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UNIFORM LOCAL NULL CONTROL OF THE LERAY-α MODEL ∗, ∗∗
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Abstract. This paper deals with the distributed and boundary controllability of the so called Leray-α
model. This is a regularized variant of the Navier−Stokes system (α is a small positive parameter) that
can also be viewed as a model for turbulent flows. We prove that the Leray-α equations are locally
null controllable, with controls bounded independently of α. We also prove that, if the initial data are
sufficiently small, the controls converge as α → 0+ to a null control of the Navier−Stokes equations.
We also discuss some other related questions, such as global null controllability, local and global exact
controllability to the trajectories, etc.
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1. Introduction. The main results

Let Ω ⊂ R
N (N = 2, 3) be a bounded connected open set whose boundary Γ is of class C2. Let ω ⊂ Ω be a

(small) nonempty open set, let γ ⊂ Γ be a (small) nonempty open subset of Γ and assume that T > 0. We will
use the notation Q = Ω × (0, T ) and Σ = Γ × (0, T ) and we will denote by n = n(x) the outward unit normal
to Ω at the points x ∈ Γ ; spaces of R

N -valued functions, as well as their elements, are represented by boldface
letters.

The Navier−Stokes system for a homogeneous viscous incompressible fluid (with unit density and unit kine-
matic viscosity) subject to homogeneous Dirichlet boundary conditions is given by⎧⎪⎨⎪⎩

yt −Δy + (y · ∇)y + ∇p = f in Q,
∇ · y = 0 in Q,
y = 0 on Σ,
y(0) = y0 in Ω,

(1.1)

where y (the velocity field) and p (the pressure) are the unknowns, f = f(x, t) is a forcing term and y0 = y0(x)
is a prescribed initial velocity field.
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In order to prove the existence of a solution to the Navier−Stokes system, Leray in [26] had the idea of
creating a turbulence closure model without enhancing viscous dissipation. Thus, he introduced a “regularized”
variant of (1.1) by modifying the nonlinear term as follows:{

yt −Δy + (z · ∇)y + ∇p = f in Q,
∇ · y = 0 in Q,

where y and z are related by
z = φα ∗ y (1.2)

and φα is a smoothing kernel. At least formally, the Navier−Stokes equations are recovered in the limit as
α→ 0+, so that z → y.

In this paper, we will consider a special smoothing kernel, associated to the Stokes-like operator Id + α2A,
where A is the Stokes operator (see Sect. 2). This leads to the following modification of the Navier−Stokes
equations, called the Leray-α system (see [4]):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

yt −Δy + (z · ∇)y + ∇p = f in Q,

z − α2Δz + ∇π = y in Q,

∇ · y = 0, ∇ · z = 0 in Q,

y = z = 0 on Σ,
y(0) = y0 in Ω.

(1.3)

In almost all previous works found in the literature, Ω is either the N -dimensional torus and the PDE’s
in (1.3) are completed with periodic boundary conditions or the whole space R

N . Then, z satisfies an equation
of the kind

z − α2Δz = y (1.4)

and the model is (apparently) slightly different from (1.3). However, since ∇ ·y = 0, it is easy to see that (1.4),
in these cases, is equivalent to the equation satisfied by z and π in (1.3).

It has been shown in [4] that, at least for periodic boundary conditions, the numerical solution of the equations
in (1.3) matches successfully with empirical data from turbulent channel and pipe flows for a wide range of
Reynolds numbers. Accordingly, the Leray-α system has become preferable to other turbulence models, since
the associated computational cost is lower and no introduction of ad hoc parameters is required.

In [19], the authors have compared the numerical solutions of three different α-models useful in turbulence
modelling (in terms of the Reynolds number associated to a Navier−Stokes velocity field). The results improve
as one passes from the Navier−Stokes equations to these models and clearly show that the Leray-α system
has the best performance. Therefore, it seems quite natural to carry out a theoretical analysis of the solutions
to (1.3).

We will be concerned with the following controlled systems⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
yt −Δy + (z · ∇)y + ∇p = v1ω in Q,

z − α2Δz + ∇π = y in Q,

∇ · y = 0, ∇ · z = 0 in Q,

y = z = 0 on Σ,
y(0) = y0 in Ω,

(1.5)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
yt −Δy + (z · ∇)y + ∇p = 0 in Q,

z − α2Δz + ∇π = y in Q,

∇ · y = 0, ∇ · z = 0 in Q,

y = z = h1γ on Σ,
y(0) = y0 in Ω,

(1.6)
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where v = v(x, t) (respectively h = h(x, t)) stands for the control, assumed to act only in the (small) set
ω (respectively on γ) during the whole time interval (0, T ). The symbol 1ω (respectively 1γ) stands for the
characteristic function of ω (respectively of γ).

In the applications, the internal control v1ω can be viewed as a gravitational or electromagnetic field. The
boundary control h1γ is the trace of the velocity field on Σ.

Remark 1.1. It is completely natural to suppose that y and z satisfy the same boundary conditions on Σ
since, in the limit, we should have z = y. Consequently, we will assume that the boundary control h1γ acts
simultaneously on both variables y and z.

In what follows, (· , ·) and ‖ · ‖ denote the usual L2 scalar products and norms (in L2(Ω), L2(Ω), L2(Q), etc.)
and K, C, C1, C2, . . . denote various positive constants (usually depending on ω, Ω and T ). Let us recall the
definitions of some usual spaces in the context of incompressible fluids:

H =
{
u ∈ L2(Ω) : ∇ · u = 0 in Ω, u · n = 0 on Γ

}
,

V =
{
u ∈ H1

0(Ω) : ∇ · u = 0 in Ω
}
.

Note that, for every y0 ∈ H and every v ∈ L2(ω × (0, T )), there exists a unique solution (y, p, z, π) for (1.5)
that satisfies (among other things)

y, z ∈ C0([0, T ];H);

see Proposition 1.2 below. This is in contrast with the lack of uniqueness of the Navier−Stokes system when
N = 3.

The main goals of this paper are to analyze the controllability properties of (1.5) and (1.6) and determine
the way they depend on α as α→ 0+.

The null controllability problem for (1.5) at time T > 0 is the following:

For any y0 ∈ H, find v ∈ L2(ω × (0, T )) such that the corresponding state (the corresponding solution
to (1.5)) satisfies

y(T ) = 0 in Ω. (1.7)

The null controllability problem for (1.6) at time T > 0 is the following:

For any y0 ∈ H, find h ∈ L2(0, T ;H−1/2(γ)) with
∫

γ
h · n dΓ = 0 and an associated state (the corre-

sponding solution to (1.6)) satisfying

y, z ∈ C0
(
[0, T ];L2(Ω)

)
and (1.7).

Recall that, in the context of the Navier−Stokes equations, Lions conjectured in [27] the global distributed
and boundary approximate controllability; since then, the controllability of these equations has been intensively
studied, but for the moment only partial results are known.

Thus, the global approximate controllability of the two-dimensional Navier−Stokes equations with Navier
slip boundary conditions was obtained by Coron in [6]. Also, by combining results concerning global and local
controllability, the global null controllability for the Navier−Stokes system on a two-dimensional manifold
without boundary was established in Coron and Fursikov [7]; see also Guerrero et al. [24] for another global
controllability result.

The local exact controllability to bounded trajectories has been obtained by Fursikov and Imanuvilov [17,18],
Imanuvilov [25] and Fernández-Cara et al. [13] under various circumstances; see Guerrero [22] and González-
Burgos et al. [21] for similar results related to the Boussinesq system. Let us also mention [3, 8, 9, 14], where
analogous results are obtained with a reduced number of scalar controls.

For the (simplified) one-dimensional viscous Burgers model, positive and negative results can be found
in [12, 20, 23]; see also [11], where the authors consider the one-dimensional compressible Navier−Stokes system.
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Our first main result in this paper is the following:

Theorem 1.2. There exists ε > 0 (independent of α) such that, for each y0 ∈ H with ‖y0‖ ≤ ε, there exist
controls vα ∈ L∞(0, T ;L2(ω)) such that the associated solutions to (1.5) fulfill (1.7). Furthermore, these
controls can be found satisfying the estimate

‖vα‖L∞(L2) ≤ C, (1.8)

where C is also independent of α.

Our second main result is the analog of Theorem 1.2 in the framework of boundary controllability. It is the
following:

Theorem 1.3. There exists δ > 0 (independent of α) such that, for each y0 ∈ H with ‖y0‖ ≤ δ, there exist
controls hα ∈ L∞(0, T ;H−1/2(γ)) with

∫
γ hα · n dΓ = 0 and associated solutions to (1.6) that fulfill (1.7).

Furthermore, these controls can be found satisfying the estimate

‖hα‖L∞(H−1/2) ≤ C, (1.9)

where C is also independent of α.

The proofs rely on suitable fixed-point arguments. The underlying idea has applied to many other nonlinear
control problems. However, in the present cases, we find two specific difficulties:

• In order to find spaces and fixed-point mappings appropriate for Schauder’s Theorem, the initial state
y0 must be regular enough. Consequently, we have to establish regularizing properties for (1.5) and (1.6);
see Lemmas 2.7 and 4.2 below.

• For the proof of the uniform estimates (1.8) and (1.9), careful estimates of the null controls and associated
states of some particular linear problems are needed.

We will also prove results concerning the controllability in the limit, as α → 0+. It will be shown that the
null-controls for (1.5) can be chosen in such a way that they converge to null-controls for the Navier−Stokes
system ⎧⎪⎨⎪⎩

yt −Δy + (y · ∇)y + ∇p = v1ω in Q,
∇ · y = 0 in Q,
y = 0 on Σ,
y(0) = y0 in Ω.

(1.10)

Also, it will be seen that the null-controls for (1.6) can be chosen such that they converge to boundary
null-controls for the Navier−Stokes system⎧⎪⎨⎪⎩

yt −Δy + (y · ∇)y + ∇p = 0 in Q,
∇ · y = 0 in Q,
y = h1γ on Σ,
y(0) = y0 in Ω.

(1.11)

More precisely, our third and fourth main results are the following:

Theorem 1.4. Let ε > 0 be furnished by Theorem 1.2. Assume that y0 ∈ H and ‖y0‖ ≤ ε, let vα be a null
control for (1.5) satisfying (1.8) and let (yα, pα, zα, πα) be the associated state. Then, at least for a subsequence,
one has

vα → v weakly-∗ in L∞(0, T ;L2(ω)),
zα → y and yα → y strongly in L2(Q),

as α→ 0+, where (y,v) is, together with some p, a state-control pair for (1.10) satisfying (1.7).
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Theorem 1.5. Let δ > 0 be furnished by Theorem 1.3. Assume that y0 ∈ H and ‖y0‖ ≤ δ, let hα be a null
control for (1.6) satisfying (1.9) and let (yα, pα, zα, πα) be the associated state. Then, at least for a subsequence,
one has

hα → h weakly-∗ in L∞(0, T ;H−1/2(γ)),
zα → y and yα → y strongly in L2(Q),

as α→ 0+, where (y,h) is, together with some p, a state-control pair for (1.11) satisfying (1.7).

The rest of this paper is organized as follows. In Section 2, we will recall some properties of the Stokes
operator and we will prove some results concerning the existence, uniqueness and regularity of the solution
to (1.3). Section 3 deals with the proofs of Theorems 1.2 and 1.4. Section 4 deals with the proofs of Theorems 1.3
and 1.5. Finally, in Section 5, we present some additional comments and open questions.

2. Preliminaries

In this section, we will recall some properties of the Stokes operator. Then, we will prove that the Leray-α
system is well-posed. Also, we will recall the Carleman inequalities and null controllability properties of the
Oseen system.

2.1. The Stokes operator

Let P : L2(Ω) 	→ H be the orthogonal projector, usually known as the Leray Projector. Recall that P maps
Hs(Ω) into Hs(Ω) ∩ H for all s ≥ 0.

We will denote by A the Stokes operator, i.e. the self-adjoint operator in H formally given by A = −PΔ.
For any u ∈ D(A) := V ∩ H2(Ω) and any w ∈ H, the identity Au = w holds if and only if

(∇u,∇v) = (w,v) ∀v ∈ V.

It is well-known that A : D(A) 	→ H can be inverted and its inverse A−1 is self-adjoint, compact and positive.
Consequently, there exists a nondecreasing sequence of positive numbers λj and an associated orthonormal basis
of H, denoted by (wj)∞j=1, such that

Awj = λjwj ∀j ≥ 1.

Accordingly we can introduce the real powers of the Stokes operator. Thus, for any r ∈ R, we set

D(Ar) =

⎧⎨⎩u ∈ H : u =
∞∑

j=1

ujwj , with
∞∑

j=1

λ2r
j |uj|2 < +∞

⎫⎬⎭
and

Aru =
∞∑

j=1

λr
jujwj , ∀u =

∞∑
j=1

ujwj ∈ D(Ar).

Let us present a result concerning the domains of the powers of the Stokes operator.

Theorem 2.1. Let r ∈ R be given, with − 1
2 < r < 1. Then

D(Ar/2) = Hr(Ω) ∩ H whenever − 1
2
< r <

1
2
,

D(Ar/2) = Hr
0(Ω) ∩ H whenever

1
2
≤ r ≤ 1.

Moreover, u 	→ (u,Aru)1/2 is a Hilbertian norm in D(Ar/2), equivalent to the usual Sobolev Hr-norm. In other
words, there exist constants c1(r), c2(r) > 0 such that

c1(r)‖u‖Hr ≤ (u,Aru)1/2 ≤ c2(r)‖u‖Hr ∀u ∈ D(Ar/2).
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The proof of Theorem 2.1 can be found in [16]. Notice that, in view of the interpolation K-method of Lions
and Peetre, we have D(Ar/2) = D((−Δ)r/2) ∩ H. Hence, thanks to an explicit description of D((−Δ)r/2), the
stated result holds.

Now, we are going to recall an important property of the semigroup of contractions e−tA generated by A,
see [15]:

Theorem 2.2. For any r > 0, there exists C(r) > 0 such that

‖Are−tA‖L(H;H) ≤ C(r) t−r ∀ t > 0. (2.1)

In order to prove (2.1), it suffices to observe that, for any u =
∑+∞

j=1 ujwj ∈ H, one has

Are−tAu =
+∞∑
j=1

λr
je

−tλjujwj .

Consequently,

‖Are−tAu‖2 =
+∞∑
j=1

∣∣λr
je

−tλjuj

∣∣2 ≤
(

max
λ∈R

λre−tλ

)2

‖u‖2

and, since max
λ∈R

λre−tλ = (r/e)r t−r, we get easily (2.1).

2.2. Well-posedness for the Leray-α system

Let us see that, for any α > 0, under some reasonable conditions on f and y0, the Leray-α system (1.3)
possesses a unique global weak solution. Before this, let us introduce σN given by

σN =
{

2 if N = 2,
4/3 if N = 3.

Then, we have the following result:

Proposition 2.3. Assume that α > 0 is fixed. Then, for any f ∈ L2(0, T ;H−1(Ω)) and any y0 ∈ H, there
exists exactly one solution (yα, pα, zα, πα) to (1.3), with

yα ∈ L2(0, T ;V) ∩C0([0, T ];H), (yα)t ∈ L2(0, T ;V′),

zα ∈ L2(0, T ;D(A3/2)) ∩ C0([0, T ];D(A)).
(2.2)

Furthermore, the following estimates hold:

‖yα‖L2(V) + ‖yα‖C0([0,T ];H) ≤ CB0(y0, f),

‖(yα)t‖LσN (V′) ≤ CB0(y0, f)(1 +B0(y0, f)),

‖zα‖2
L∞(H) + 2α2‖zα‖2

L∞(V) ≤ CB0(y0, f)2,

2α2‖zα‖2
L∞(V) + α4‖zα‖2

L∞(D(A)) ≤ CB0(y0, f)2.

(2.3)

Here, C is independent of α and we have introduced the notation

B0(y0, f) := ‖y0‖ + ‖f‖L2(H−1).
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Proof. The proof follows classical and rather well-known arguments; see for instance [10,30]. For completeness,
they will be recalled.

• Existence: We will reduce the proof to the search of a fixed point of an appropriate mapping Λα
3.

Thus, for each y ∈ L2(0, T ;H), let (z, π) be the unique solution to⎧⎨⎩z − α2Δz + ∇π = y in Q,
∇ · z = 0 in Q,
z = 0 on Σ.

It is clear that z ∈ L2(0, T ;D(A)) and then, thanks to the Sobolev embedding, we have z ∈ L2(0, T ;L∞(Ω)).
Moreover, the following estimates are satisfied:

‖z‖2 + 2α2‖z‖2
L2(V) ≤ ‖y‖2,

2α2‖z‖2
L2(V) + α4‖z‖2

L2(D(A)) ≤ ‖y‖2.

From this z, we can obtain the unique solution (y, p) to the linear system of the Oseen kind⎧⎪⎨⎪⎩
yt −Δy + (z · ∇)y + ∇p = f in Q,
∇ · y = 0 in Q,
y = 0 on Σ,
y(0) = y0 in Ω.

Since f ∈ L2(0, T ;H−1(Ω)) and y0 ∈ H, it is clear that

y ∈ L2(0, T ;V) ∩ C0([0, T ];H), yt ∈ L2(0, T ;V′)

and the following estimates hold:

‖y‖C0([0,T ];H) + ‖y‖L2(V) ≤ C1B0(y0, f),
‖yt‖L2(V′) ≤ C2(1 + ‖z‖L2(D(A)))B0(y0, f) ≤ C2(1 + α−2‖y‖)B0(y0, f).

(2.4)

Now, we introduce the Banach space

W = {w ∈ L2(0, T ;V) : wt ∈ L2(0, T ;V′)},
the closed ball

K = {y ∈ L2(0, T ;H) : ‖y‖ ≤ C1

√
TB0(y0, f) }

and the mapping Λ̃α, with Λ̃α(y) = y, for all y ∈ L2(0, T ;H). Obviously Λ̃α is well-defined and maps continu-
ously the whole space L2(0, T ;H) into W ∩ K.

Notice that any bounded set of W is relatively compact in the space L2(0, T ;H), in view of the classical
results of the Aubin−Lions kind, see for instance [28].

Let us denote by Λα the restriction to K of Λ̃α. Then, thanks to (2.4), Λα maps K into itself. Moreover, it
is clear that Λα : K 	→ K satisfies the hypotheses of Schauder’s Theorem. Consequently, Λα possesses at least
one fixed point in K.

This immediately achieves the proof of the existence of a solution satisfying (2.2).
The estimates (2.3)a, (2.3)c and (2.3)d are obvious. On the other hand,

‖(yα)t‖LσN (V′) ≤ C
(‖f‖L2(H−1) + ‖yα‖L2(V) + ‖(zα · ∇)yα‖LσN (H−1)

)
≤ C

(
B0(y0, f) + ‖zα‖LsN (L4)‖yα‖LsN (L4)

)
≤ C

[
B0(y0, f) +

(‖zα‖L∞(H) + ‖zα‖L2(V)

) (‖yα‖L∞(H) + ‖yα‖L2(V)

)]
≤ CB0(y0, f)(1 +B0(y0, f)),

3 Alternatively, we can prove the existence of a solution by introducing adequate Galerkin approximations and applying (classical)
compactness arguments.
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where sN = 2 σN . Here, the third inequality is a consequence of the continuous embedding

L∞(0, T ;H) ∩ L2(0, T ;V) ↪→ LsN (0, T ;L4(Ω)).

This estimate completes the proof of (2.3).

• Uniqueness: Let (yα, pα, zα, πα) and (y′
α, p

′
α, z

′
α, π

′
α) be two solutions to (1.3) and let us introduce

u := yα − y′
α, q = pα − p′α, m := zα − z′α and h = πα − π′

α. Then⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut −Δu + (zα · ∇)u + ∇q = −(m · ∇)y′
α in Q,

m − α2Δm + ∇h = u in Q,

∇ · u = 0, ∇ · m = 0 in Q,

u = m = 0 on Σ,
u(0) = 0 in Ω.

Since u ∈ L∞(0, T ;H), we have m ∈ L∞(0, T ;D(A)) (where the estimate of this norm depends on α).
Therefore, we easily deduce from the first equation of the previous system that

1
2

d
dt

‖u‖2 + ‖∇u‖2 ≤ ‖m‖∞‖∇y′
α‖‖u‖

for all t. Since ‖m‖∞ ≤ C‖m‖D(A) ≤ Cα−2‖u‖, we get

1
2

d
dt

‖u‖2 + ‖∇u‖2 ≤ Cα−2‖∇y′
α‖‖u‖2.

Therefore, in view of Gronwall’s Lemma, we see that u ≡ 0. Accordingly, we also have m ≡ 0 and uniqueness
holds. �

We are now going to present some results concerning the existence and uniqueness of a strong solution. We
start with a global result in the two-dimensional case.

Proposition 2.4. Assume that N = 2 and α > 0 is fixed. Then, for any f ∈ L2(0, T ;L2(Ω)) and any y0 ∈ V,
there exists exactly one solution (yα, pα, zα, πα) to (1.3), with

yα ∈ L2(0, T ;D(A)) ∩ C0([0, T ];V), (yα)t ∈ L2(0, T ;H),

zα ∈ L2(0, T ;D(A2)) ∩ C0([0, T ];D(A3/2)).
(2.5)

Furthermore, the following estimates hold:

‖(yα)t‖ + ‖yα‖C0([0,T ];V) + ‖yα‖L2(D(A)) ≤ B1(‖y0‖V, ‖f‖),
‖zα‖2

C0([0,T ];V) + 2α2‖zα‖2
C0([0,T ];D(A)) ≤ ‖yα‖2

C0([0,T ];V),
(2.6)

where we have introduced the notation

B1(r, s) := (r + s)
[
1 + (r + s)2

]
eC(r2+s2)2 .

Proof. First, thanks to Proposition 2.3, we see that there exists a unique weak solution (yα, pα, zα, πα) satisfy-
ing (2.2), and (2.3). In particular, zα ∈ L2(0, T ;V) and we have

‖zα(t)‖ ≤ ‖yα(t)‖ and ‖zα(t)‖V ≤ ‖yα(t)‖V, ∀t ∈ [0, T ].
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As usual, we will just check that good estimates can be obtained for yα, (yα)t and zα. Thus, we assume that
it is possible to multiply by −Δyα the motion equation satisfied by yα. Taking into account that N = 2, we
obtain:

1
2

d
dt

‖∇yα‖2 + ‖Δyα‖2 = − (f , Δyα) + ((zα · ∇)yα, Δyα)

≤ ‖f‖2 +
1
4
‖Δyα‖2 + ‖zα‖1/2‖zα‖1/2

V ‖yα‖1/2
V ‖Δyα‖3/2

≤ ‖f‖2 +
1
2
‖Δyα‖2 + C‖zα‖2‖zα‖2

V‖yα‖2
V.

Therefore,
d
dt

‖∇yα‖2 + ‖Δyα‖2 ≤ C
[‖f‖2 + (‖yα‖2‖yα‖2

V)‖∇yα‖2
]
.

In view of Gronwall’s Lemma and the estimates in Proposition 2.3, we easily deduce (2.5) and (2.6). �

Notice that, in this two-dimensional case, the strong estimates for yα in (2.6) are independent of α; obviously,
we cannot expect the same when N = 3.

In the three-dimensional case, what we obtain is the following:

Proposition 2.5. Assume that N = 3 and α > 0 is fixed. Then, for any f ∈ L2(0, T ;L2(Ω)) and any y0 ∈ V,
there exists exactly one solution (yα, pα, zα, πα) to (1.3), with

yα ∈ L2(0, T ;D(A)) ∩ C0([0, T ];V), (yα)t ∈ L2(0, T ;H),

zα ∈ L2(0, T ;D(A2)) ∩ C0([0, T ];D(A3/2)).

Furthermore, the following estimates hold:

‖yα‖L∞(V) + ‖yα‖L2(D(A)) + ‖(yα)t‖ ≤ B2(‖y0‖V, ‖f‖, α),

‖zα‖2
L∞(V) + 2α2‖zα‖2

L∞(D(A)) ≤ ‖yα‖2
L∞(V),

(2.7)

where we have introduced
B2(r, s, α) := C(r + s)eCα−4(r+s)2 .

Proof. Thanks to Proposition 2.3, there exists a unique weak solution (yα, pα, zα, πα) satisfying (2.2) and (2.3).
In particular, we obtain that zα ∈ L∞(Q), with

‖zα‖∞ ≤ C

α2

(‖y0‖H + ‖f‖L2(H−1)

)
.

On the other hand, y0 ∈ V. Hence, from the usual (parabolic) regularity results for Oseen systems, the
solution to (1.3) is more regular, i.e. yα ∈ L2(0, T ;D(A)) ∩ C0([0, T ];V) and (yα)t ∈ L2(0, T ;H). Moreover,
yα verifies the first estimate in (2.7). This achieves the proof. �

Let us now provide a result concerning three-dimensional strong solutions corresponding to small data, with
estimates independent of α:

Proposition 2.6. Assume that N = 3. There exists C0 > 0 such that, for any α > 0, any f ∈ L∞(0, T ;L2(Ω))
and any y0 ∈ V with

M := max
{
‖∇y0‖2, ‖f‖2/3

L∞(L2)

}
<

1√
2(1 + C0)T

, (2.8)
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the Leray-α system (1.3) possesses a unique solution (yα, pα, zα, πα) satisfying

yα ∈ L2(0, T ;D(A)) ∩ C0([0, T ];V), (yα)t ∈ L2(0, T ;H),
zα ∈ L2(0, T ;D(A)) ∩ C0([0, T ];V).

Furthermore, in that case, the following estimates hold:

‖yα‖2
C0([0,T ];V) + ‖yα‖2

L2(D(A)) ≤ B3(M,T ),

‖zα‖2
C0([0,T ];V) + 2α2‖zα‖2

L2(D(A)) ≤ ‖yα‖2
L∞(V),

(2.9)

where we have introduced

B3(M,T ) := 2

⎡⎣M3 +M + C0T

(
M√

1 − 2(1 + C0)M2T

)3
⎤⎦ .

Proof. The proof is very similar to the proof of the existence of a local in time strong solution to the
Navier−Stokes system; see for instance [5, 30].

As before, there exists a unique weak solution (yα, pα, zα, πα) and this solution satisfies (2.2) and (2.3).
By multiplying by Δyα the motion equation satisfied by yα, we see that

1
2

d
dt

‖∇yα‖2 + ‖Δyα‖2 = (f , Δyα) − ((zα · ∇)yα, Δyα)

≤ 1
2
‖f‖2 +

1
2
‖Δyα‖2 + ‖zα‖L6‖∇yα‖L3‖Δyα‖

≤ 1
2
‖f‖2 +

1
2
‖Δyα‖2 + C‖zα‖V‖yα‖1/2

V ‖Δyα‖3/2.

Then,
d
dt

‖∇yα‖2 +
1
2
‖Δyα‖2 ≤ ‖f‖2 + C0‖∇yα‖6, (2.10)

for some C0 > 0.
Let us see that, under the assumption (2.8), we have

‖∇yα‖2 ≤ M√
1 − 2(1 + C0)M2T

, ∀t ∈ [0, T ]. (2.11)

Indeed, let us introduce the real-valued function ψ given by

ψ(t) = max
{
M, ‖∇yα(t)‖2

}
, ∀t ∈ [0, T ].

Then, ψ is almost everywhere differentiable and, in view of (2.8) and (2.10), one has

dψ
dt

≤ (1 + C0)ψ3, ψ(0) = M.

Therefore,

ψ(t) ≤ M√
1 − 2(1 + C0)M2t

≤ M√
1 − 2(1 + C0)M2T

and, since ‖∇yα‖2 ≤ ψ, (2.11) holds. From this estimate, it is very easy to deduce (2.9). �
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The following lemma is inspired by a result by Constantin and Foias for the Navier−Stokes equations, see [5]:

Lemma 2.7. There exists a continuous function φ : R+ 	→ R+, with φ(s) → 0 as s → 0+, satisfying the
following properties:

a) For f = 0, any y0 ∈ H and any α > 0, there exist arbitrarily small times t∗ ∈ (0, T/2) such that the
corresponding solution to (1.3) satisfies ‖yα(t∗)‖2

D(A) ≤ φ(‖y0‖).
b) The set of these t∗ has positive measure.

Proof. We are only going to consider the three-dimensional case; the proof in the two-dimensional case is very
similar and even easier.

The proof consists of several steps:

• Let us first see that, for any k > 3/2 and any τ ∈ (0, T/2], the set

Rα(k, τ) :=
{
t ∈ [0, τ ] : ‖∇yα(t)‖2 ≤ k

τ
‖y0‖2

}
is non-empty and its measure |Rα(k, τ)| satisfies |Rα(k, τ)| ≥ τ/k.
Obviously, we can assume that y0 �= 0. Now, if we suppose that |Rα(k, τ)| < τ/k, we have:∫ τ

0

‖∇yα(t)‖2 dt ≥
∫

Rα(k,τ)c

‖∇yα(t)‖2 dt ≥
(
τ − τ

k

) k
τ
‖y0‖2

= (k − 1)‖y0‖2 >
1
2
‖y0‖2.

But, since f = 0 in (1.3), we also have the following estimate:∫ τ

0

‖∇yα(t)‖2 dt ≤ 1
2
‖yα(τ)‖2 +

∫ τ

0

‖∇yα(t)‖2 dt =
1
2
‖y0‖2.

So, we get a contradiction and, necessarily, |Rα(k, τ)| ≥ τ/k.
• Let us choose τ ∈ (0, T/2], k > 3/2, t0,α ∈ Rα(k, τ) and

Tα ∈
[
t0,α +

τ2

4((1 + C0)k2‖y0‖4
, t0,α +

3τ2

8((1 + C0)k2‖y0‖4

]
,

where C0 is the constant furnished by Proposition 2.6. Since ‖∇yα(t0,α)‖2 ≤ k
τ ‖y0‖2, there exists exactly

one strong solution to (1.3) in [t0,α, Tα] starting from yα(t0,α) at time t0,α and satisfying

‖∇yα(t)‖2 ≤ 2k
τ
‖y0‖2, ∀t ∈ [t0,α, Tα].

Obviously, it can be assumed that Tα < T .
Let us introduce the set

Gα(t0,α, k, τ) :=

{
t ∈ [t0,α, Tα] : ‖Δyα(t)‖2 ≤ 65(1 + C0)

(
k

τ

)3

‖y0‖6

}
.

Then, again Gα(t0,α, k, τ) is non-empty and possesses positive measure. More precisely, one has

|Gα(t0,α, k, τ)| ≥ τ2

8(1 + C0)k2‖y0‖4
· (2.12)
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Indeed, otherwise we would get

1
2

∫ T α

t0,α

‖Δyα(t)‖2 dt ≥ 1
2

∫
Gα(t0,α,k,τ)c

‖Δyα(t)‖2 dt

≥ 65
(
Tα−t0,α− τ2

8(1+C0)k2‖y0‖4

)
(1 + C0)

(
k

τ

)3

‖y0‖6

≥ 65k
16τ

‖y0‖2 > 4
k

τ
‖y0‖2.

However, arguing as in the proof of Proposition 2.6, we also have

1
2

∫ T α

t0,α

‖Δyα(t)‖2 dt ≤ ‖∇yα(Tα)‖2 +
1
2

∫ T α

t0,α

‖Δyα(t)‖2 dt

≤ ‖∇yα(t0,α)‖2 + C0

∫ T α

t0,α

‖∇yα(t)‖6 dt

≤ k

τ
‖y0‖2 + 8

(
k

τ
‖y0‖2

)3

(Tα − t0,α) ≤ 4
k

τ
‖y0‖2.

Consequently, we arrive again to a contradiction and this proves (2.12).
• Let us fix τ ∈ (0, T/2] and k > 3/2. We can now define φ : R+ 	→ R+ as follows:

φ(s) := 65(1 + C0)
k

τ

3

s6.

Then, as a consequence of the previous steps, the set

{ t∗ ∈ [0, T/2] : ‖Ayα(t∗)‖2 ≤ φ(‖y0‖) }
is non-empty and it measure is bounded from below by a positive quantity independent of α. This ends the
proof. �

We will end this section with some estimates:

Lemma 2.8. Let s ∈ [1, 2] be given, and let us assume that f ∈ Hs(Ω). Then there exist unique functions
u ∈ D(As/2) and π ∈ Hs−1 (π is unique up to a constant) such that⎧⎨⎩u− α2Δu + ∇π = α2Δf in Ω,

∇ · u = 0 in Ω,
u = 0 on Γ

(2.13)

and there exists a constant C = C(s,Ω) independent of α such that

‖u‖D(As/2) ≤ C‖f‖Hs(Ω). (2.14)

Moreover, by interpolation arguments, f ∈ Hs(Ω), s ∈ (m,m+1) then there exist unique functions u ∈ D(As/2)
and π ∈ Hs−1(Ω) (π is unique up to a constant) which are solution of the problem above and there exists a
constant C = C(m,Ω) such that

‖u‖D(As/2) ≤ C‖f‖Hs(Ω). (2.15)

When s is an integer (s = 1 or s = 2), the proof can be obtained by adapting the proof of Proposition 2.3
in [30]. For other values of s, it suffices to use a classical interpolation argument (see [29]).
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2.3. Carleman inequalities and null controllability

In this subsection, we will recall some Carleman inequalities and a null controllability result for the Oseen
system ⎧⎪⎨⎪⎩

yt −Δy + (h · ∇)y + ∇p = v1ω in Q,
∇ · y = 0 in Q,
y = 0 on Σ,
y(0) = y0 in Ω,

(2.16)

where h = h(x, t) is given. The null controllability problem for (2.16) at time T > 0 is the following:

For any y0 ∈ H, find v ∈ L2(ω × (0, T )) such that the associated solution to (2.16) satisfies (1.7).

We have the following result from [13] (see also [25]):

Theorem 2.9. Assume that h ∈ L∞(Q) and ∇ · h = 0. Then, the linear system (2.16) is null-controllable at
any time T > 0. More precisely, for each y0 ∈ H there exists v ∈ L∞(0, T ;L2(ω)) such that the corresponding
solution to (2.16) satisfies (1.7). Furthermore, the control v can be chosen satisfying the estimate

‖v‖L∞(L2(ω)) ≤ eK(1+‖h‖2
∞)‖y0‖, (2.17)

where K only depends on Ω, ω and T .

The proof is a consequence of an appropriate Carleman inequality for the adjoint system of (2.16).
More precisely, let us consider the backwards in time system⎧⎪⎨⎪⎩

−ϕt −Δϕ − (h · ∇)ϕ + ∇q = G in Q,
∇ · ϕ = 0 in Q,
ϕ = 0 on Σ,
ϕ(T ) = ϕ0, in Ω.

(2.18)

The following result is established in [13]:

Proposition 2.10. Assume that h ∈ L∞(Q) and ∇ · h = 0. There exist positive continuous functions α, α∗,
α̂, ξ, ξ∗ and ξ̂ and positive constants ŝ, λ̂ and Ĉ, only depending on Ω and ω, such that, for any ϕ0 ∈ H and
any G ∈ L2(Q), the solution to the adjoint system (2.18) satisfies:∫∫

Q

e−2sα
[
s−1ξ−1(|ϕt|2 + |Δϕ|2) + sξλ2|∇ϕ|2 + s3ξ3λ4|ϕ|2]dxdt

≤ Ĉ(1 + T 2)

(
s15/2λ20

∫∫
Q

e−4sα̂+2sα∗
ξ∗15/2|G|2 dxdt

+s16λ40

∫∫
ω×(0,T )

e−8sα̂+6sα∗
ξ∗16|ϕ|2 dxdt

)
,

(2.19)

for all s ≥ ŝ(T 4 + T 8) and for all λ ≥ λ̂
(
1 + ‖h‖∞ + eλ̂T‖h‖2

∞
)
.

Now, we are going to construct the a null-control for (2.16) like in [13]. First, let us introduce the auxiliary
extremal problem ⎧⎪⎪⎨⎪⎪⎩Minimize

1
2

{∫∫
Q

ρ̂2|y|2 dxdt+
∫∫

ω×(0,T )

ρ̂2
0|v|2 dxdt

}
Subject to (y,v) ∈ M(y0, T ),

(2.20)
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where the linear manifold M(y0, T ) is given by

M(y0, T ) = { (y,v) : v ∈ L2(ω × (0, T )), (y, p) solves (2.16) }
and ρ̂, ρ̂0 are respectively given by

ρ̂ = s−15/4λ−10e2sα̂−sα∗
ξ∗−15/4, ρ̂0 = s−8λ−20e4sα̂−3sα∗

ξ∗−8.

It can be proved that (2.20) possesses exactly one solution (y,v) satisfying

‖v‖L2(L2(ω)) ≤ eK(1+‖h‖2
∞)‖y0‖,

where K only depends on Ω, ω and T .
Moreover, thanks to the Euler−Lagrange characterization, the solution to the extremal problem (2.20) is

given by
y = ρ̂−2(−ϕt −Δϕ − (h · ∇)ϕ + ∇q) and v = −ρ̂−2

0 ϕ1ω.

From the Carleman inequality (2.19), we can conclude that ρ−1
2 ϕ ∈ L∞(0, T ;L2(Ω)) and

‖ρ−1
2 ϕ‖L∞(L2) ≤ C‖ρ̂−1

0 ϕ‖L2(L2(ω)),

where ρ2 = s1/2ξ1/2esα.
Hence,

v = −(ρ̂0)−2ϕ1ω = −(ρ̂−2
0 ρ2)(ρ−1

2 ϕ1ω) ∈ L∞(0, T ;L2(Ω))

and, therefore,
‖v‖L∞(L2(ω)) ≤ C‖v‖L2(L2(ω)) ≤ eK(1+‖h‖2

∞)‖y0‖.

3. The distributed case: Theorems 1.2 and 1.4

This section is devoted to prove the local null controllability of (1.5) and the uniform controllability property
in Theorem 1.4.

Proof of Theorem 1.2. We will use a fixed point argument. Contrarily to the case of the Navier−Stokes equations,
it is not sufficient to work here with controls in L2(ω × (0, T )). Indeed, we need a space Y for y that ensures
z in L∞(Q) and a space X for v guaranteeing that the solution to (2.16) with h = z belongs to a compact set
of Y. Furthermore, we want estimates in Y and X independent of α.

In view of Lemma 2.7, in order to prove Theorem 1.2, we just need to consider the case in which the initial
state y0 belongs to D(A) and possesses a sufficiently small norm in D(A).

Let us fix σ with N/4 < σ < 1. Then, for each ỹ ∈ L∞(0, T ;D(Aσ)), let (z, π) be the unique solution to⎧⎨⎩z − α2Δz + ∇π = ỹ in Q,
∇ · z = 0 in Q,
z = 0 on Σ.

Since ỹ ∈ L∞(0, T ;D(Aσ)), it is clear that z ∈ L∞(0, T ;D(Aσ)). Then, thanks to Theorem 2.1, we have
z ∈ L∞(Q) and the following is satisfied:

‖z‖2
L∞(0,T ;D(Aσ)) + 2α2‖z‖2

L∞(D(A1/2+σ)) ≤ ‖ỹ‖2
L∞(0,T ;D(Aσ)),

2α2‖z‖2
L∞(D(A1/2+σ)) + α4‖z‖2

L∞(D(A1+σ)) ≤ ‖ỹ‖2
L∞(0,T ;D(Aσ)).

(3.1)

In particular, we have:
‖z‖L∞(0,T ;D(Aσ)) ≤ ‖ỹ‖L∞(0,T ;D(Aσ)).
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Let us consider the system (2.16) with h replaced by z. In view of Theorem 2.9, we can associate to z the
null control v of minimal norm in L∞(0, T ;L2(ω)) and the corresponding solution (y, p) to (2.16).

Since y0 ∈ D(A), z ∈ L∞(Q) and v ∈ L∞(0, T ;L2(ω)), we have

y ∈ L2(0, T ;D(A)) ∩ C0([0, T ];V), yt ∈ L2(0, T ;H)

and the following estimate holds:

‖yt‖2
L2(H) + ‖y‖2

L2(D(A)) + ‖y‖2
L∞(V) ≤ C

(
‖y0‖2

V + ‖v‖2
L∞(L2(ω))

)
eC‖z‖2

∞ . (3.2)

We will use the following result:

Lemma 3.1. One has y ∈ L∞(0, T ;D(Aσ′
)), for all σ′ ∈ (σ, 1), with

‖y‖L∞(D(Aσ′ )) ≤ C(‖y0‖D(A) + ‖v‖L∞(L2(ω)))e
C‖ỹ‖2

L∞(D(Aσ )) .

Proof. In view of (2.16), y solves the following abstract initial value problem:{
yt = −Ay − P((z · ∇)y) + P(v1ω) in [0, T ],
y(0) = y0.

This system can be rewritten as the nonlinear integral equation

y(t) = e−tAy0 −
∫ t

0

e−(t−s)AP((z · ∇)y)(s) ds+
∫ t

0

e−(t−s)AP(v1ω)(s) ds.

Consequently, applying the operator Aσ′
to both sides, we have

Aσ′
y(t) = Aσ′

e−tAy0 +
∫ t

0

Aσ′
e−(t−s)A [−P ((z · ∇)y)(s) + P (v1ω)(s)] ds.

Taking norms in both sides and using Theorem 2.2, we see that

‖Aσ′
y‖(t) ≤ ‖y0‖D(Aσ′) +

∫ t

0

(t− s)−σ′
[‖z(s)‖∞‖∇y(s)‖ + ‖v(s)1ω‖] ds

≤ C‖y0‖D(A) + (‖z‖∞‖y‖L∞(V) + ‖v‖L∞(L2(ω)))
∫ t

0

(t− s)−σ′
ds.

Now, using (3.1) and (3.2) and taking into account that σ′ < 1, we easily obtain that

‖Aσ′
y‖(t) ≤ C(‖y0‖D(A) + ‖v‖L∞(L2(ω)))

[
1 + ‖ỹ‖L∞(D(Aσ))e

C‖ỹ‖2
L∞(D(Aσ ))

]
.

This ends the proof. �

Now, let us set
W = {w ∈ L∞(0, T ;D(Aσ′

)) : wt ∈ L2(0, T ;H) }
and let us consider the closed ball

K = { ỹ ∈ L∞(0, T ;D(Aσ)) : ‖ỹ‖L∞(D(Aσ)) ≤ 1 }

and the mapping Λ̃α, with Λ̃α(ỹ) = y for all ỹ ∈ L∞(0, T ;D(Aσ)). Obviously, Λ̃α is well-defined; furthermore,
in view of Lemma 3.1 and equation (3.2), it maps the whole space L∞(0, T ;D(Aσ)) into W.
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Notice that, if U is bounded set of W then it is relatively compact in the space L∞(0, T ;D(Aσ)), in view of
the classical results of the Aubin−Lions kind, see for instance [28].

Let us denote by Λα the restriction to K of Λ̃α. Then, thanks to Lemma 3.1 and (2.17), if ‖y0‖D(A) ≤ ε
(independent of α!) Λα maps K into itself. Moreover, it is clear that Λα : K 	→ K satisfies the hypotheses of
Schauder’s Theorem. Indeed, this nonlinear mapping is continuous and compact (the latter is a consequence of
the fact that, if B is bounded in L∞(0, T ;D(Aσ)), then Λ̃α(B) is bounded in W). Consequently, Λα possesses
at least one fixed point in K, and this ends the proof of Theorem 1.2. �

Proof of Theorem 1.4. Let vα be a null control for (1.5) satisfying (1.8) and let (yα, pα, zα, πα) be the state
associated to vα. From (1.8) and the estimates (2.3) for the solutions yα, there exist v ∈ L∞ (

0, T ;L2(ω)
)

and
y ∈ L∞(0, T ;H) ∩ L2(0, T ;V) with yt ∈ LσN (0, T ;V′) such that, at least for a subsequence

vα → v weakly-� in L∞ (
0, T ;L2(ω)

)
,

yα → y weakly-� in L∞ (0, T ;H) and weakly in L2 (0, T ;V) ,

(yα)t → yt weakly in LσN (0, T ;V′).

Since W := {m ∈ L2 (0, T ;V) : mt ∈ LσN (0, T ;V′)} is continuously and compactly embedded in L2(Q), we
have that

yα → y in L2(Q) and a.e.

This is sufficient to pass to the limit in the equations satisfied by yα, vα and zα. We conclude that y is, together
with some pressure p, a solution to the Navier−Stokes equations associated to a control v and satisfies (1.7). �

4. The boundary case: Theorems 1.3 and 1.5

This section is devoted to prove the local boundary null controllability of (1.6) and the uniform controllability
property in Theorem 1.5.

Proof of Theorem 1.3. Again, we will use a fixed point argument. Contrarily to the case of distributed control-
lability, we will have to work in a space Ỹ of functions defined in an extended domain.

Let Ω̃ be given, with Ω ⊂ Ω̃ and ∂Ω̃ ∩ Γ = Γ \ γ such that ∂Ω̃ is of class C2 (see Fig. 1). Let ω ⊂ Ω̃ \Ω be
a non-empty open subset and let us introduce Q̃ := Ω̃× (0, T ) and Σ̃ := ∂Ω̃× (0, T ). The spaces and operators
associate to the domain Ω̃ will be denoted by H̃, Ṽ, Ã, etc.

Remark 4.1. In view of Lemma 2.7, for the Proof of Theorem 1.3 we just need to consider the case in which
the initial state y0 belongs to V and possesses a sufficiently small norm in V. Indeed, we only have to take
initially hα ≡ 0 and apply Lemma 2.7 to the solution to (1.6). �

Let y0 ∈ V be given and let us introduce the extension by zero ỹ0 of y0. Then ỹ0 ∈ Ṽ.
We will use the following result, similar to Lemma 2.7, whose proof is postponed to the end of the section:

Lemma 4.2. There exists a continuous function φ : R+ 	→ R+ satisfying φ(s) → 0 as s→ 0+ with the following
property:

a) For any y0 ∈ V and any α > 0, there exist times T0 ∈ (0, T ), controls hα ∈ L2(0, T0;H1/2(Γ )) with∫
γ hα ·n dΓ ≡ 0, associated solutions (yα, pα, zα, πα) to (1.6) in Ω× (0, T0) and arbitrarily small times t∗ ∈

(0, T/2) such that the yα can be extended to Ω̃×(0, T0) and the extensions satisfy ‖ỹα(t∗)‖2
D(Ã)

≤ φ(‖y0‖V).
b) The set of these t∗ has positive measure.
c) The controls hα are uniformly bounded, i.e.

‖hα‖L∞(0,T0;H1/2(γ)) ≤ C.
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Figure 1. The domain Ω̃.

In view of Lemma 4.2, for the proof of Theorem 1.3, we just need to consider the case in which the initial
state y0 is such that its extension ỹ0 to Ω̃ belongs to D(Ã) and possesses a sufficiently small norm in D(Ã).

We will prove that there exists (ỹα, p̃α, zα, πα, ṽ), with ṽ ∈ L∞(0, T ;L2(ω)), satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ỹt −Δỹ + (z̃ · ∇)ỹ + ∇p̃ = ṽ1ω in Q̃,

z − α2Δz + ∇π = ỹ in Q,

∇ · ỹ = 0 in Q̃,

∇ · z = 0 in Q,

ỹ = 0 on Σ̃,
z = ỹ on Σ,

ỹ(0) = ỹ0 in Ω̃

(4.1)

and ỹ(T ) = 0 in Ω̃, where z̃ is the extension by zero of z. Obviously, if this were the case, the restriction (y, p)
of (ỹ, p̃) to Q, the couple (z, π) and the lateral trace h := ỹ|γ×(0,T ) would satisfy (1.6) and (1.7).

Let us fix σ with N/4 < σ < β < 1. Then, for each y ∈ L∞(0, T ;D(Ãσ)), let w = w(x, t) and π = π(x, t) be
the unique solution to ⎧⎨⎩w − α2Δw + ∇π = α2Δy in Q,

∇ · w = 0 in Q,
w = 0 on Σ.

Since y ∈ L∞(0, T ;D(Ãσ)), its restriction to Q belongs to L∞(0, T ;H2σ(Ω)). Then, Lemma 2.8 implies
w ∈ L∞(0, T ;D(Aσ)) and, thanks to Theorem 2.1, we also have w ∈ L∞(Q) and

‖w‖2
L∞(0,T ;D(Aσ)) ≤ C‖y‖2

L∞(0,T ;D(Ãσ))
,

where C is independent of α.
Let w̃ be the extension by zero of w and let us set z̃ := y + w̃. Let us consider the system (2.16) with h

replaced by z̃ and Ω replaced by Ω̃. In view of Theorem 2.9, we can associate to z̃ the null control ṽ of minimal
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norm in L∞(0, T ;L2(ω̃)) and the corresponding solution (ỹ, p̃) to (2.16). Since ỹ0 ∈ D(Ã), z̃ ∈ L∞(Q̃) and
ṽ ∈ L∞(0, T ;L2(ω̃)), we have

ỹ ∈ L2(0, T ;D(Ã)) ∩ C0([0, T ]; Ṽ), ỹt ∈ L2(0, T ; H̃)

and the following estimate holds:

‖ỹt‖2
L2(H̃)

+ ‖ỹ‖2
L2(D(Ã))

+ ‖ỹ‖2
L∞(Ṽ)

≤ C
(
‖ỹ0‖2

Ṽ
+ ‖ṽ‖2

L∞(L2(ω̃))

)
eC‖z̃‖2

∞ . (4.2)

Also, in account of Lemma 3.1, one has ỹ ∈ L∞(0, T ;D(Ãβ)) and

‖ỹ‖L∞(D(Ãβ)) ≤ C(‖ỹ0‖D(Ã) + ‖ṽ‖L∞(L2(ω̃)))e
C‖y‖L∞(0,T ;D(Ãσ))).

Now, let us set
W = {m ∈ L∞(0, T ;D(Ãβ)) : mt ∈ L2(0, T ; H̃) },

and let us consider the closed ball

K = {y ∈ L∞(0, T ;D(Ãσ)) : ‖y‖L∞(D(Ãσ)) ≤ 1 }

and the mapping Λ̃α, with Λ̃α(y) = ỹ for all y ∈ L∞(0, T ;D(Ãσ)). Obviously, Λ̃α is well-defined and maps the
whole space L∞(0, T ;D(Ãσ)) into W. Furthermore, any bounded set U ⊂ W then it is relatively compact in
L∞(0, T ;D(Ãσ)).

Let us denote by Λα the restriction to K of Λ̃α. Thanks to Lemma 3.1 and (2.17), there exists ε > 0
(independent of α) such that if ‖ỹ0‖D(Ã) ≤ ε, Λα maps K into itself and it is clear that Λα : K 	→ K satisfies
the hypotheses of Schauder’s Theorem. Consequently, Λα possesses at least one fixed point in K and (4.1)
possesses a solution.This ends the Proof of Theorem 1.3.

Proof of Theorem 1.5. The proof is easy, in view of the previous uniform estimates. It suffices to adapt the
argument in the Proof of Theorem 1.4 and deduce the existence of subsequences that converge (in an appropriate
sense) to a solution to (1.11) satisfying (1.7). For brevity, we omit the details. �

Proof of Lemma 4.2. For instance, let us only consider the case N = 3. We will reduce the proof to the search
of a fixed point of another mapping Φα.

For any y0 ∈ V, any T0 ∈ (0, T ) and any y ∈ L4(0, T0; Ṽ)), let (w, π) be the unique solution to⎧⎨⎩w − α2Δw + ∇π = α2Δy in Ω × (0, T0),
∇ ·w = 0 in Ω × (0, T0),
w = 0 on Γ × (0, T0),

let w̃ be the extension by zero of w, let us set z̃ := y + w̃ and let us introduce the Oseen system⎧⎪⎪⎨⎪⎪⎩
ỹt −Δỹ + (z̃ · ∇)ỹ + ∇p̃ = 0 in Ω̃ × (0, T0),
∇ · ỹ = 0 in Ω̃ × (0, T0),
ỹ = 0 on ∂Ω̃ × (0, T0),
ỹ(0) = ỹ0 in Ω̃.

It is clear that the restriction of y to Ω×(0, T0) belongs to L4(0, T0;H1(Ω)), whence we have from Lemma 2.8
that w ∈ L4(0, T0;V) and

‖w‖L4(0,T0;V) ≤ C‖y‖L4(0,T0;Ṽ).
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It is also clear that we can get estimates like those in the proof of Proposition 2.6 for ỹ. In other words, for
any y0 ∈ V, we can find a sufficiently small T0 > 0 such that

ỹ ∈ L2(0, T0;D(Ã)) ∩ C0([0, T0]; Ṽ), ỹt ∈ L2(0, T0; H̃)

and

‖ỹ‖L2(0,T0;D(Ã)) + ‖ỹ‖C0([0,T0];Ṽ) + ‖ỹt‖L2(0,T0;H̃) ≤ C
(
T0, ‖y0‖V, ‖y‖L4(0,T0;Ṽ)

)
,

where C is nondecreasing with respect to all arguments and goes to zero as ‖y0‖V → 0.
Now, let us introduce the mapping Φα : L4(0, T0; Ṽ) 	→ L4(0, T0; Ṽ), with Φα(y) = ỹ for all y ∈ L4(0, T ; Ṽ).

This is a continuous and compact mapping. Indeed, from well-known interpolation results, we have that the
embedding

L2(0, T0;D(Ã)) ∩ L∞(0, T0; Ṽ) ↪→ L4(0, T0;D(Ã3/4))

is continuous and this shows that, if ỹ is bounded in L2(0, T0;D(Ã)) ∩ C0([0, T0]; Ṽ) and ỹt is bounded in
L2(0, T0; H̃), then ỹ belongs to a compact set of L4(0, T0; Ṽ).

Then, as in the Proofs of Theorems 1.2 and 1.3, we immediately deduce that, whenever ‖y0‖V ≤ δ (for some
δ independent of α), Φα possesses at least one fixed point. This shows that the nonlinear system (4.1) is solvable
for ṽ ≡ 0 and ‖y0‖V ≤ δ.

Now, the argument in the proof of Lemma 2.7 can be applied in this framework and, as a consequence, we
easily deduce Lemma 4.2. �

5. Additional comments and questions

5.1. Controllability problems for semi-Galerkin approximations

Let {w1,w2, . . . } be a basis of the Hilbert space V. For instance, we can consider the orthogonal base formed
by the eigenvectors of the Stokes operator A. Together with (1.5), we can consider the following semi-Galerkin
approximated problems:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yt −Δy + (zm · ∇)y + ∇p = v1ω in Q,
(zm(t),w)+α2(∇zm(t),w) = (y(t),w) ∀w ∈ Vm, zm(t) ∈ Vm, t ∈ (0, T ),
∇ · y = 0, in Q,
y = 0 on Σ,
y(0) = y0 in Ω,

(5.1)

where Vm denotes the space spanned by w1, . . . ,wm.
Arguing as in the proof of Theorem 1.2, it is possible to prove a local null controllability result for (5.1). More

precisely, for each m ≥ 1, there exists εm > 0 such that, if ‖y0‖ ≤ εm, we can find controls vm and associated
states (ym, pm, zm) satisfying (1.7). Notice that, in view of the equivalence of norms in Vm, the fixed point
argument can be applied in this case without any extra regularity assumption on y0; in other words, Lemma 2.7
is not needed here.

On the other hand, it can also be checked that the maximal εm are bounded from below by some positive
quantity independent of m and α and the controls vm can be found uniformly bounded in L∞(0, T ;L2(ω)). As a
consequence, at least for a subsequence, the controls converge weakly-∗ in that space to a null control for (1.5).

However, it is unknown whether the problems (5.1) are globally null-controllable; see below for other consid-
erations concerning global controllability.
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5.2. Another strategy: Applying an inverse function theorem

There is another way to prove the local null controllability of (1.5) that relies on Liusternik’s Inverse Function
Theorem, see for instance [1]. This strategy has been introduced in [18] and has been applied successfully to the
controllability of many semilinear and nonlinear PDE’s. In the framework of (1.5), the argument is as follows:

1. Introduce an appropriate Hilbert space Y of state-control pairs (yα, pα, zα, πα,vα) satisfying (1.7).
2. Introduce a second Hilbert space Z of right hand sides and initial data and a well-defined mapping F : Y 	→ Z

such that the null controllability of (1.5) with state-controls in Y is equivalent to the solution of the nonlinear
equation

F(yα, pα, zα, πα,vα) = (0,y0), (yα, pα, zα, πα,vα) ∈ Y. (5.2)

3. Prove that F is C1 in a neighborhood of (0, 0,0, 0,0) and F′(0, 0,0, 0,0) is onto.

Arguing as in [13], all this can be accomplished satisfactorily. As a result, (5.2) can be solved for small initial
data y0 and the local null controllability of (1.5) holds.

5.3. On global controllability properties

It is unknown whether a general global null controllability result holds for (1.5). This is not surprising, since
the same question is also open for the Navier−Stokes system.

What can be proved (as well as for the Navier−Stokes system) is the null controllability for large time: for
any given y0 ∈ H, there exists T∗ = T∗(‖y0‖) such that (1.5) can be driven exactly to zero with controls vα

uniformly bounded in L∞(0, T∗;L2(ω)).
Indeed, let ε be the constant furnished by Theorem 1.2 corresponding to the time T = 1 (for instance). Let us

first take vα ≡ 0. Then, since the solution to (1.3) with f = 0 satisfies ‖yα(t)‖ ↘ 0, there exists T0 (depending
on ‖y0‖ but not on α) such that ‖yα(T0)‖ ≤ ε. Therefore, there exist controls v′

α ∈ L∞(T0, T0 + 1;L2(ω)) such
that the solution to (1.5) that starts from yα(T0) at time T0 satisfies yα(T0 + 1) = 0. Hence, the assertion is
fulfilled with T∗ = T0 + 1 and

vα =
{

0 for 0 ≤ t < T0,
v′

α for T0 ≤ t ≤ T∗.

A similar argument leads to the null controllability of (1.5) for large α. In other words, it is also true that,
for any given y0 ∈ H and T > 0, there exists α∗ = α∗(‖y0‖, T ) such that, if α ≥ α∗, then (1.5) can be driven
exactly to zero at time T .

5.4. The Burgers-α system

There exist similar results for a regularized version of the Burgers equation, more precisely the Burgers-α
system ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yt − yxx + zyx = v1(a,b) in (0, L) × (0, T ),

z − α2zxx = y in (0, L) × (0, T ),

y(0, t) = y(L, t) = z(0, t) = z(L, t) = 0 on (0, T ),

y(x, 0) = y0(x) in (0, L).

(5.3)

These have been proved in [2].
This system can be viewed as a toy or preliminary model of (1.5). There are, however, several important

differences between (1.5) and (5.3):

• The solution to (5.3) satisfies a maximum principle that provides a useful L∞-estimate.
• There is no apparent energy decay for the uncontrolled solutions. As a consequence, the large time null

controllability of (5.3) is unknown.
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• It is known that, in the limit α = 0, i.e. for the Burgers equation, global null controllability does not
hold; consequently, in general, the null controllability of (5.3) with controls bounded independently of α is
impossible.

We refer to [2] for further details.

5.5. Local exact controllability to the trajectories

It makes sense to consider not only null controllability but also exact to the trajectories controllability problems
for (1.5). More precisely, let ŷ0 ∈ H be given and let (ŷ, p̂, ẑ, π̂) a sufficiently regular solution to (1.3) for f ≡ 0
and y0 = ŷ0. Then the question is whether, for any given y0 ∈ H, there exist controls v such that the associated
states, i.e. the associated solutions to (1.5), satisfy

y(T ) = ŷ(T ) in Ω.

The change of variables
y = ŷ + u, z = ẑ + w,

allows to rewrite this problem as the null controllability of a system similar, but not identical, to (1.5). It is
thus reasonable to expect that a local result holds.

5.6. Controlling with few scalar controls

The local null controllability with N − 1 or even less scalar controls is also an interesting question.
In view of the achievements in [3] and [9] for the Navier−Stokes equations, it is reasonable to expect that

results similar to Theorems 1.2 and 1.4 hold with controls v such that vi ≡ 0 for some i; under some geometrical
restrictions, it is also expectable that local exact controllability to the trajectories holds with controls of the
same kind, see [14].

5.7. Other related controllability problems

There are many other interesting questions concerning the controllability of (1.5) and related systems.
For instance, we can consider questions like those above for the Leray-α equations completed with other

boundary conditions: Navier, Fourier or periodic conditions for y and z, conditions of different kinds on different
parts of the boundary, etc. We can also consider Boussinesq-α systems, i.e. systems of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

yt −Δy + (z · ∇)y + ∇p = θk + v1ω in Q,

θt −Δθ + z · ∇θ = w1ω in Q,
z − α2Δz + ∇π = y in Q,

∇ · y = 0, ∇ · z = 0 in Q,

y = z = 0, θ = 0 on Σ,
y(0) = y0, θ(0) = θ0 in Ω.

Some of these results will be analyzed in a forthcoming paper.

Acknowledgements. The authors thank J.L. Boldrini for the constructive conversations on the mathematical model.
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Linéaire 23 (2006) 29–61.

[23] S. Guerrero and O.Y. Imanuvilov, Remarks on global controllability for the Burgers equation with two control forces. Annal.
Inst. Henri Poincaré Anal. Non Linéaire 24 (2007) 897–906.

[24] S. Guerrero, O.Y. Imanuvilov and J.-P. Puel, A result concerning the global approximate controllability of the Navier−Stokes
system in dimension 3. J. Math. Pures Appl. 98 (2012) 689–709.

[25] O.Y. Imanuvilov, Remarks on exact controllability for the Navier−Stokes equations. ESAIM: COCV 6 (2001) 39–72.

[26] J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63 (1934) 193–248.
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