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Abstract

The aim of this paper is to prove the existence of weak-renormalized solutions
to a system of the Navier-Stokes-Boussinesq kind. This system may be regarded
as a modified version of the non-isothermal solidification problem with melt
convection. This task will be accomplished satisfactorily in the two-dimensional
case. Some nontrivial and deep difficulties will be found, however, in three
dimensions in space.
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1 Introduction

This paper deals with the nonlinear system

φt − ξ2∆φ+ u·∇φ = φ(φ− 1)(1− 2φ) + θ in Q, (1)
θt − div (κ(φ, θ)∇θ) + u·∇θ = ν(φ, θ)D(u) : D(u) in Q, (2)

ut − div (ν(φ, θ)D(u)) + (u·∇)u+∇p = f, divu = 0 in Q, (3)
φ = 0, θ = 0, u = 0 on Σ, (4)

φ(x, 0) = φ0(x), θ(x, 0) = θ0(x), u(x, 0) = u0(x) in Ω, (5)

where Ω ⊂ RN is an open and bounded domain with a C2 boundary (N = 2
or N = 3), T > 0 is given and Q = Ω × (0, T ) denotes a space-time cylinder
with lateral surface Σ = ∂Ω× (0, T ).

The structure of this system is typical in non-isothermal solidification problems
with melt convection [1, 3, 10]; in this particular context, (1) is called the phase-field
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equation and is essentially the same found in [10] with an advection term. The other
equations are standard and straightforward consequences of the usual physical balance
laws (energy, linear momentum and mass).

The unknowns are the phase-field function φ, the temperature θ, the velocity field
u and the hydrostatic pressure p; ξ is a positive constant related to the width of the
transitions layers; κ and ν are strictly positive functions that depend on φ and θ and
must be viewed as a heat diffusion and a kinematic fluid viscosity, respectively; f is an
external field; D(u) is the deformation tensor, i.e.

D(u) =
1

2
(∇u+∇uT )

and φ0, θ0 and u0 are given functions.
Throughout this paper, we will denote by C or M generic constants depending

only on known quantities, which will be indicated frequently.
A great deal of attention has been paid to phase-field models for solidification

processes during the last two decades by several authors; see for example [10, 11,
20, 3, 1]. In these works, many situations and many different hypotheses have
been considered, in special the possibility of motion of molten material during
solidification processes. In our case, the molten material is assumed to behave as an
incompressible fluid with variable viscosity. The resulting system can thus be viewed
as a generalization of the models considered in the previous papers.

We will consider the (simplified) case where the latent heat in the energy equation is
very small and can be neglected. Notice that the equation (2) needs a special treatment
due to the nonlinear right-hand side, that only belongs to L1(Q) since, in general,
D(u) only belongs to L2(Q)N×N . For this reason, we will consider the notion of
renormalized solutions adapted to our setting.

Renormalized solutions to PDEs were first introduced by DiPerna and P.-
L. Lions [13, 12] in the context of Boltzmann-like equations. Later, they have also
been considered in other situations; let us mention in particular the contributions of
Blanchard, Boccardo, Murat and their co-workers in the framework of second-order
elliptic and parabolic PDEs; see [6, 7, 4, 5] and the references therein; see also [19]
and [8] for more related results.

In order to solve (1)–(5), we will use regularization techniques, truncations,
appropriate estimates and the compactness of approximate solutions.

This paper is organized as follows.
In Section 2, we fix the notation and we introduce some functional spaces. We also

recall certain interpolation and embedding results. We enumerate the hypotheses, we
introduce the concept of weak-renormalized solution adapted to our context and we
state the main result of the paper.

In Section 3, we investigate the solvability of some auxiliary problems.
Section 4 is devoted to present the proof of the existence result for two-dimensional

flows; it is split in three steps, namely, the formulation and resolution of regularized
problems, the obtention of estimates, and the passage to the limit.
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2 Preliminaries

2.1 Notation and spaces

For any q ≥ 1, we denote by Lq(Ω) the standard Lebesgue space with usual norm
denoted by ∥ · ∥q,Ω. For any nonnegative integer m, Wm,q(Ω) is the standard Sobolev
space with usual norm denoted by ∥ · ∥m,q,Ω. The space Wm,q

0 (Ω) is the closure with
respect to the norm ∥ · ∥m,q,Ω of the space C∞

0 (Ω) of C∞ functions with compact
support in Ω. We refer for instance to [14] for more details on the previous spaces.

The following result from [21] will be used below:∫∫
Q

|v|τ dx dt ≤ C∥v∥pq/NL∞(0,T ;Lp(Ω))

∫∫
Q

|∇v|q dx dt, (6)

for every v ∈ Lq(0, T ;W 1,q
0 (Ω)) ∩ L∞(0, T ;Lp(Ω)) with p, q ≥ 1 and τ =

q(N + p)/N .
For the analysis of the motion equation (3), we will need other function spaces.

Thus, let us set V = {v ∈ C∞
0 (Ω)N : div v = 0}; we will denote the closures of V

in L2(Ω)N and H1
0 (Ω)

N respectively by H and V . Then, H and V are Hilbert spaces
for the corresponding norms and one has

H = { v ∈ L2(Ω)N : div v = 0 in Ω, v · n = 0 on ∂Ω }

and
V = { v ∈ H1

0 (Ω)
N : div v = 0 in Ω }.

The general properties of these spaces can be found for instance in [22].
In the sequel, we will use the following truncation function: for any positive real

number R, we set

TR(s) = s if |s| ≤ R and TR(s) = R sign (s) if |s| > R,

where sign (s) = 0 if s = 0 and sign (s) = s/|s| if s ̸= 0.
Since TR is a Lipschitz function, for any function v ∈ W 1,q

0 (Ω) one has TR(v) ∈
W 1,q

0 (Ω) and the chain rule for the differentiation of TR(v) holds true, that is,

∇TR(v) = T ′
R(v)∇v a.e. in Ω.

We will also have to consider the following set:

L(0, T,Ω) = {v ∈ L∞(0, T ;L1(Ω)) : TR(v) ∈ L2(0, T ;H1
0 (Ω)) ∀R > 0,

lim
n→+∞

1

n

∫
An(v)

|∇v|2 dx dt = 0}.

Here and in the sequel, An(v) stands for the set

An(v) = {(x, t) ∈ Q : n ≤ |v(x, t)| ≤ 2n}.

We will make use of the following lemma, due to Boccardo and Gallouët (see [7];
see also [18]):



8 E. Fernández-Cara, C. Vaz

Lemma 1 Assume that v ∈ L∞(0, T ;L1(Ω)), TR(v) ∈ L2(0, T ;H1
0 (Ω)) for all

R > 0 and there exists M > 0 such that

∥v∥L∞(0,T ;L1(Ω)) ≤M and
∫∫

Q

|∇TR(v)|2 dx dt ≤MR ∀R > 0.

Then, for all 1 < q < (N + 2)/(N + 1), one has

v ∈ Lq(0, T ;W 1,q
0 (Ω)) and ∥v∥Lq(0,T ;W 1,q

0 (Ω)) ≤ C(q)M.

2.2 Hypotheses and main result

Along this work, we will assume that the following hypotheses hold:

(H)
{

f ∈ L2(Q)N , φ0 ∈ L2(Ω), u0 ∈ H, θ0 ∈ L1(Ω),
ν, κ ∈ C0(R× R), 0 < ν1 ≤ ν ≤ ν2 and 0 < κ1 ≤ κ ≤ κ2.

We introduce now the definition of weak-renormalized solution to (1)–(5):

Definition 1 It will be said that (φ, θ, u) is a (weak-renormalized) solution to (1)–(5)
if the following conditions are satisfied:

1. u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), φ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) ∩

L4(Q) and θ ∈ L(0, T,Ω).

2. φ solves (1) in the usual weak sense and φ|t=0 = φ0.

3. u solves (3) in the usual weak sense (together with some p ∈ D′(Q)) and
u|t=0 = u0.

4. For any β ∈ W 2,∞(R) such that Supp β′ is compact and for any η ∈
C1([0, T ];H1

0 (Ω)) ∩ L∞(Q) such that η|t=T = 0, we have

−
∫∫

Q

β(θ) ηt dx dt+

∫∫
Q

κ(φ, θ)∇β(θ) · ∇η dx dt

+

∫∫
Q

κ(φ, θ)∇θ · ∇β′(θ) η dx dt−
∫∫

Q

(u · ∇β′(θ)) η dx dt

=

∫∫
Q

β′(θ)ν(φ, θ)D(u) : D(u) η dx dt+

∫
Ω

β(θ0) η(x, 0) dx.

(7)

We can now state our main result in this paper:

Theorem 2 Assume that N = 2 and (H) holds. Then, there exists at least one
solution to (1)–(5).
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3 Some auxiliary problems

In order to prove theorem 2, it is convenient to first consider and solve some auxiliary
problems.

Let {ρϵ} be a regularizing sequence in RN . For any ϵ > 0 and any v ∈ H , we will
denote by Rϵv the following function:

Rϵv := ρϵ ∗ ṽ.

Here, ṽ is the extension by zero of v to the whole RN .
Recall that Rϵv ∈ C∞(RN )N ,∇ · (Rϵv) = 0 in Ω and we have in particular

∥Rϵv∥m,q,Ω ≤ C(m, p, ϵ)∥v∥2,Ω

for all m and q.
The first auxiliary problem is the following:

ut − div(m(x, t)D(u)) + ((Rϵu)·∇)u+∇p = f, divu = 0 in Q, (8)
u = 0 on Σ, (9)

u(x, 0) = u0(x) in Ω. (10)

Here, we assume that{
f ∈ L2(Q)N , u0 ∈ H,
m ∈ L∞(Q), 0 < ν1 ≤ m(x, t) ≤ ν2 a.e.

(11)

The existence and uniqueness of a weak solution to (8)–(10) can be proved via
a Galerkin method for instance like in [17] or [22] for the classical Navier-Stokes
equations. In that way, the following is obtained:

Proposition 3 Let the assumptions (11) be satisfied. Then there exists exactly one
solution to (8)–(10), with

u ∈ L2(0, T ;V ) ∩ C0([0, T ];H), ut ∈ L2(0, T ;V ′).

Furthermore, one has{
∥u∥L2(0,T ;V ) + ∥u∥L∞(0,T ;H) + ∥ut∥Lσ(0,T ;V ′) ≤ C,
∥ut∥L2(0,T ;V ′) ≤ C(ϵ),

where σ = 2 if N = 2 and σ = 4/3 if N = 3 and C (resp. C(ϵ)) depends on Ω, T ,
∥f∥L2(Q), ∥u0∥H , ν1 and ν2 (resp. these data and ϵ).

Next, we consider a second auxiliary problem, closely related to the phase-field
equation in our original system:

φt − ξ2∆φ+ u · ∇φ = φ(φ− 1)(1− 2φ) + h in Q, (12)
φ = 0 on Σ, (13)

φ(x, 0) = φ0(x) in Ω, (14)
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where

h ∈ L1(0, T ;L2(Ω)), u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), φ0 ∈ L2(Ω). (15)

The following result can also be proved by a Galerkin-compactness method.

Proposition 4 Let the assumptions (15) be satisfied. Then, there exists a unique
solution to (12)–(14), with{

φ ∈ L2(0, T ;H1
0 (Ω)) ∩ C0

w([0, T ];L
2(Ω)) ∩ L4(Q),

φt ∈ L1(0, T ;L2(Ω)) + Lσ(0, T ;H−1(Ω))
(16)

and the norms in these spaces bounded by a constant that only depends on Ω, T ,
∥h∥L1(0,T ;L2(Ω)), ∥u∥L2(0,T ;V ) + ∥u∥L∞(0,T ;H) and ∥φ0∥L2 . If N = 2, one also has
φ ∈ C0([0, T ];L2(Ω)).

Sketch of the proof: Let us first explain how the existence of φ can be established.
Let us denote by φm : [0, Tm) 7→ H1

0 (Ω) the approximations that can be obtained
from a standard Galerkin scheme where the basis functions are the eigenfunctions of
the Dirichlet Laplacian in Ω. In principle, φm is only locally defined, i.e. we can have
Tm < T .

By setting H(z) := z(z − 1)(2z − 1) ≡ 2z3 − 3z2 + z, it is clear that

1

2

d

dt
∥φm∥22,Ω + ξ2∥∇φm∥22,Ω +

∫
Ω

H(φm)φm dx = (h, φm)2,Ω

for all 0 ≤ t < Tm. Since H(z)z ≡ 2z4 − 3z3 + z2, we have H(z)z ≥ z4 −C for all
z. After integration in time, we get the following in [0, Tm):

∥φm(t)∥22,Ω + ξ2
∫ t

0

∥∇φm(s)∥22,Ω ds+

∫ t

0

∥φm(s)∥44,Ω ds

≤ ∥φ0∥22,Ω +
1

2
∥h∥2L1(0,T ;L2(Ω)) +

1

2
sup

[0,Tm)

∥φm(s)∥22,Ω + C,

where C only depends on Ω and T . Consequently, Tm = T , the φm are globally
defined and, furthermore,

φm ∈ bounded set inL2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)) ∩ L4(Q). (17)

On the other hand, since φm
t (t) can be written as the orthogonal projection

of (ξ2∆φm − u · ∇φm − H(φm) + h)(t) on the space spanned by the first m
eigenfunctions, one has

∥φm
t ∥−1,2,Ω ≤ ∥ξ2∆φm − u · ∇φm −H(φm) + h∥−1,2,Ω

≤ C
(
∥∇φ∥2,Ω + ∥u · ∇φm∥−1,2,Ω + ∥φ∥34,Ω + ∥h∥2,Ω

)
in (0, T ), whence it is easy to deduce that

φm
t − h ∈ bounded set inLσ(0, T ;H−1(Ω)). (18)
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From (17) and (18), using standard arguments, we can extract a sequence that
converges to a solution to (12)–(14) and satisfies (16).

The uniqueness of φ can be obtained by applying Gronwall’s lemma.
More precisely, let us assume that (for instance) N = 3, let φ1 and φ2 be two

solutions to (12)–(14) satisfying (16) and let us set φ := φ1 − φ2. Notice that

(H(z1)−H(z2)) (z1 − z2)

= 2(z31 − z32)(z1 − z2)− 3(z21 − z22)(z1 − z2) + (z1 − z2)

≥ −3(z21 − z22)(z1 − z2)

= −3(z1 + z2)(z1 − z2)
2

for all z1, z2 ∈ R. Then, one has:

1

2

d

dt
∥φ∥22,Ω + ξ2∥∇φ∥22,Ω = −

∫
Ω

(H(φ1)−H(φ2))φdx

≤ 3

∫
Ω

(
|φ1|+ |φ2|

)
|φ|2 dx

≤ C
(
∥φ1∥3,Ω + ∥φ2∥3,Ω

)
∥φ∥2,Ω ∥φ∥6,Ω

≤ C
(
∥φ1∥23,Ω + ∥φ2∥23,Ω

)
∥φ∥22,Ω +

ξ2

2
∥∇φ∥22,Ω

in (0, T ). Since ∥φi∥23,Ω ≤ C∥φi∥2,Ω∥∇φi∥2,Ω, we see that, for some F ∈ L2(0, T ),
one has

d

dt
∥φi∥22,Ω + ξ2∥∇φi∥22,Ω ≤ F (t)∥φi∥22,Ω.

These inequalities, together with Gronwall’s lemma, imply φ ≡ 0, whence we
necessarily have φ1 ≡ φ2.

4 Proof of theorem 2

4.1 An auxiliary regularized problem

We begin by introducing some notation. Thus, for any ϵ > 0, we set:

(i) θ0ϵ = T1/ϵ(θ0).

(ii) gϵ = T1/ϵ(ν(φϵ, θϵ)D(uϵ) : D(uϵ)).

We will begin the proof with no restriction on the dimension (N = 2 or N = 3).
We consider the following regularized version of (1)–(5):

φϵ,t − ξ2∆φϵ + uϵ · ∇φϵ = φϵ(φϵ − 1)(1− 2φϵ) + θϵ in Q, (19)
φϵ = 0 on Σ, φϵ(x, 0) = φ0(x) in Ω, (20)

θϵ,t − div (κ(φϵ, θϵ)∇θϵ) + uϵ · ∇θϵ = gϵ in Q, (21)
θϵ = 0 on Σ, θϵ(x, 0) = θ0ϵ(x) in Ω, (22)

uϵ,t − div (ν(φϵ, θϵ)D(uϵ)) + ((Rϵuϵ) · ∇)uϵ +∇pϵ = f, divuϵ = 0 in Q, (23)
uϵ = 0 on Σ, uϵ(x, 0) = u0(x) in Ω. (24)
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We then have the following existence result:

Proposition 5 Let the assumptions (H) be fulfilled. Then, for each ϵ > 0, there exists
at least one solution (φϵ, θϵ, uϵ) to (19)–(24), with{

φϵ, θϵ ∈ L2(0, T ;H1
0 (Ω)) ∩ C0

w([0, T ];L
2(Ω)),

uϵ ∈ L2(0, T ;V ) ∩ C0
w([0, T ];H).

Proof: The proof can be obtained from a standard application of Schauder’s or Leray-
Schauder’s fixed point theorem.

Let us consider the mapping Λϵ that associates to each (φ, θ) ∈ L1(Q)2, first, the
unique solution uϵ to (23)–(24) with ν(φϵ, θϵ) replaced by ν(φ, θ); then, the unique
solution θϵ to (21)–(22) with gϵ replaced by T1/ϵ(ν(φ, θ)D(uϵ) : D(uϵ)) and κ(φϵ, θϵ)
replaced by κ(φ, θ); finally, the unique solution φϵ to (19)–(20).

In view of the results in Sections 2 and 3, Λϵ : L
1(Q)2 7→ L1(Q)2 is well-defined.

Furthermore, it is continuous. Indeed, let (φ, θ) and the (φn, θn) be given in L1(Q)2,
let us set

(φ, θ) = Λϵ(φ, θ), (φn, θ
n
) = Λϵ(φ

n, θn)

and let us assume that (φn, θn)→ (φ, θ) strongly in L1(Q)2. Then

1. ν(φn, θn)→ ν(φ, θ) strongly in all the spaces Lp(Q)2 with 1 ≤ p < +∞,

2. The associated un converge strongly in L2(0, T ;V ),

3. θ
n → θ and θ

n

t → θt resp. strongly in L2(0, T ;H1
0 (Ω)) and strongly

in L2(0, T ;H−1(Ω)) and

4. Finally, φn → φ and φn
t → φt resp. strongly in L2(0, T ;H1

0 (Ω)) and strongly
in L2(0, T ;H−1(Ω)).

The first of these assertions is evident. The third and the fourth assertions are
consequences of the usual energy estimates for parabolic equations. The second one
can be justified as follows.

First, from the estimates in proposition 3, it is clear that un converges weakly
in L2(0, T ;V ) to u, the solution associated to (φ, θ). Secondly, taking into account
that ut and the un

t belong to L2(0, T ;V ′), we find the energy identities

1

2
∥u(T )∥22,Ω +

∫∫
Q

ν(φ, θ) |D(u)|2 dx dt =
∫∫

Q

f · u dx dt+ 1

2
∥u0∥22,Ω

and

1

2
∥un(T )∥22,Ω +

∫∫
Q

ν(φn, θn) |D(un)|2 dx dt =
∫∫

Q

f · un dx dt+
1

2
∥u0∥22,Ω

for all n ≥ 1. Consequently,

lim
n→+∞

[
1

2
∥un(T )∥22,Ω +

∫∫
Q

ν(φn, θn) |D(un)|2 dx dt
]

=
1

2
∥u(T )∥22,Ω +

∫∫
Q

ν(φ, θ) |D(u)|2 dx dt.
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But this yields the strong convergence of (un(T ), ν(φn, θn)1/2 D(un)) in the
product space H × L2(Q)N×N . Since ν(φn, θn) converges a.e. and is uniformly
bounded from above and from below, we deduce that D(un) also converges strongly
in L2(Q)N×N . In view of Korn’s inequality, this is equivalent to the strong
convergence of ∇un in the same space, that is, the strong convergence of un

in L2(0, T ;V ).
Notice that Λϵ maps the whole space L1(Q)2 into a compact set.
Indeed, let us set

W = {ϕ ∈ L2(0, T ;H1
0 (Ω)) : ϕt ∈ L2(0, T ;H−1(Ω)) }.

Recall that, endowed with its natural norm, W is a Hilbert space such that the
embedding W ↪→ L1(Q) is compact. Let (φ, θ) be given in L1(Q)2 and let us set
(φ, θ) = Λϵ(φ, θ). Then, the assumptions on ν and κ in (H) and the fact that ϵ is fixed
yield uniform bounds of the norms of φ and θ in W . But this means that (φ, θ) belongs
to a fixed compact set of L1(Q)2.

Consequently, we can apply Schauder’s theorem to Λϵ and deduce that this
mapping possesses at least one fixed point.

This provides a solution to (19)–(24) and ends the proof.

4.2 Some a priori estimates

We will now deduce some a priori estimates for the solutions to (19)–(24), uniform
with respect to ϵ.

To this end, we start by applying proposition 3 to (23)–(24) and we obtain:

∥uϵ∥L2(0,T ;V ) + ∥uϵ∥L∞(0,T ;H)+∥uϵ,t∥Lσ(0,T ;V ′) ≤ C. (25)

A first consequence is that the gϵ = T1/ϵ(ν(φϵ, θϵ)D(uϵ) : D(uϵ)) are uniformly
bounded in L1(Q).

In view of the results in [2], the following estimates hold for θϵ:{
θϵ ∈ bounded set inL∞(0, T ;L1(Ω)) ∩ L1(0, T ;Lp(Ω))
for all 1 < p < +∞ if N = 2 and for all 1 < p < 3 if N = 3. (26)

Furthermore, arguing as in [6], we see that there exists M such that∫∫
Q

|∇TR(θϵ)|2 dx dt ≤MR and
1

n

∫∫
{n≤|θϵ|≤2n}

|∇θϵ|2 dx dt ≤M (27)

for all R > 0 and n ≥ 1.
From lemma 1, we get:

θϵ ∈ bounded set inLq(0, T ;W 1,q
0 (Ω)) ∀ 1 < q <

N + 2

N + 1
. (28)

Combining (26), (28) and the embedding result (6), we deduce that

θϵ ∈ bounded set inLτ (Q) ∀ 1 < τ <
N + 2

N
. (29)
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On the other hand, from the PDE satisfied by θϵ, the fact that gϵ is uniformly
bounded in L1(Q), (25) and (26), one has:

θϵ,t ∈ bounded set inL1(0, T ;W−1,a(Ω)) ∀ 1 < a < a, (30)

where a = 4/3 if N = 2 and a = 6/5 if N = 3.
Indeed, from the usual interpolation results, it is clear from (26) that

θϵ ∈ bounded set inLr(0, T ;Ls(Ω)) ∀ 1 < r < +∞, ∀1 < s < s(r),

where s(r) = r/(r − 1) if N = 2 and s(r) = 3r/(3r − 2) if N = 3. On the other
hand, (25) implies

uϵ ∈ bounded set inLρ(0, T ;Lσ(Ω)) ∀ 2 < ρ < +∞, ∀1 < σ < σ(ρ),

where σ(ρ) = 2ρ/(ρ− 2) if N = 2 and σ(ρ) = 6ρ/(3ρ− 4) if N = 3. Consequently,
we see from Hölder’s inequality that

uϵ · ∇θϵ = ∇ · (θϵuϵ) ∈ bounded set inL1(0, T ;W−1,a(Ω)) ∀ 1 < a < â, (31)

where â = 2 if N = 2 and â = 6/5 if N = 3.
We also have

∇ · (κ(φϵ, θϵ)∇θϵ) ∈ bounded set inLq(0, T ;W−1,q(Ω)) ∀ 1 < q <
N + 2

N + 1
(32)

and
L1(Ω) ↪→W−1,a(Ω) ∀ 1 < a <

N

N − 1
,

whence

gϵ ∈ bounded set inL1(0, T ;W−1,a(Ω)) ∀ 1 < a <
N

N − 1
. (33)

Taking into account (31), (32) and (33) together, we find (30).
Furthermore, we can use proposition 4 with h = θϵ, since we have (26). This

yields: {
φϵ ∈ bounded set inL2(0, T ;H1

0 (Ω)) ∩ L∞(0, T ;L2(Ω)),
φϵ,t − θϵ ∈ bounded set inLσ(0, T ;H−1(Ω)).

(34)

Some consequences of these estimates are the following:

• φϵ ∈ compact set in L2(Q)

(because one has (34) and (29) and the embedding H1
0 (Ω) ↪→ L2(Ω) is

compact).

• θϵ ∈ compact set in Lq(0, T ;Lb(Ω)) ∀ 1 < q < N+2
N+1 , 1 < b < Nq

N−q

(because one has (28) and (30) and the embedding W 1,q
0 (Ω) ↪→ Lb(Ω) is

compact).
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• uϵ ∈ compact set in L2(0, T ;H)

(because one has (25) and the embedding V ↪→ H is also compact).

Therefore, at least for a subsequence, we have:

φϵ → φ weakly in L2(0, T ;H1
0 (Ω)), strongly in L2(Q) and a.e., (35)

θϵ→θ weakly inLq(0,T ;W 1,q
0 (Ω)), strongly inLq(0,T ;Lb(Ω)) and a.e., (36)

uϵ → u weakly in L2(0, T ;V ), strongly in L2(Q)N and a.e., (37)
φϵ,t → φt weakly in Lσ(0, T ;H−1(Ω)), (38)

uϵ,t → ut weakly in Lσ(0, T ;V ′). (39)

for all 1 < q < (N + 2)/(N + 1) and 1 < b < Nq/(N − q).

4.3 Passage to the limit and conclusions

The convergence properties (35)–(39) are enough to prove that we can pass to the limit
in the equations and initial conditions satisfied by uϵ and φϵ. This is well known.

We will now show that θ solves (2) in the renormalized sense. In fact, it is just here
where we have to begin to assume that N = 2.

Since N = 2, we have u ∈ L2(0, T ;V ′) and, therefore,

1

2
∥u(t2)∥22,Ω −

1

2
∥u(t1)∥22,Ω +

∫ t2

t1

∫
Ω

ν(φ, θ)|D(u)|2 dx dt=
∫ t2

t1

∫
Ω

f · u dx dt

for all t1, t2 ∈ [0, T ].
One of the delicate points of the argument is to prove that D(uϵ)→ D(u) strongly

in L2(Q)2×2. To this purpose, we argue as in the proof of proposition 5 (but now
letting ϵ→ 0+).

We first notice that{
uϵ(T )→ u(T ) weakly in H and
ν(φϵ, θϵ)

1/2D(uϵ)→ ν(φ, θ)1/2D(u) weakly in L2(Q)2×2.
(40)

Then, we multiply the regularized motion equation (23) by uϵ and we integrate over
Ω× (0, T ). Using Green’s formula, the fact that div uϵ ≡ 0 and Hölder’s and Young’s
inequalities, we deduce that

1

2
∥uϵ(T )∥22,Ω +

∫∫
Q

ν(φϵ, θϵ) |D(uϵ)|2 dx dt =
∫∫

Q

f · uϵ dx dt+
1

2
∥u0∥22,Ω.

From (35), we get

lim
ϵ→0

[
1

2
∥uϵ(T )∥22,Ω +

∫∫
Q

ν(φϵ, θϵ) |D(uϵ)|2 dx dt
]

=

∫∫
Q

f · u dx dt+ 1

2
∥u0∥22,Ω.
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On the other hand, u is a solution of (3), whence

1

2
∥u(T )∥22,Ω +

∫∫
Q

ν(φ, θ) |D(u)|2 dx dt =
∫∫

Q

f · u dx dt+ 1

2
∥u0∥22,Ω

and

lim
ϵ→0

[
1

2
∥uϵ(T )∥22,Ω +

∫∫
Q

ν(φϵ, θϵ) |D(uϵ)|2 dx dt
]

=
1

2
∥u(T )∥22,Ω +

∫∫
Q

ν(φ, θ) |D(u)|2 dx dt.
(41)

From (40), (41) and the a.e. convergence of φϵ and θϵ, the desired strong convergence
of D(uϵ) is ensured.

A consequence is that

gϵ→ ν(φ, θ)D(u) : D(u) strongly in L1(Q). (42)

Now, it can be shown that θϵ is a Cauchy sequence in C0([0, T ];L1(Ω)) and,
moreover,

lim
ϵ→0+

∫∫
Q

(T − t) |ν(φϵ, θϵ)∇TR(θϵ)− ν(φ, θ)∇TR(θ)|2 dx dt = 0

for every R > 0. In particular, TR(θϵ) converges strongly to TR(θ) in
L2(0, T ′;H1

0 (Ω)) for every R > 0 and every T ′ < T . All this is implied by (26),
(27) and (42), but is not immediate; For more details, we refer for instance to [18,
Appendix E].

This shows that there exists a subsequence, still indexed with ϵ, such that we have
the following for any β ∈W 2,∞(R) such that Supp β′ ⊂ [−R,R]:

θϵ → θ and β(θϵ)→ β(θ) weakly in Lq(0, T ;W 1,q
0 (Ω)) ∩ Lτ (Q), (43)

TR(θϵ)→ TR(θ) strongly in L2(0, T ;H1
0 (Ω)). (44)

Furthermore, by multiplying (21) by β′(θϵ), we also see that

β(θϵ)t − k∆β(θϵ) + div(uϵβ(θϵ)) + k β′′(θϵ)|∇θϵ|2 = β′(θϵ)gϵ in Q. (45)

Let us multiply (45) by a test function η ∈ C1([0, T ];H1
0 (Ω)) ∩ L∞(Q) such

that η(t) = 0 in a neighborhood of T and let us integrate over Q. After some usual
integrations by parts, using (22) and observing the properties of η, we get:

−
∫∫

Q

β(θϵ) ηt dx dt+

∫∫
Q

κ(φϵ, θϵ)∇β(θϵ) · ∇η dx dt

+

∫∫
Q

κ(φϵ, θϵ)∇θϵ · ∇β′(θϵ) η dx dt+

∫∫
Q

(uϵ · ∇β(θϵ)) η dx dt

=

∫∫
Q

β′(θϵ)gϵ η dx dt+

∫
Ω

β(θ0) η(x, 0) dx.

Thanks to (42) and (43)–(44), we can take ϵ → 0 in this identity. This gives (7)
for functions η of this kind. By a standard dnsity argument, we deduce (7) for all
η ∈ C1([0, T ];H1

0 (Ω)) ∩ L∞(Q) with η|t=T = 0.
This ends the proof of theorem 2.
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Remark 1 The existence of weak-renormalized solutions to other related systems has
been established in other papers; see for instance [?] and [2]; see also [15] for the case
of a viscous, compressible and heat conducting fluid.

Remark 2 If we neglect convection and we omit the transport term (u · ∇)u in the
motion equation (3), the argument used in the proof of theorem 2 remains valid for
N = 3. On the other hand, the uniqueness of the weak-renormalized solution to (1)–
(5) is unknown even when N = 2 and the coefficients ν and κ are constant.

Remark 3 It is readily seen that the previous proof of theorem 2 does not work in
the case N = 3. Indeed, the strong convergence in L2(Q)3×3 of the gradients
of the approximate velocity fields is out of scope; in fact, this is a major difficulty
even for similar approximations to the Navier-Stokes equations. Unfortunately, we
do need this convergence to take limits in the equation for θϵ if we are looking
for a weak-renormalized solution in the sense of definition 1. Hence, in the three-
dimensional case, it seems appropriate to reformulate the problem, perhaps in terms
of other variables; see [16] for some partial results for three-dimensional flows; see
also [9], where a three-dimensional problem close to (1)–(5) with Fourier-Navier (slip)
conditions on u has been solved satisfactorily.

References

[1] D.M Anderson, A phase-field model of solidification with convection, Phys. D
135, 175–194.

[2] A. Attaoui, Weak-renormalized solution for a nonlinear boussinesq system,
Differ. Integral Equations 22 (5–6), 465–494.

[3] C. Beckermann, Modeling melt convection in phase-field simulations of
solidification, J. Comp. Phys. 154, 468.

[4] D. Blanchard, Existence and uniqueness of a renormalized solution for a fairly
general class of nonlinear parabolic problems, J. Differ. Equatios 177 (2), 331–
374.

[5] D. Blanchard, A few result on coupled systems of thermomechanics, In “On the
notions of solution to nonlinear elliptic problems: results and developments”
Vol. 23, Quaderni di Matematica, 145–182.

[6] D. Blanchard, Truncations and monotonicity methods for parabolic equations,
Nonlinear. Analys., Theory, Methods & Applications 21, No. 10, 725–743.

[7] L. Boccardo, Nonlinear elliptic and parabolic equations involving measure data,
J. Func. Analysis 87, 149–169.
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