supported in B × [0, T ] given by

v = −θξ + 2∇θ · ∇ŷ + (∆θ)ŷ + (∂t − ∆ + a) [2∇θ · ∇q̂ + (∆θ)q̂] . (25)

For r ∈ (2,∞), let us set

Zr =















Lr(0, T ; W 1,r(Ω)) if r ∈

(

2,
N

2
+ 1

]

,

C0(Q) ∩ Lr(0, T ; W 1,r(Ω)) if r >
N

2
+ 1.

(26)

In the sequel, unless otherwise specified, C will stand for a generic positive
constant depending on Ω, ω, O and T (the dependence on N and r will be omitted
for simplicity) whose value may change from line to line. One has the following
result:

Proposition 3.3 Let ξ ∈ Lr(Q) verify (19), with r ∈ (2,∞), and let v̂ ∈ L2(Q) be
a control provided by Proposition 3.1 (associated to B0). The following holds:
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a) For a, b ∈ L∞(Q), it holds that y, q given by (24) and (23) lie in Zr and

‖y‖Zr
+ ‖q‖Zr

≤ C1(Ω, ω,O, T, ‖a‖∞, ‖b‖∞) (‖ξ‖Lr + ‖v̂‖L2) , (27)

where
C1(Ω, ω,O, T, ‖a‖∞, ‖b‖∞) = exp [C(1 + ‖a‖∞ + ‖b‖∞)] . (28)

b) Suppose, in addition, that ∇b ∈ Lγ(Q)N , with γ given by (15). Then, v defined
by (25) satisfies v ∈ Lr(Q), supp v ⊂ B × [0, T ] and

‖v‖Lr ≤ C2(Ω, ω,O, T, ‖a‖∞, ‖b‖∞, ‖∇b‖Lγ ) (‖ξ‖Lr + ‖v̂‖L2) , (29)

where C2(Ω, ω,O, T, ‖a‖∞, ‖b‖∞, ‖∇b‖Lγ ) is given by

C2 = exp [C(1 + ‖a‖∞ + ‖b‖∞)] (1 + ‖∇b‖Lγ ) . (30)

Proof:

a) First, let us see that, for a, b ∈ L∞(Q), y and q lie in Lr(0, T ; W 1,r(Ω)). Let
us write

y = y1 + y2 + y3,

with
y1 = (1 − θ)ŷ, y2 = 2∇θ · ∇q̂ and y3 = (∆θ)q̂.

Recalling that (ŷ, q̂) solves (16)–(17) with a control v̂ in L2(Q) provided by
Proposition 3.1, classical energy estimates give

ŷ, q̂ ∈ L2(0, T ; H2(Ω) ∩ H1
0 (Ω)) ∩ C([0, T ]; H1

0 (Ω)),

‖ŷ‖L2(H2∩H1
0 ) + ‖ŷ‖C(H1

0 ) ≤ exp [C(1 + ‖a‖∞)] (‖ξ‖L2 + ‖v̂‖L2) (31)

and

‖q̂‖L2(H2∩H1
0 ) + ‖q̂‖C(H1

0 ) ≤ exp [C(1 + ‖a‖∞ + ‖b‖∞)] (‖ξ‖L2 + ‖v̂‖L2) . (32)

We can apply Proposition 2.1 to ŷ and the open sets B0 and B1 together with
(31) and conclude

ŷ ∈ Xr(0, T ; Ω \ B1)

and
‖ŷ‖Xr(0,T ;Ω\B1) ≤ exp [C(1 + ‖a‖∞)] (‖ξ‖Lr + ‖v̂‖L2) . (33)

13



Then, since supp (1 − θ) ⊂ Ω \ B1, one has

y1 ∈ Xr and ‖y1‖Xr ≤ exp [C(1 + ‖a‖∞)] (‖ξ‖Lr + ‖v̂‖L2) . (34)

On the other hand, as in particular ŷ1O ∈ Lr((Ω \B1)× (0, T )), Proposition 2.1
(applied this time to q̂ and the open sets B1 and B2), together with (33) and (32)
yield

q̂ ∈ Xr(0, T ; Ω \ B2)

and
‖q̂‖Xr(0,T ;Ω\B2) ≤ C1(Ω, ω,O, T, ‖a‖∞, ‖b‖∞) (‖ξ‖Lr + ‖v̂‖L2) ,

with C1(Ω, ω,O, T, ‖a‖∞, ‖b‖∞) given by (28). Then, arguing as above, one deduces
that

y2 ∈ Lr(0, T ; W 1,r(Ω)), y3, q ∈ Xr, (35)

and
‖y2‖Lr(W 1,r(Ω)) + ‖y3‖Xr + ‖q‖Xr ≤ C1 (‖ξ‖Lr + ‖v̂‖L2) . (36)

In particular, for r ∈

(

2,
N

2
+ 1

]

one has

y, q ∈ Zr = Lr(0, T ; W 1,r(Ω)) (indeed, q ∈ Xr)

and inequality (27) holds.
Let us now suppose that r > N/2 + 1. In this case, in view of Lemma 2.2, the

space Xr embeds continuously (and also compactly) in C0(Q). Hence, from (34),
(35) and (36) one has

y1, y3, q ∈ Zr = C0(Q) ∩ Lr(0, T ; W 1,r(Ω))

and
‖y1‖Zr

+ ‖y3‖Zr
+ ‖q‖Zr

≤ C1 (‖ξ‖Lr + ‖v̂‖L2) .

In order to complete the proof of point a), it suffices to see that y2 ∈ C0(Q). To
this end, let us observe that, for r greater than N/2 + 1, the function ŷ1O lies in
L∞((O \ B1) × (0, T )). Then, from Proposition 2.1 one deduces that

q̂ ∈ Xp(0, T ; B \ B2) for all p < ∞,

with
‖q̂‖Xp(0,T ;B\B2) ≤ C1 (‖ξ‖Lr + ‖v̂‖L2) .

14



Thus, for fixed p > N + 2, once again in view of Lemma 2.2, it holds that

q̂ ∈ C1+α, 1+α
2 (B \ B2 × [0, T ]), with α = 1 −

N + 2

p
.

This gives y2 ∈ Cα, α
2 (Q). This space being continuously embedded in C0(Q), one

has

y2 ∈ C0(Q) and ‖y2‖C0(Q) ≤ C1 (‖ξ‖Lr + ‖v̂‖L2) .

Is is then infered that y ∈ Zr = C0(Q) ∩ Lr(0, T ; W 1,r(Ω)) and (27) holds.
b) Let us suppose, in addition, that ∇b ∈ Lγ(Q)N , with γ given by (15). We

first observe that v defined by (25) is supported in B × [0, T ]. Moreover, ŷ lies in
Xr(0, T ; Ω \ B1) and (33) holds. We can apply point b) of Proposition 2.1 to q̂ for
the open set O \ B1 and deduce

q̂ ∈ Lr(0, T ; W 3,r(B \ B2)), ∂tq̂|B\B2
∈ Lr(0, T ; W 1,r(B \ B2))

and
‖q̂‖Lr(W 3,r(B\B2)) + ‖∂tq̂‖Lr(W 1,r(B\B2)) ≤ C2 (‖ξ‖Lr + ‖v̂‖L2) ,

with C2 = C2(Ω, ω,O, T, ‖a‖∞, ‖b‖∞, ‖∇b‖Lγ ) given by (30).
Now, in view of (25) and taking into account the previous considerations on ŷ

and q̂, and the choice of θ, one concludes that v lies in Lr(Q) and satisfies estimate
(29). This ends the proof. ¤

Finally, from the regularity of y, q and v defined by (23)–(25), we deduce that
(y, q) solves (16)–(18) with control function v. One then has the following insensi-
tivity result for the linear case:

Corollary 3.4 Let ξ ∈ Lr(Q) satisfy (19), with r ∈ (2,∞). Let us assume that
a ∈ L∞(Q) and b ∈ L∞(Q) ∩ Lγ(0, T ; W 1,γ(Ω)), with γ given by (15). Then, y, q
defined by (24) and (23) lie in the space Zr introduced in (26) and solve (16)–(18)
for the control function v ∈ Lr(Q) given by (25). Furthermore, there exists a positive
constant C depending on Ω, ω, O and T such that the following estimates hold

‖y‖Zr
+ ‖q‖Zr

≤ C1

(

‖ξ‖Lr + exp

(

C

2
H

) ∥

∥

∥

∥

exp

(

CM

2t

)

ξ

∥

∥

∥

∥

L2

)

and

‖v‖Lr ≤ C2

(

‖ξ‖Lr + exp

(

C

2
H

)∥

∥

∥

∥

exp

(

CM

2t

)

ξ

∥

∥

∥

∥

L2

)

,

with C1 and C2 of the form (28) and (30), respectively, and H, M being as in
Proposition 3.2. ¤
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Let us remark that in the context of the heat equation, the previous technique pro-
vides a new method of construction of regular controls starting from controls in
L2(Q). This will make it possible to give a new proof of known null controllability
results for nonlinear heat equations. A local result on the null controllability for
the classical heat equation and a local result on insensitizing controls for a semi-
linear heat equation, both with nonlinear Fourier boundary conditions, can also be
obtained by using a similar construction (see [7] and [6]).

4 The nonlinear case: proof of Theorem 1.1

In this Section, we will apply an appropriate fixed-point argument to treat the
nonlinear case. In a first step, f will be assumed to be a C2 function. The general
case will be studied in Subsection 4.2.

4.1 The case when f is a C2 function

Let f ∈ C2(IR) be a function verifying f(0) = 0 and (10). Let ξ ∈ Lr(Q) satisfy
hypothesis (11), with r > N/2 + 1.

Let us define

g(s) =







f(s)

s
if s 6= 0,

f ′(0) if s = 0.

Then g, f ′ ∈ C0(IR) and f(s) = g(s) s for all s ∈ IR. Since f(0) = 0, hypothesis
(10) on f ′ implies a similar one on g, that is,

lim
|s|→∞

g(s)

log(1 + |s|)
= 0.

Thus, for each ε > 0, there exists a positive constant Cε (which only depends on ε
and on the function f) such that

|g(s)| + |f ′(s)| ≤ Cε + ε log(1 + |s|) for all s ∈ IR. (37)

Let us recall that, for r >
N

2
+ 1, we defined

Zr = C0(Q) ∩ Lr(0, T ; W 1,r(Ω)).
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For any z ∈ B(0; R) ⊂ Zr, R > 0 to be determined later, we consider the linear
controllability problem

{

∂ty − ∆y + g(z)y = ξ + v1ω in Q,

y = 0 on Σ, y(x, 0) = 0 in Ω,
(38)

{

−∂tq − ∆q + f ′(z)q = y1O in Q,

q = 0 on Σ, q(x, T ) = 0 in Ω,
(39)

q(x, 0) = 0 in Ω. (40)

Let us observe that (38)–(39) are of the form (16)–(17) with potentials
{

a = az = g(z) ∈ L∞(Q),

b = bz = f ′(z) ∈ L∞(Q) ∩ Lr(0, T ; W 1,r(Ω)) (γ = r in this case).

In view of Corollary 3.4, for any z ∈ B(0; R) ⊂ Zr there exists a control vz ∈
Lr(Q) such that the corresponding solution (yz, qz) to (38)–(39) lies in Zr × Zr and
satisfies (40). Moreover, estimates

‖yz‖Zr
≤ C1(Ω, ω,O, T, z)

(

‖ξ‖Lr + exp

(

C

2
Hz

) ∥

∥

∥

∥

exp

(

CMz

2t

)

ξ

∥

∥

∥

∥

L2

)

(41)

and

‖vz‖Lr ≤ C2(Ω, ω,O, T, z)

(

‖ξ‖Lr + exp

(

C

2
Hz

)
∥

∥

∥

∥

exp

(

CMz

2t

)

ξ

∥

∥

∥

∥

L2

)

(42)

hold, where

C1(Ω, ω,O, T, z) = exp [C(1 + ‖g(z)‖∞ + ‖f ′(z)‖∞)] ,

C2(Ω, ω,O, T, z) = exp [C(1 + ‖g(z)‖∞ + ‖f ′(z)‖∞)] (1 + ‖f ′′(z)∇z‖Lr) ,

Mz = 1 + ‖g(z)‖
2/3
∞ + ‖f ′(z)‖

2/3
∞ + ‖g(z) − f ′(z)‖

1/2
∞ ,

Hz = 1 + ‖g(z)‖∞ + ‖f ′(z)‖∞ + ‖g(z)‖
2/3
∞ + ‖f ′(z)‖

2/3
∞ + ‖g(z) − f ′(z)‖

1/2
∞ ,

and C = C(Ω, ω,O, T ) > 0.
Due to hypothesis (11) on ξ, one has
∫∫

Q

exp

(

CMz

t

)

|ξ|2 dx dt =

∫∫

Q

exp

(

CMz

t
−

1

t3

)

exp

(

1

t3

)

|ξ|2 dx dt

≤ exp
(

C M3/2
z

)

∫∫

Q

exp

(

1

t3

)

|ξ|2 dx dt,

(43)
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C = C(Ω, ω,O, T ) being a new positive constant.
Then, from inequalities (41), (42) and (43), and using the convexity of the real

function s 7→ s3/2, it can be estimated

||yz||Zr
≤ C1(Ω, ω,O, T, z)

(

‖ξ‖Lr +

∥

∥

∥

∥

exp

(

1

2t3

)

ξ

∥

∥

∥

∥

L2

)

, (44)

and

||vz||Lr ≤ C2(Ω, ω,O, T, z)

(

‖ξ‖Lr +

∥

∥

∥

∥

exp

(

1

2t3

)

ξ

∥

∥

∥

∥

L2

)

≤ C̃(Ω, ω,O, T, R)

(

‖ξ‖Lr +

∥

∥

∥

∥

exp

(

1

2t3

)

ξ

∥

∥

∥

∥

L2

)

,

(45)

where C̃(Ω, ω,O, T, R) is a positive constant independent of z.
Let us define

A : z ∈ B(0; R) ⊂ Zr 7−→ A(z) ⊂ Lr(Q),

with
A(z) = {v ∈ Lr(Q) : (y, q) satisfies (38)–(40), v verifying (45)} ,

and let Λ be the set-valued mapping defined on Zr as follows:

Λ : z ∈ B(0; R) ⊂ Zr 7−→ Λ(z) ⊂ Zr,

with

Λ(z) = {y ∈ Zr : (y, q) solves (38)–(39) with v ∈ A(z), y satisfying (44)} .

Let us prove that Λ fulfills the assumptions of Kakutani’s fixed-point Theorem.
In the first place, one can check that Λ(z) is a non-empty closed convex subset of
Zr for fixed z ∈ Zr, due to the linearity of systems (38) and (39).

In fact, in view of Theorem 9.1 in [14] and (45), Λ(z) is uniformly bounded in Xr,
the space introduced in Section 2. Recall that for r > N/2 + 1, Xr is continuously

embedded in the Hölder space Cβ, β
2 (Q), with β = 2 − (N + 2)/r (see Lemma 2.2).

Then, there exists a compact set K ⊂ Zr, K only depending on R, such that

Λ(z) ⊂ K ∀z ∈ B(0; R). (46)

Let us now prove that Λ is an upper hemicontinuous multivalued mapping, that
is to say, for any bounded linear form µ ∈ Z ′

r, the real-valued function

z ∈ B(0; R) ⊂ Zr 7−→ sup
y∈Λ(z)

〈µ, y〉
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is upper semicontinuous. Correspondingly, let us see that

Bλ,µ =

{

z ∈ B(0; R) : sup
y∈Λ(z)

〈µ, y〉 ≥ λ

}

is a closed subset of Zr for any λ ∈ IR, µ ∈ Z ′
r (see [8] for a similar proof). To this

end, we consider a sequence {zn}n≥1 ⊂ Bλ,µ such that

zn → z in Zr.

Our aim is to prove that z ∈ Bλ,µ. Since all the Λ(zn) are compact sets, by the
definition of Bλ,µ, for any n ≥ 1 there exists yn ∈ Λ(zn) such that

〈µ, yn〉 = sup
y∈Λ(zn)

〈µ, y〉 ≥ λ. (47)

Recalling now the definition of A(zn) and Λ(zn), let vn ∈ A(zn), qn ∈ Zr be such
that (yn, qn) solves (38)–(40) with control vn and potentials g(zn), f ′(zn). From (44)
and (45), yn and vn satisfy

||yn||Zr
≤ C1(Ω, ω,O, T, zn)

(

‖ξ‖Lr +

∥

∥

∥

∥

exp

(

1

2t3

)

ξ

∥

∥

∥

∥

L2

)

,

and

||vn||Lr ≤ C2(Ω, ω,O, T, zn)

(

‖ξ‖Lr +

∥

∥

∥

∥

exp

(

1

2t3

)

ξ

∥

∥

∥

∥

L2

)

.

Thus, {yn} (resp. {vn}) is uniformly bounded in Zr (resp. in Lr(Q)). In particular,
(46) gives us {yn} ⊂ K. Hence there exist subsequences, still denoted by {yn} and
{vn}, such that

yn → y strongly in Zr,

and
vn → v weakly in Lr(Q).

Since g and f ′′ are continuous functions, one also has

g(zn) → g(z) in C0(Q),

f ′(zn) → f ′(z) in C0(Q),

and
f ′′(zn)∇zn → f ′′(z)∇z in Lr(Q)N .
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Passing to the limit, one deduces that y and the associated function q solve (38)–(40)
with control function v (and potentials g(z), f ′(z)). Moreover, ȳ and v̄ satisfy (44)
and (45), that is, v ∈ A(z) and y ∈ Λ(z). Then, taking limits in (47), it holds that

sup
y∈Λ(z)

〈µ, y〉 ≥ 〈µ, y〉 ≥ λ,

whence it is deduced that z ∈ Bλ,µ and hence, Λ is upper hemicontinuous.
Finally, let us see that there exists R > 0 such that

Λ
(

B(0; R)
)

⊂ B(0; R). (48)

Let R > 0 be, to be determined. For any z ∈ B(0; R) ⊂ Zr, from (44) and (37) it is
observed that each y ∈ Λ(z) satisfies

||y||Zr
≤ exp [C(1 + Cε + ε log(1 + ||z||∞))]

(

‖ξ‖Lr +

∥

∥

∥

∥

exp

(

1

2t3

)

ξ

∥

∥

∥

∥

L2

)

≤ exp [C(1 + Cε)] (1 + R)Cε

(

‖ξ‖Lr +

∥

∥

∥

∥

exp

(

1

2t3

)

ξ

∥

∥

∥

∥

L2

)

,

with C = C(Ω, ω,O, T ) > 0. Thus, choosing ε = 1/2C, we get

||y||Zr
≤ C(1 + R)1/2

(

‖ξ‖Lr +

∥

∥

∥

∥

exp

(

1

2t3

)

ξ

∥

∥

∥

∥

L2

)

,

from which we infer the existence of R > 0 large enough such that (48) is satisfied.
The Kakutani Fixed-point Theorem thus applies, which ends the proof when f

is a C2 function.

Remark 2 Let us notice that two different nonlinearities f for which the positive
constant Cε in (37) coincide, lead to the same R > 0. This fact will be used in the
following Subsection when studying the general case. ¤

4.2 The general case

It is now assumed that f is a C1 function satisfying f ′′ ∈ L∞
loc(IR), f(0) = 0 and (10)

and let ξ be as above.
We consider a function ρ ∈ D(IR) such that

ρ ≥ 0 in IR, supp ρ ⊂ [−1, 1] and

∫

IR

ρ(s) ds = 1.
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For any n ≥ 1, let us set

ρn(s) = nρ(ns) for all s ∈ IR,

Fn = ρn ∗ f, fn(·) = Fn(·) − Fn(0)

and

gn(s) =







fn(s)

s
if s 6= 0,

f ′
n(0) if s = 0.

Due to the properties of ρn and the convolution, as well as the hypothesis on f ,
one can prove that fn and gn have the following properties:

(i) gn and f ′′
n are continuous functions and fn(0) = 0 for all n ≥ 1.

(ii) fn → f in C1(K) for all compact set K ⊂ IR.

(iii) gn → g uniformly on compact sets of IR.

(iv) For any given M > 0 there exists a positive constant C(M) such that

sup
|s|≤M

(|gn(s)| + |f ′
n(s)| + |f ′′

n(s)|) ≤ C(M)

for all n ≥ 1.

(v) It also holds that:

lim
|s|→∞

|f ′
n(s)| + |gn(s)|

log(1 + |s|)
= 0 uniformly in n,

that is, for any ε > 0 there exists Mε > 0 such that

|gn(s)| + |f ′
n(s)| ≤ ε log(1 + |s|) for all |s| ≥ Mε and n ≥ 1.

In particular, the last two properties imply that, for any ε > 0, there exists
Cε > 0, only depending on ε and not on the function fn, such that

|gn(s)| + |f ′
n(s)| ≤ Cε + ε log(1 + |s|) for all s ∈ IR and n ≥ 1. (49)

As it was proved in the previous Subsection, for any n ≥ 1 there exists a control
function vn ∈ Lr(Q), with supp vn ⊂ ω × [0, T ], such that the following cascade of
systems

{

∂tyn − ∆yn + fn(yn) = ξ + vn1ω in Q,

yn = 0 on Σ, yn(x, 0) = 0 in Ω,
(50)
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{

−∂tqn − ∆qn + f ′
n(yn)qn = yn1O in Q,

qn = 0 on Σ, qn(x, T ) = 0 in Ω,
(51)

admits a solution (yn, qn) ∈ Zr × Zr satisfying

qn(x, 0) = 0 in Ω. (52)

Moreover, estimates

||yn||Zr
≤ C1(Ω, ω,O, T, yn)

(

‖ξ‖Lr +

∥

∥

∥

∥

exp

(

1

2t3

)

ξ

∥

∥

∥

∥

L2

)

, (53)

and

||vn||Lr ≤ C2(Ω, ω,O, T, yn)

(

‖ξ‖Lr +

∥

∥

∥

∥

exp

(

1

2t3

)

ξ

∥

∥

∥

∥

L2

)

, (54)

hold, where

C1(Ω, ω,O, T, yn) = exp [C(1 + ‖gn(yn)‖∞ + ‖f ′
n(yn)‖∞)] ,

C2(Ω, ω,O, T, yn) = exp [C(1 + ‖gn(yn)‖∞ + ‖f ′
n(yn)‖∞)] (1 + ‖f ′′

n(yn)∇yn‖Lr) ,

and C = C(Ω, ω,O, T ) > 0.
Let us recall that yn is, for any n ≥ 1, a fixed point of a set-valued mapping

Λn defined from Zr onto itself. In view of estimates (53) and (54), and taking into
account (49) and Remark 2, one deduces, arguing as in the previous Subsection,
that there exists R > 0 large enough, and independent of n, such that

Λn

(

B(0; R)
)

⊂ B(0; R).

In addition, {yn} (resp. {vn}) is uniformly bounded in Zr (resp. in Lr(Q)). Indeed,
reasoning as in Subsection 4.1, {yn} is uniformly bounded in the space Xr and
hence, r being grater than N/2 + 1, there exists a compact set K in Zr such that
{yn} ⊂ K.

Thus, up to a subsequence, one has

yn → y strongly in Zr

and
vn → v weakly in Lr(Q),

with v ∈ Lr(Q) and y ∈ K ⊂ Zr. Taking now into account properties (ii) and (iii),
one also has

gn(yn) → g(y) and f ′
n(yn) → f ′(y) in C0(Q).

22



Hence, passing to the limit in (50)–(52), one infers that y and the corresponding
q solve (38)–(40), that is, we have found a control v in Lr(Q) insensitizing φ. This
ends the proof of Theorem 1.1. ¤

5 Proof of Theorem 1.2

This Section is devoted to proving the insensitivity result of a negative nature stated
in Theorem 1.2. To do so, we will show that for certain functions f as in the
statement and certain source terms ξ ∈ Lr(Q) vanishing for t ∈ (0, t0), with t0 ∈
(0, T ), whatever the control v is, the corresponding solution y to (4) blows up before
the time t = T and hence, the functional φ cannot be insensitized. We will follow
the proof of Theorem 1.1 in [10], where the lack of null controllability of a semilinear
heat equation is proved.

Let us consider the following function

f(s) =

∫ |s|

0

logα(1 + σ) dσ for all s ∈ IR,

with α > 2. It is easy to check that f is a convex function, f(s)s < 0 for all s < 0
and

|f(s)| ∼ |s| logα(1 + |s|) as |s| → ∞.

Let ρ ∈ D(Ω) be such that

ρ ≥ 0 in Ω, ρ ≡ 0 in ω, and

∫

Ω

ρ(x) dx = 1.

For a fixed t0 ∈ (0, T ), we set

ξ(x, t) =

{

0 if t ∈ [0, t0],

−(M + k) if t ∈ (t0, T ],

where M is a positive constant which will be chosen later and k is given by

k =
1

2

∫

Ω

ρf ∗

(

2
|∆ρ|

ρ

)

dx.

Here f ∗ is the convex conjugate of the convex function f (the function ρ can be
taken in such a way that ρf ∗(2|∆ρ|/ρ) ∈ L1(Ω), see [10]).
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Let y be a solution to (4), associated to a control v and ξ, defined in the maximal
interval [0, T ∗). Multiplying the equation in (4) by ρ and integrating in Ω, we get

d

dt

∫

Ω

ρy dx =

∫

Ω

ρ∆y dx −

∫

Ω

ρf(y) dx +

∫

Ω

ρξ dx.

We also set

z(t) = −

∫

Ω

ρ(x)y(x, t) dx, ∀t ∈ [t0, T
∗).

Using the properties of f (see [10] for the details), we obtain










z′(t) ≥ M +
1

2
f(z(t)), t ∈ [t0, T

∗),

z(t0) = z0 = −

∫

Ω

ρ(x)y(x, t0) dx.

Defining

G(z0; s) =

∫ s

z0

2

f(σ) + 2M
dσ, ∀s ≥ z0,

we can prove that

T ∗ ≤ t0 + sup
t∈[t0,T ∗)

G(z0; z(t)) ≤ t0 +

∫ ∞

z0

2

f(σ) + 2M
dσ.

Thus, for M > 0 large enough, the solution y blows up in L1(Ω) before T . This
ends the proof.

6 Further comments, results and open problems

6.1 On the construction of regular controls for parabolic

null controllability problems

The technique of construction of regular controls (starting from L2–controls) intro-
duced in the present paper can be applied to the study of the null controllability of
(7) not only when f just depends on the state y but also when f = f(y,∇y). In fact,
controls in Cα, α

2 (Q), with α ∈ (0, 1], can be obtained for potentials regular enough.
Let us describe this strategy in the linear case. We consider the null controllability
problem

{

∂ty − ∆y + B · ∇y + ay = v1ω in Q,

y = 0 on Σ, y(x, 0) = y0 in Ω,
(55)
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y(x, T ) = 0 in Ω,

where y0 ∈ L2(Ω), a ∈ L∞(Q) and B ∈ L∞(Q)N . The previous null controllability
problem is equivalent to











∂tq − ∆q + B · ∇q + aq = −η′(t)Y + v1ω in Q,

q = 0 on Σ, q(x, 0) = 0 in Ω,

q(x, T ) = 0 in Ω,

(56)

where q = y − η(t)Y , η ∈ C∞([0, T ]) satisfies

η ≡ 1 in [0, T/3], η ≡ 0 in [2T/3, T ],

and Y solves (55) with v = 0. Suppose that there exists a control v̂ ∈ L2(Q) solving
(56), with supp v̂ ⊂ B0 × [0, T ], and let q̂ be the associated state (here B0 ⊂⊂ ω is
a non-empty open set). Then q = (1 − θ(x))q̂ together with

v = θ(x)η′(t)Y + 2∇θ · ∇q̂ + (∆θ)q̂ − (B · ∇θ)q̂

solve the null controllability problem (56), where θ ∈ D(ω) verifies θ ≡ 1 in B0.
Following Subsection 3.2, one can prove that v ∈ L∞(Q) and

‖v‖∞ ≤ C(T, Ω, ω, ‖a‖∞, ‖B‖∞)‖v̂‖L2 .

The explicit dependence of the constant C on ‖a‖∞ and ‖B‖∞ can also be obtained.
Moreover, if B ∈ Cα, α

2 (Q), the control v is proved to lie in Cα, α
2 (Q) and v verifies a

Cα, α
2 –estimate similar to the previous one.
This strategy has been used in [6] to construct hölderian controls for a null

controllability problem for the heat equation with nonlinear boundary Fourier con-
ditions (see also [7]).

6.2 Other insensitivity results

The proof of Theorem 1.1 can be adapted to prove other insensitivity results for
system (1).

1. Theorem 1.1 is still true under a slightly more general condition on f . To be
precise, there exists l1(Ω, ω,O, T ) > 0 such that, if hypothesis (10) is replaced
by

lim sup
|s|→∞

|f ′(s)|

log(1 + |s|)
≤ l1,

a control function insensitizing the functional given by (2) can be found for
any given source term ξ as in Theorem 1.1.
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2. The following local insensitivity result can also be proved under no restrictions
on the increasing of f :

Theorem 6.1 Suppose that ω ∩ O 6= ∅ and y0 = 0. Let f ∈ C1(IR) be such

that f ′′ ∈ L∞
loc(IR) and f(0) = 0. Let r ∈

(

N

2
+ 1,∞

)

be given. Then, there

exist two positive constants M = M(Ω, ω,O, T, f) and η = η(Ω, ω,O, T, f)
such that, for any ξ ∈ Lr(Q) verifying

‖ξ‖Lr +

∥

∥

∥

∥

exp

(

M

2t

)

ξ

∥

∥

∥

∥

L2

≤ η,

one can find a control function v ∈ Lr(Q) insensitizing the functional defined
in (2). ¤

6.3 Simultaneous null and insensitizing controls

As an extension of Theorem 1.1, one can prove the following result on the existence
of simultaneous null and insensitizing controls, in other words, controls such that
the solution (y, q) to the cascade of systems (4)–(5) (with y0 = 0) verifies (6) and

y(x, T ) = 0 in Ω. (57)

Theorem 6.2 Let us assume that ω ∩ O 6= ∅ and y0 = 0. Let f be a function

satisfying hypothesis in Theorem 1.1 and let r ∈

(

N

2
+ 1,∞

)

be given. Then, for

any ξ ∈ Lr(Q) verifying

∫∫

Q

exp

(

1

t3(T − t)3

)

|ξ|2 dx dt < ∞, (58)

there exists a control function v ∈ Lr(Q) insensitizing the functional given by (2)
and such that the solution y(·, ·; τ, v)|τ=0 to (1) (associated to τ = 0 and v) satisfies

y(x, T ; τ, v)|τ=0 = 0 in Ω.

Proof: The scheme of the proof is similar to that of Theorem 1.1. Let us observe
that, in this case, the source term ξ is required to decay rapidly to zero, not only
in the neighbourhood of t = 0, but also close to the final time t = T , which is a
natural assumption. We will assume that f is a C2 function verifying f(0) = 0 and
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(10). The general case is studied following Subsection 4.2. Let ξ ∈ Lr(Q) satisfy
(58), with r > N/2 + 1.

Let us see that there exists a control v regular enough such that the solution
(y, q) to the cascade of systems (4)–(5) (with y0 = 0) simultaneously verifies (6)
and (57). As usual, in a first step, a similar insensitivity result in the linear case is
shown. A fixed-point argument is then applied to solve the nonlinear problem.

Let us start with the linear case. We consider the systems (16) and (17), with a
and b in L∞(Q) and the corresponding adjoint systems

{

∂tϕ − ∆ϕ + bϕ = 0 in Q,

ϕ = 0 on Σ, ϕ(x, 0) = ϕ0(x) in Ω,
(59)

and
{

−∂tψ − ∆ψ + aψ = ϕ1O in Q,

ψ = 0 on Σ, ψ(x, T ) = ψ0(x) in Ω,
(60)

with ϕ0 and ψ0 in L2(Ω). We first construct controls in L2(Q). Let B0 be a fixed
non-empty open subset of ω ∩ O. In this case, one has the following observability
inequality for the solutions to the previous systems, whose proof is similar to that
of Proposition 3.2 (see [5]):

Lemma 6.3 There exist two positive constants C and M such that
∫∫

Q

exp

(

−
CM

t(T − t)

)

|ψ|2 dx dt ≤ C

∫∫

B0×(0,T )

|ψ|2 dx dt (61)

for all ϕ0, ψ0 ∈ L2(Ω). More precisely, C only depends on Ω, ω and O and M is
given by

M = 1 + T + T 2
(

1 + ‖a‖2/3
∞ + ‖b‖2/3

∞ + ‖a − b‖1/2
∞

)

.

¤

Observe that in (60), ψ(T ) is allowed to be different from zero so that, in this case,
a different observability inequality is obtained.

For each ε > 0, we consider the continuous and convex functional J̃ε defined on
L2(Ω) × L2(Ω) by

J̃ε(ϕ
0, ψ0) =

1

2

∫∫

B0×(0,T )

|ψ|2 dx dt + ε‖ϕ0‖L2(Ω) + ε‖ψ0‖L2(Ω) +

∫∫

Q

ξψ dx dt,

where ϕ and ψ solve (59)–(60). The following unique continuation property for the
solutions to (59)–(60) holds:
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If ϕ0, ψ0 ∈ L2(Ω), (ϕ, ψ) is the associated solution to (59)–(60) and
ψ = 0 in ω × (0, T ), then ϕ ≡ ψ ≡ 0.

Since B0 ⊂ ω ∩O, Lemma 6.3 gives that ψ ≡ 0 in Q and hence ϕ ≡ 0 in O× (0, T ).
Classical unique continuation properties for the heat equation implies ϕ ≡ 0 in Q.

As a consequence of the previous continuation property for the solutions of (59)–
(60), the functional J̃ε is, indeed, strictly convex and satisfies

lim inf
‖ϕ0‖

L2(Ω)+‖ψ0‖
L2(Ω)→+∞

J̃ε(ϕ
0, ψ0)

‖ϕ0‖L2(Ω) + ‖ψ0‖L2(Ω)

≥ ε.

Consequently, J̃ε admits a unique minimizer (ϕ0
ε, ψ

0
ε) ∈ L2(Ω)×L2(Ω). Let (ϕε, ψε)

be the solution to (59)–(60) associated to (ϕ0
ε, ψ

0
ε). Then, the control

vε = ψε1B0

is such that the corresponding solution (yε, qε) to (16)–(17) satisfies

‖qε(0)‖L2(Ω) ≤ ε and ‖yε(T )‖L2(Ω) ≤ ε. (62)

In view of (61), the controls {vε} are proved to be uniformly bounded in L2(Q)
(observe that if ξ verifies (58), then it satisfies

∫∫

Q

exp

(

CM

t(T − t)

)

|ξ|2 dx dt < ∞, (63)

with C and M as in Lemma 6.3). Thus, reasoning as in the proof of Proposition 3.1
and using (62), one infers the existence of a control v̂ ∈ L2(Q), with supp v̂ ⊂
B0 × [0, T ], such that the associated solution (ŷ, q̂) to (16)–(17) satisfies (57) and
(18). Moreover, one can estimate

‖v̂‖2
L2 ≤ C

∫∫

Q

exp

(

CM

t(T − t)

)

|ξ|2 dx dt, (64)

with C and M as above.
The construction of a regular control starting from v̂ ∈ L2(Q) is the same as

in Subsection 3.2. More precisely, let us define y and q by (24) and (23), respec-
tively. As in Proposition 3.3, for a ∈ L∞(Q) and b ∈ L∞(Q) ∩ Lr(0, T ; W 1,r(Ω))
the functions y and q lie in Zr = C0(Q) ∩ Lr(0, T ; W 1,r(Ω)), they solve (16)–(18)
for the control v ∈ Lr(Q) given by (25), and (57) is satisfied (we use here that
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ŷ(T ) = q̂(T ) = 0 in L2(Ω) and q̂ ∈ C([0, T ]; H1
0 (Ω))). In addition, from (27), (29),

(63) and (64), one obtains the following estimates, similar to those in Corollary 3.4:

‖y‖Zr
+ ‖q‖Zr

≤ C1

(

‖ξ‖Lr +

∥

∥

∥

∥

exp

(

CM

2t(T − t)

)

ξ

∥

∥

∥

∥

L2

)

and

‖v‖Lr ≤ C2

(

‖ξ‖Lr +

∥

∥

∥

∥

exp

(

CM

2t(T − t)

)

ξ

∥

∥

∥

∥

L2

)

,

with C1 and C2 as in (28) and (30), M provided by Lemma 6.3 and C being a new
positive constant depending on Ω, ω, O and T .

Finally, by applying a fixed-point argument completely analogous to the one used
in the previous Section, one can infer the existence of a control v ∈ Lr(Q) solving
the nonlinear case when f is a C2 function. As stated above, it is enough to follow
Subsection 4.2 to deal with the general case. This ends the proof of Theorem 6.2.

¤

6.4 Open problems

1. Theorem 1.1 has been proved under the essential assumption y0 = 0. It would
be interesting to give sufficient conditions on the initial data y0 in order to
insensitize (2). When f ≡ 0 and O = Ω, a positive result on the existence of
insensitizing controls is proved for a small class of initial data (see Lemma 2 in
[16]). The proof of this result is strongly based on properties of the semigroup
of the classical heat equation. The general case is an open problem for a linear
heat equation with an L∞ potential and even in the case of the classical heat
equation when O 6= Ω.

2. Hypothesis ω ∩ O 6= ∅ is required in order to prove the existence of both
ε–insensitizing and insensitizing controls. In the first case, the hypothesis is
used to prove that certain functional is coercive, using a unique continuation
property. In the case of insensitizing controls, this hypothesis is used to prove
an observability inequality. At present both problems are far from being solved
for disjoint control set and observation set (see [16]).

3. In view of known null controllability results for a semilinear heat equation
with homogeneous Dirichlet boundary conditions (see Theorem 1.2 in [10]),
one could think of extending Theorem 1.1 to nonlinearities f with growth
at infinity of order |s| logα(1 + |s|) with 1 ≤ α < 3/2. Notice that, in this
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case, in the absence of control, blow up phenomena occur under suitable sign
conditions. The idea in [10] is to control the system to zero in a short time to
prevent the solution from blowing up and to set v ≡ 0 for the rest of the time
interval. Observe that this argument cannot be applied when a source term ξ
appears on the right-hand side of (7). This strategy also fails in our problem
since, in insensitivity problems, both initial and final times are fixed and, in
addition, there is a right-hand side term ξ in the equation. The problem then
remains open for such nonlinearities.

4. In [5], the authors prove a result on the existence of insensitizing controls for a
semilinear heat equation with a nonlinear term f(y,∇y), with f : IR×IRN 7→ IR
a globally Lipschitz-continuous function. It would be interesting to generalize
this result to functions f with a superlinear growth at infinity. To do this,
controls in Lr, with r > N + 2, should be built for the null controllability
problem

{

∂ty − ∆y + B · ∇y + ay = ξ + v1ω in Q,

y = 0 on Σ, y(x, 0) = 0 in Ω,
(65)

{

−∂tq − ∆q −∇ · (Dq) + cq = y1O in Q,

q = 0 on Σ, q(x, T ) = 0 in Ω,
(66)

q(x, 0) = 0 in Ω,

where a, c ∈ L∞(Q) and B,D ∈ L∞(Q)N . Unfortunately, the technique intro-
duced in the present paper cannot be applied in this case because of the lack of
regularity introduced by the term −∇·(Dq). To be precise, assume that a null
control v̂ ∈ L2(Q) for (65)–(66), with supp v̂ ⊂ B0 × [0, T ], has already been
obtained (B0 as in Subsection 6.1). Starting from v̂ and the associated (ŷ, q̂),
the expression of a new control obtained by means of this strategy would be:

v = −θξ + 2∇θ · ∇ŷ + (∆θ)ŷ −∇θ · (Bŷ)

+ (∂t − ∆ + a + B · ∇) [2∇θ · ∇q̂ + (∆θ)q̂ + ∇θ · (Dq̂)] .

Here, θ ∈ D(ω) verifies θ ≡ 1 in B0. Observe that, if D ∈ L∞(Q)N , some terms
in this formula are not regular enough to make the state y lie in a suitable
space to apply a fixed-point argument. Thus the problem remains open for
such nonlinearities.
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A Proof of Proposition 2.1

Let a ∈ L∞(Q), F ∈ L2(Q) and y be as in Proposition 2.1. Let V and V ′ be
arbitrary open sets such that V ′ ⊂⊂ V ⊂ Ω. Throughout the proof, C will be a
positive constant whose value may change from one line to another. The dependence
of the constant C on Ω, T , N , r, V and V ′, which is not used in any essential way
in our analysis, will not be specified for the sake of simplicity.

We will restrict our attention to the case when N > 2, the discussion being
similar but more direct when N = 1 or N = 2.

a) Suppose that F ∈ Lr(0, T ; Lr(V)), with r ∈ (2,∞). We will proceed in several
steps. Let us consider a family of open sets {Vi}0≤i≤I such that

V ′ = VI ⊂⊂ VI−1 ⊂⊂ · · · ⊂⊂ V1 ⊂⊂ V0 ⊂⊂ V,

where the integer I will be determined later.
In the first place, let ζ0 ∈ D(V) be a function such that ζ0 ≡ 1 in V0. Setting

w0 = ζ0y, it is easy to check that w0 solves the following problem
{

∂tw − ∆w = G in Q,

w = 0 on Σ, w(x, 0) = 0 in Ω,
(67)

with G = G0 given by

G0 = ζ0F − [ζ0ay + 2∇ζ0 · ∇y + (∆ζ0)y].

¿From the regularity assumptions on F and y, one has ζ0F ∈ Lr(Q) and

ζ0ay + 2∇ζ0 · ∇y + (∆ζ0)y ∈ L2(0, T ; L2⋆

(Ω)) ∩ L∞(0, T ; L2(Ω)),

with
1

2⋆
=

1

2
−

1

N
. Using classical interpolation inequalities, one obtains

G0 ∈ Lr(0, T ; Lp0(Ω)), with p0 = min

(

r,
2Nr

Nr − 4

)

,

and
‖G0‖Lr(Lp0 (Ω)) ≤ C(1 + ‖a‖∞)

(

‖F‖Lr(Lr(V)) + ‖y‖L2(H2)∩C(H1)

)

. (68)

Due to the regularizing effect and the properties of the semigroup generated by
the heat equation with Dirichlet boundary conditions (see, for instance, [13] and
[12]), one deduces that

w0 ∈ Lr(0, T ; W 2,p0(Ω)) and ‖w0‖Lr(W 2,p0 (Ω)) ≤ C‖G0‖Lr(Lp0 (Ω)). (69)
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Then, recalling that w0|V0 = y|V0 , one infers from (69) and (68) that

y ∈ Lr(0, T ; W 2,p0(V0))

and the following estimate is satisfied

‖y‖Lr(W 2,p0(V0)) ≤ C(1 + ‖a‖∞)
(

‖F‖Lr(Lr(V)) + ‖y‖L2(H2)∩C(H1)

)

.

If r ≤ 2 +
4

N
, that is, if p0 = r, the first point is already proved. Let us now

suppose that r > 2 +
4

N
(i.e. 2 < p0 =

2Nr

Nr − 4
< r). We will now use the following

Lemma, which will be proved at the end of this Appendix.

Lemma A.1 Let a ∈ L∞(Q) and F ∈ L2(Q) ∩ Lr(0, T ; Lr(V)) be, with V ⊂ Ω an
arbitrary open set and r ∈ (2,∞). Let y ∈ L2(0, T ; H2(Ω))∩C([0, T ]; H1(Ω)) satisfy
(13). Let ω0 and ω1 be two open subsets of Ω such that ω1 ⊂⊂ ω0 ⊂ V. Let us
assume that y ∈ Lr(0, T ; W 2,r0(ω0)), with r0 ∈ [2, r). Then,

y ∈ Lr(0, T ; W 2,r1(ω1)) and ∂ty ∈ Lr(0, T ; Lr1(ω1)),

with

r1 =







min

(

r,
Nr0

N − r0

)

if r0 < N,

r if r0 ≥ N.

(70)

Furthermore, the following estimate holds:

‖y‖Lr(W 2,r1 (ω1)) + ‖∂ty‖Lr(Lr1 (ω1)) ≤ C(1 + ‖a‖∞)
(

‖F‖Lr(Lr(V)) + ‖y‖Lr(W 2,r0 (ω0))

)

,

where C is a positive constant depending on Ω, T , N , r, ω0 and ω1. ¤

We apply this Lemma for i = 1, . . . , I, replacing ω0, ω1, r0 and r1, respectively,
by Vi−1, Vi, pi−1 and pi, with

1

pi

=
1

p0

−
i

N
for i = 1, . . . , I − 1 and pI = r.

This yields y ∈ Lr(0, T ; W 2,pi(Vi)), ∂ty ∈ Lr(0, T ; Lpi(Vi)), 1 ≤ i ≤ I, and the cor-
responding estimates. In order to determine I, observe that we may go on applying

Lemma A.1 while pi−1 < N and pi < r, that is to say, while i <
N(r − 2) − 4

2r
.
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Thus, in I steps, with

I =

[

N(r − 2) − 4

2r

]

+ 1

([σ] being the integer part of the real number σ), we have y ∈ Xr(0, T ;V ′) together

with estimate (14), with K =
N

2
+ 2, which is a uniform bound of I + 1.

b) Suppose now that F ∈ Lr(0, T ; W 1,r(V)), r as above, and ∇a ∈ Lγ(Q)N , with
γ given by (15). Let us consider a new open set Ṽ such that

V ′ ⊂⊂ Ṽ ⊂⊂ V.

In view of point a), y ∈ Xr(0, T ; Ṽ) and

‖y‖Xr(0,T ;Ṽ) ≤ C (1 + ‖a‖∞)K
[

‖F‖Lr(Lr(V)) + ‖y‖L2(H2)∩C(H1)

]

. (71)

To end the proof, let us see that, in addition,

∂iy ∈ Xr(0, T ;V ′), 1 ≤ i ≤ N,

and that the following estimate is satisfied

‖∂iy‖Xr(0,T ;V ′) ≤ C (1 + ‖a‖∞)K+1(1 + ‖∂ia‖Lγ )
[

‖F‖Lr(W 1,r(V)) + ‖y‖L2(H2)∩C(H1)

]

,

where ∂iy denotes the derivative of y with respect to xi, 1 ≤ i ≤ N . To do so, let
us set

wi = ζ1∂iy for a fixed i ∈ {1, . . . , N},

with ζ1 ∈ D(Ṽ) a function such that ζ1 ≡ 1 in V ′. Then, wi solves (67) with G = Gi

given by

Gi = ζ1∂iF − ζ1a∂iy − ζ1y∂ia − 2∇ζ1 · ∇ (∂iy) − (∆ζ1)∂iy. (72)

Let us see that Gi ∈ Lr(Q). We will study in detail the term ζ1y∂ia. Under
assumptions on y, a and F , it is direct to see that the other terms in (72) lie in
Lr(Q).

Let us observe that ζ1y ∈ Xr. In view of Lemma 2.2, since ∇a ∈ Lγ(Q)N , with γ

given by (15), and recalling that the Hölder space C l, l
2 (Q) is continuously embedded

in C0(Q), for all r ∈ (2,∞) one may infer that the term into consideration, ζ1y∂ia,
lies in Lr(Q) and one has

‖ζ1y∂ia‖Lr ≤ C‖ζ1y‖Xr‖∂ia‖Lγ .
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Hence, coming back to (72), Gi ∈ Lr(Q) and one can estimate

‖Gi‖Lr ≤ C
[

‖∂iF‖Lr(Lr(V)) + (‖a‖∞ + ‖∂ia‖Lγ + 1) ‖y‖Xr(0,T ;Ṽ)

]

. (73)

The regularizing effect of the heat equation (see [12] and [13]) yields wi ∈ Xr, with

‖wi‖Xr ≤ C‖Gi‖Lr . (74)

Then, from (74), (73) and (71), one deduces

‖wi‖Xr ≤ C(1 + ‖a‖∞)K+1 (1 + ‖∂ia‖Lγ )
[

‖F‖Lr(W 1,r(V)) + ‖y‖L2(H2)∩C(H1)

]

,

with C = C(Ω, T,N, r,V ,V ′) and K = K(N) the same as above.
Finally, just taking into account that wi ≡ ∂iy in V ′, point b) is proved. ¤

Remark 3 Following the previous proof, one easily observes that the same result
can be obtained when replacing hypothesis y ∈ L2(0, T ; H2(Ω)) ∩ C([0, T ]; H1(Ω))
by

y ∈ L2(0, T ; H1
loc(Ω)) ∩ L∞(0, T ; L2

loc(Ω)).

This fact just affects the number I of steps required to prove point a). ¤

We end this Appendix by giving the

Proof of Lemma A.1: Let us consider a function ζ ∈ D(ω0) such that ζ ≡ 1 in
ω1 and let us set u = ζy. Then, u solves (67), with

G = ζF − [ζay + 2∇ζ · ∇y + (∆ζ)y].

The regularity of y and usual Sobolev embeddings give G ∈ Lr(0, T ; Lr1(Ω)),
where r1 is given by (70), and the estimate

‖G‖Lr(Lr1 (Ω)) ≤ C(1 + ‖a‖)∞
[

‖F‖Lr(Lr(V)) + ‖y‖Lr(W 2,r0 (ω0))

]

(75)

(here C depends on the open sets ω0 and ω1).
Then, again due to the regularizing properties of the heat equation, one deduces

that
u ∈ Lr(0, T ; W 2,r1(Ω)), ∂tu ∈ Lr(0, T ; Lr1(Ω))

and
‖u‖Lr(W 2,r1 (Ω)) + ‖∂tu‖Lr(Lr1 (Ω)) ≤ C‖G‖Lr(Lr1 (Ω)).

Finally, taking into account that u|ω1 = y|ω1 and inequality (75), the result
follows. ¤
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