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EXACT CONTROLLABILITY TO THE TRAJECTORIES OF THE HEAT
EQUATION WITH FOURIER BOUNDARY CONDITIONS: THE SEMILINEAR

CASE ∗

Enrique Fernández-Cara1, Manuel González-Burgos1, Sergio Guerrero2
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Abstract. This paper is concerned with the global exact controllability of the semilinear heat equation
(with nonlinear terms involving the state and the gradient) completed with boundary conditions of

the form ∂y
∂n

+ f(y) = 0. We consider distributed controls, with support in a small set. The null
controllability of similar linear systems has been analyzed in a previous first part of this work. In
this second part we show that, when the nonlinear terms are locally Lipschitz-continuous and slightly
superlinear, one has exact controllability to the trajectories.
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1. Introduction

Let Ω ⊂ RN (N ≥ 1) be a bounded connected open set whose boundary ∂Ω is regular enough (for instance
∂Ω ∈ C2). Let ω ⊂ Ω be a (small) nonempty open subset and let T > 0. We will use the notation Q = Ω×(0, T )
and Σ = ∂Ω × (0, T ) and we will denote by n(x) the outward unit normal to Ω at the point x ∈ ∂Ω.

We will consider the semilinear heat equation with nonlinear Fourier (or Robin) boundary conditions⎧⎪⎪⎨⎪⎪⎩
yt − ∆y + F (y,∇y) = v1ω in Q,

∂y

∂n
+ f(y) = 0 on Σ,

y(x, 0) = y0(x) in Ω.

(1)

Here, we assume that v ∈ L2(ω × (0, T )) (at least), 1ω is the characteristic function of ω, y0 ∈ L∞(Ω) and
F : R × RN �→ R and f : R �→ R are given functions. In (1), y = y(x, t) is the state and v = v(x, t) is the
control; it is assumed that we can act on the system only through ω × (0, T ).
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For the existence, uniqueness, regularity and general properties of the solutions to problems like (1), see for
instance [1, 2, 7]. An illustrative interpretation of the data and variables in (1) is the following. The function
y = y(x, t) can be viewed as the relative temperature of a medium (with respect to the exterior surrounding air)
subject to transport and chemical reactions. The parabolic equation in (1) means, among other things, that a
heat source v1ω is applied on a part of the body. On the boundary, − ∂y

∂n can be viewed as the normal heat flux,
inwards directed, up to a positive coefficient. Thus, the equality

− ∂y

∂n
= f(y)

means that this flux is a (nonlinear) function of the temperature. Accordingly, it is reasonable to assume that f
is nondecreasing and f(0) = 0.

A simplified linear model which was considered in a previous paper [10] is the following:⎧⎪⎪⎨⎪⎪⎩
yt − ∆y + a(x, t) y + B(x, t) · ∇y = v1ω in Q,

∂y

∂n
+ β(x, t) y = 0 on Σ,

y(x, 0) = y0(x) in Ω.

(2)

Here, it is assumed that the coefficients a, B and β satisfy

a ∈ L∞(Q), B ∈ L∞(Q)N , β ∈ L∞(Σ) (3)

and, for the reasons above, it is also natural to assume that β ≥ 0 (although this assumption was not used
in [10]).

The main goal of this paper is to analyze the controllability properties of the nonlinear system (1). More
precisely, we will try to reach exactly uncontrolled solutions of (1), i.e. functions y = y(x, t) satisfying⎧⎪⎪⎨⎪⎪⎩

yt − ∆y + F (y,∇y) = 0 in Q,

∂y

∂n
+ f(y) = 0 on Σ,

y(x, 0) = y0(x) in Ω.

(4)

It will be said that (1) is (globally) exactly controllable to the trajectories at time T if, for any solution of (4)
with “suitable” regularity and any y0 ∈ L∞(Ω), there exist controls v ∈ L2(ω × (0, T )) and associated solutions
y ∈ C0([0, T ]; L2(Ω)) such that

y(x, T ) = y(x, T ) in Ω. (5)

Here, by suitable regularity we mean the following:

y ∈ L2(0, T ; H1(Ω)) ∩ C0([0, T ]; L2(Ω)) ∩ L∞(Q), y0 ∈ L∞(Ω). (6)

The controllability properties of semilinear time-dependent systems have been studied intensively these last
years. See for instance [8,11–13,15,16], where nonlinearities of the form f(y) are considered. See also the general
treatise [14]. In particular, for parabolic systems completed with Dirichlet boundary conditions, nonlinear
terms f(y,∇y) depending on both the state and the gradient have been taken into account in [6, 9]. For the
similar linear system (2), the null controllability was analyzed more in detail in [10]. In the case of (1), some
partial results have been given in [5].
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Our main result concerns the global exact controllability to the trajectories of (1). It is the following:

Theorem 1. Let us assume that F and f are locally Lipschitz-continuous and satisfy

lim
|s|→∞

|F (s, p) − F (r, p)|
|s − r| log3/2(1 + |s − r|) = 0, (7)

uniformly in (r, p) ∈ [−K, K] × RN ∀K > 0,⎧⎪⎨⎪⎩
∀L > 0, ∃M > 0 such that

|F (s, p) − F (r, p)| ≤ M |s − r|, |F (s, p) − F (s, q)| ≤ M |p − q|
∀(s, r, p, q) ∈ [−L, L]2 × RN × RN

(8)

and

lim
|s|→∞

|f(s) − f(r)|
|s − r| log1/2(1 + |s − r|) = 0 (9)

uniformly in r ∈ [−K, K] ∀K > 0. Then, for each T > 0, the nonlinear system (1) is exactly controllable to the
trajectories at time T with L∞ controls.

Remark 1. Conditions (7)–(9) are satisfied if F and f are globally Lipschitz continuous. Notice that (7)
means that the function F can only be slightly superlinear in s, uniformly in p. In the similar case of Dirichlet
boundary conditions, it is known that conditions like these are sharp. Indeed, for instance, when F does not
depend on p and

|F (s) − F (r)| ∼ |s − r| logβ(1 + |s − r|), β > 2,

due to blow-up phenomena, the system fails to be controllable whenever ω �= Ω (see [11]). On the other hand,
(9) is also a slightly superlinear growth assumption for f . It would be interesting to know whether a more
superlinear f leading to blow up in the absence of control can also be an obstruction for the null controllability
of (1). But this question does not seem obvious and remains open.

Remark 2. A result proved in [5] says that when F ≡ 0, f is smooth near zero and

f(s) s ≥ 0 ∀s ∈ R, (10)

the nonlinear system (1) is null controllable for large T . That is to say, under these assumptions, for each
y0 ∈ L2(Ω) there exist T (y0) > 0 and controls v in L∞(ω × (0, T ) such that the associated states y satisfy

y(x, T (y0)) = 0 in Ω.

By inspection of the proof of theorem 1, we see that the same result holds for (1) with F ≡ 0 whenever f is
locally Lipschitz-continuous and satisfies the good sign condition (10).

For the proof of Theorem 1, we will first establish a null controllability result for (2) (see Prop. 1 below).
This will be used, together with an appropriate fixed point argument, to deduce the desired result.

This strategy was introduced in [15] in the framework of the exact controllability of the semilinear wave
equation. See also [8,12] for similar results concerning the approximate and null controllability of the semilinear
heat equation with Dirichlet or Neumann boundary conditions.

Our null controllability result for (2) is the following:

Proposition 1. For every T > 0, system (2) is null controllable at time T , with controls in L∞(ω × (0, T )).
More precisely, for each y0 ∈ L2(Ω), there exists v ∈ L∞(ω × (0, T )) such that the associated solution to (2)
satisfies (5). Furthermore, the control v can be found satisfying

‖v‖L∞(ω×(0,T )) ≤ eC(Ω,ω)K(T,‖a‖∞,‖B‖∞,‖β‖∞) ‖y0‖L2(Ω) , (11)
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where
K = 1 + 1/T + ‖a‖2/3

∞ + ‖B‖2
∞ + ‖β‖2

∞ + T (1 + ‖a‖∞ + ‖B‖2
∞ + ‖β‖2

∞). (12)

For the proof of proposition 1, we first introduce a control L2(ω × (0, T )) which leads the solution of (2) to
zero at time T . In a second step, arguing as in Section 2 in [4], a regularizing argument will lead to the
desired L∞ control.

The rest of this paper is organized as follows. In Section 2, we prove Proposition 1. Section 3 is devoted
to the proof of Theorem 1. For completeness, we have also included an Appendix where the proof of a rather
technical local regularity result is given in detail.

In the sequel, C denotes a generic positive constant only depending on Ω and ω.

2. A null controllability result for the linear system

In this section we present the proof of Proposition 1.
Let y0 ∈ L2(Ω) be given and let us introduce two open sets ω′ and ω′′, with ω′′ ⊂⊂ ω′ ⊂⊂ ω. Then, we

can use the main result in [10] (Th. 2) with control region ω′′ × (0, T ) to deduce the existence of a control
ṽ ∈ L2(ω′′ × (0, T )) such that the associated solution to (2) verifies (5) and also the estimate

‖ṽ‖L2(ω′′×(0,T )) ≤ eC(Ω,ω) K(T,‖a‖∞,‖B‖∞,‖β‖∞) ‖y0‖L2(Ω), (13)

where K is of the form (12).
Let us denote by ỹ the state associated to ṽ. We now introduce a cut-off function η = η(t) satisfying

η ∈ C∞([0, T ]), η(t) = 1 in (0, T/4), η(t) = 0 in (3T/4, T )

and
0 ≤ η(t) ≤ 1, |η′(t)| ≤ C

t
in (0, T )

and we denote by χ the solution to the system⎧⎪⎪⎨⎪⎪⎩
χt − ∆χ + a(x, t)χ + B(x, t) · ∇χ = 0 in Q,

∂χ

∂n
+ β(x, t)χ = 0 on Σ,

χ(x, 0) = y0(x) in Ω.

Then, the function w̃ = ỹ − ηχ satisfies⎧⎪⎪⎨⎪⎪⎩
w̃t − ∆w̃ + a(x, t) w̃ + B(x, t) · ∇w̃ = −η′(t)χ + ṽ1ω′′ in Q,

∂w̃

∂n
+ β(x, t) w̃ = 0 on Σ,

w̃(x, 0) = 0, w̃(x, T ) = 0 in Ω.

Our aim is to construct a control v ∈ L∞(ω × (0, T )) which drives the solution of (2) to zero at time t = T . To
this end, we will need a local regularity result for the solutions to linear heat equations with L∞ coefficients a
and B. This will be used below for the functions χ and w̃ and reads as follows:

Lemma 1. Let us denote by Y the space L2(0, T ; H1(Ω)) ∩ C0([0, T ]; L2(Ω)). Let y ∈ Y be a solution to the
equation

yt − ∆y + a(x, t) y + B(x, t) · ∇y = f, (14)
where a ∈ L∞(Q), B ∈ L∞(Q)N and f ∈ L2(Q). Let O ⊂ Ω be a nonempty open set and assume that f is L∞

in the cylinder O × (0, T ). Then
y ∈ L∞(δ, T ; W 1,∞(O′))
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for any δ ∈ (0, T ) and any nonempty open set O′ ⊂⊂ O. Furthermore, there exists a positive constant C(O′)
such that the following estimate holds:

‖y‖L∞(δ,T ;W 1,∞(O′)) ≤ C(O′) (T 1/2 + T N/2)
(
1 + δ−1 + ‖a‖∞ + ‖B‖∞

)N+1 (‖y‖Y + ‖f‖L∞(O×(0,T ))

)
. (15)

The previous regularity also holds with δ = 0 if, besides (14), we have y(x, 0) = 0 in Ω. In that case, one has
an estimate similar to (15) without the term in δ.

This lemma is implied by well known parabolic regularity theory. For completeness, its proof is given in an
Appendix, at the end of this paper.

Let us now consider an open set ω0 with ω′ ⊂⊂ ω0 ⊂⊂ ω and a cut-off function ξ, with

ξ ∈ C2
0 (ω0), ξ ≡ 1 in ω′

and let us set w = (1 − ξ) w̃. Then we have:⎧⎪⎪⎨⎪⎪⎩
wt − ∆w + a(x, t)w + B(x, t) · ∇w = −η′(t)χ + v1ω in Q,

∂w

∂n
+ β(x, t)w = 0 on Σ,

w(x, 0) = 0, w(x, T ) = 0 in Ω,

with
v = η′ ξ χ + 2∇ξ · ∇w̃ + ∆ξ w̃ − B · ∇ξ w̃. (16)

Let us remark that supp v ⊂ ω × [0, T ]. Therefore, if we prove that v ∈ L∞(ω × (0, T )), we will have that the
function y = w + ηχ solves (together with v) the null controllability problem for (2).

Thus, let us check that v ∈ L∞(ω × (0, T )) and let us estimate its norm in this space:

• The regularity of the first term in the right hand side of (16) is implied by the interior regularity of χ
not only in space but in time as well. From Lemma 1 with O = ω, we deduce that χ ∈ L∞(ω0 × (δ, T )) with
supp ξ ⊂ ω0 ⊂⊂ ω (we even have χ ∈ L∞(δ, T ; W 1,∞

loc (ω))) and

‖χ‖L∞(ω0×(δ,T )) ≤ C (T 1/2 + T N/2)
(
1 + δ−1 + ‖a‖∞ + ‖B‖∞

)N+1 ‖χ‖Y ;

recall that Y = L2(0, T ; H1(Ω)) ∩ C0([0, T ]; L2(Ω)).
Consequently taking for instance δ = T/8, since η′ ≡ 0 in (0, T/4), we get

‖η′ ξ χ‖L∞(ω×(0,T )) ≤ C T−1 (T 1/2 + T N/2)
(
1 + T−1 + ‖a‖∞ + ‖B‖∞

)N+1 ‖χ‖Y .

• The regularity of the other three terms in the right hand side of (16) is related to the interior space
regularity of w̃. Thus, let us introduce ω1 with ω0 ⊂⊂ ω1 ⊂⊂ ω and let us apply Lemma 1 with O = ω1 \ ω′′.
This gives w̃ ∈ L∞(0, T ; W 1,∞(ω0 \ ω′)) and the estimate

‖w̃‖L∞(0,T ;W 1,∞(ω0\ω′)) ≤ C (T 1/2 + T N/2) (1 + ‖a‖∞ + ‖B‖∞)N+1 (‖w̃‖Y + ‖η′ χ‖L∞(ω1×(0,T ))),

whence { ‖2∇ξ · ∇w̃ + ∆ξ w̃ − B · ∇ξ w̃‖L∞(ω×(0,T )) ≤ C(T 1/2 + T N/2)

× (1 + ‖a‖∞ + ‖B‖∞)N+2 (‖w̃‖Y + ‖η′ χ‖L∞(ω1×(0,T ))).
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Putting the previous estimates together, we find that v ∈ L∞(ω × (0, T )) and

‖v‖L∞(ω×(0,T )) ≤ C(1 + T N−1)
(
1 + T−1 + ‖a‖∞ + ‖B‖∞

)2N+3 (‖w̃‖Y + ‖χ‖Y ). (17)

At this point, notice that for any f ∈ L2(Q) and any y0 ∈ L2(Ω) the solution y to the linear system⎧⎪⎪⎨⎪⎪⎩
yt − ∆y + a(x, t) y + B(x, t) · ∇y = f in Q,

∂y

∂n
+ β(x, t) y = 0 on Σ,

y(x, 0) = y0(x) in Ω

(18)

satisfies
‖y‖Y ≤ eC T (1+‖a‖∞+‖B‖2

∞+‖β‖2
∞)(‖f‖L2(Q) + ‖y0‖L2(Ω)).

For a detailed proof, see for example proposition 1 in [10].
This can be used to estimate ‖w̃‖Y and ‖χ‖Y in terms of ‖ṽ‖L2(ω×(0,T )) and ‖y0‖L2(Ω). In view of (17), we

see that
‖v‖L∞(ω×(0,T )) ≤ L (‖ṽ‖L2(ω′′×(0,T )) + ‖y0‖L2(Ω)), (19)

where

L = C T−1(1 + T N−1)
(
1 + T−1 + ‖a‖∞ + ‖B‖∞

)2N+3
exp{C T (1 + ‖a‖∞ + ‖B‖2

∞ + ‖β‖2
∞)}.

Combining this estimate and (13), we finally obtain that

‖v‖L∞(ω×(0,T )) ≤ eC K(T,‖a‖∞,‖B‖∞,‖β‖∞) ‖y0‖L2(Ω), (20)

where K is given by (12).
This ends the proof of Proposition 1.

3. Controllability of the nonlinear system

In this section we will prove Theorem 1. The following auxiliary result will be needed:

Proposition 2. Let us assume that, in (18), we have f ∈ L∞(Q) and y0 ∈ L∞(Ω). Let us also assume that
the coefficients a, B and β satisfy (3). Then y ∈ L∞(Q) and

‖y‖∞ ≤ eC T(1+‖a‖∞+‖B‖2
∞+‖β‖2

∞) (‖y0‖∞ + ‖f‖∞
)
. (21)

for some C = C(Ω).

Proof. We will consider two different situations:

Case 1. We will first assume that a ≥ 1 and β ≥ 0 and we will establish (21) in this case. In fact, we will show
that, under these assumptions,

‖y‖∞ ≤ ‖y0‖∞ + ‖f‖∞. (22)
To this end, let us introduce the system⎧⎪⎪⎨⎪⎪⎩

zt − ∆z + a(x, t) z + B(x, t) · ∇z = h in Q,

∂z

∂n
+ β(x, t) z = k on Σ,

z(x, 0) = z0(x) in Ω,
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where h ∈ L∞(Q), k ∈ L∞(Σ) and z0 ∈ L∞(Ω) and let us show that, if h, z0 and k are nonnegative, then this
is also the case for z.

Indeed, by multiplying the equation satisfied by z by z−(·, t) (the negative part of z(·, t)) for each t ∈ (0, T )
and integrating in Ω, after several simplifications, we find:

1
2

d
dt

∫
Ω

|z−(x, t)|2 dx +
∫

Ω

|∇z−(x, t)|2 dx

+
∫

∂Ω

β(x, t) |z−(x, t)|2 dσ +
∫

∂Ω

k(x, t) z−(x, t) dσ +
∫

Ω

a(x, t) |z−(x, t)|2 dx =

−
∫

Ω

h(x, t) z−(x, t) dx −
∫

Ω

B(x, t) · ∇z−(x, t) z−(x, t) dx.

From this identity, in view of the positiveness of a, h, β and k, we easily deduce that

d
dt

∫
Ω

|z−(x, t)|2 dx ≤ ‖B‖2
∞

∫
Ω

|z−(x, t)|2 dx,

whence z ≥ 0 in Q.
Now, let M > 0 be a large constant (to be chosen below). The function z = M − y satisfies⎧⎪⎪⎨⎪⎪⎩

zt − ∆z + a(x, t) z + B(x, t) · ∇z = a(x, t)M − f in Q,

∂z

∂n
+ β(x, t) z = β(x, t)M on Σ,

z(x, 0) = M − y0(x) in Ω.

Therefore, if we take

M ≥ max{ ‖f‖L∞(Q), ‖y0‖L∞(Ω)},
we can apply the previous argument and deduce that y ≤ M . In a similar way, one can deduce that y ≥ −M
and, consequently, |y| ≤ M . This proves that whenever a ≥ 1 and β ≥ 0, the estimate (22) holds.

Case 2. We will now prove (21) for general L∞ coefficients a and β.
Let γ ∈ C2(Ω) be a function satisfying

γ ≥ 0 in Ω,
∂γ

∂n
≤ −‖β‖∞ on ∂Ω, ‖γ‖∞ ≤ 1,

‖∇γ‖∞ ≤ C ‖β‖∞, ‖D2γ‖∞ ≤ C ‖β‖2
∞.

(23)

We give here a sketch of the proof of the existence of such a function γ. To this end, let δ > 0 be a parameter
(depending on Ω) such that

x ∈ Ωδ �→ dist(x, ∂Ω)

is C2, with Ωδ = {x ∈ Ω : dist(x, ∂Ω) < δ}. We distinguish two cases.
Let us first assume that ‖β‖∞ ≥ 1/δ. Then we take γ(x) ≡ 1 in Ω \ Ωδ, γ(x) = ‖β‖∞ dist(x, ∂Ω) in Ωε with

ε = 1/(2‖β‖∞) and a regularization of γ in Ωδ \ Ωε. This gives the desired properties for γ.
On the other hand, if ‖β‖∞ < 1/δ, we take γ(x) = δ ‖β‖∞ in Ω \Ωδ, γ(x) = ‖β‖∞ dist(x, ∂Ω) in Ωδ/2 and a

regularization in Ωδ \ Ωδ/2. This also provides a desired function in this case.
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Let us now set ŷ = eγ(x) y. Then ŷ satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
ŷt − ∆ŷ + â(x, t) ŷ + B̂(x, t) · ∇ŷ = eγ(x)f in Q,

∂ŷ

∂n
+ β̂(x, t) ŷ = 0 on Σ,

ŷ(x, 0) = eγ(x) y0(x) in Ω,

(24)

where
â = a + ∆γ − |∇γ|2 − B · ∇γ,

B̂ = B + 2∇γ, β̂ = β − ∂γ

∂n
≥ 0 on Σ.

Notice that, from the inequalities (23) satisfied by γ, we know that

|a + ∆γ − |∇γ|2 − B · ∇γ| ≤ C1 (‖a‖∞ + ‖B‖2
∞ + ‖β‖2

∞) in Q

for some C1 > 0.
Now, let us set

ỹ = e−(C1 (‖a‖∞+‖B‖2
∞+‖β‖2

∞)+1)t ŷ.

Then ỹ satisfies ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ỹt − ∆ỹ + ã(x, t) ỹ + (B(x, t) + 2∇γ(x)) · ∇ỹ = f̃ in Q,

∂ỹ

∂n
+ β̃(x, t) ỹ = 0 on Σ,

ỹ(x, 0) = eγ(x) y0(x) in Ω,

(25)

where
ã = a + ∆γ − |∇γ|2 − B · ∇γ + C1 (‖a‖∞ + ‖B‖2

∞ + ‖β‖2
∞) + 1,

f̃ = e−(C1 (‖a‖∞+‖B‖2
∞+‖β‖2

∞)+1)t+γ(x) f

and
β̃ = β̂.

Since ã ≥ 1 and β̃ ≥ 0, we can apply case 1 to ỹ. This provides the estimates

‖y‖∞ ≤ ‖ŷ‖∞ ≤ eC T(1+‖a‖∞+‖B‖2
∞+‖β‖2

∞) (‖y0‖∞ + ‖f‖∞),

whence we deduce (21). �
Let us now start with the proof of Theorem 1. Let y0 ∈ L∞(Ω) and y be given and assume that y satisfies

(6) and (4) in the weak sense. Let us consider the nonlinear system⎧⎪⎪⎨⎪⎪⎩
wt − ∆w + F1(w,∇w; x, t)w + F2(∇w; x, t) · ∇w = v1ω in Q,

∂w

∂n
+ F3(w; x, t)w = 0 on Σ,

w(x, 0) = y0(x) − y(x, 0) in Ω,

(26)

where we have used the notation

F1(s, p; x, t) =
F (y(x, t) + s,∇y(x, t) + p) − F (y(x, t),∇y(x, t) + p)

s
, (27)

F2 = (F21, . . . , F2N ), F2j(p; x, t) =
∫ 1

0

∂F

∂pj
(y(x, t),∇y(x, t) + λp) dλ (28)
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and

F3(s; x, t) =
f(y(x, t) + s) − f(y(x, t))

s
(29)

for s ∈ R and p ∈ RN .
We will prove that there exist a control v ∈ L∞(ω × (0, T )) and an associated solution to (26) such that

w(x, T ) = 0 in Ω. (30)

With this control and the state y = w + y, we will have solved the exact controllability problem for (1) and we
will have thus proved Theorem 1.

We will first assume that the functions F and f are continuously differentiable. Then, by a density argument,
we will be able to prove the result in the general case.

3.1. The case in which F and f are C1

The idea of the proof is well known: we introduce an appropriate (set-valued) fixed point mapping and
we check that it possesses at least one fixed point; this will be a solution to the null controllability problem
associated to (26).

Let R > 0 be given and let us introduce the following function:

MR(s) =

⎧⎪⎨⎪⎩
−R if s < −R,

s if − R ≤ s ≤ R,

R if s > R.

Let us denote by Z the Hilbert space Z = L2(0, T ; H1(Ω)) and let us set for each R > 0 and each z ∈ Z

aR,z(x, t) = F1(MR(z(x, t)),∇z(x, t); x, t),

Bz(x, t) = F2(∇z(x, t); x, t)

and
βR,z(x, t) = F3(MR(z(x, t)); x, t).

Consider the linear null controllability problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
wt − ∆w + aR,z(x, t)w + Bz(x, t) · ∇w = v1ω in Q,

∂w

∂n
+ βR,z(x, t)w = 0 on Σ,

w(x, 0) = y0(x) − y(x, 0) in Ω,

(31)

together with (30).
Let us introduce the function w0, with w0(x) = y0(x)− y(x, 0) for all x ∈ Ω. From (6), (8) and the fact that

f ∈ C1(R), we have
aR,z ∈ L∞(Q), Bz ∈ L∞(Q)N , βR,z ∈ L∞(Σ).

Consequently, in view of Proposition 1, (30)–(31) can be solved with controls in L∞(ω × (0, T )).
We are now going to select a particular solution to (30)–(31) constructed as in [11]. To do this, we first set

TR = min{T, a
−1/3
R } > 0, where

aR = sup
|s|≤R, p∈RN

ess sup
(x,t)∈Q

|F1(s, p; x, t)|.
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We can follow the steps of Section 1 and construct a control vR,z ∈ L∞(ω× (0, TR)) such that the solution wR,z

to (31) in Ω × (0, TR) verifies
wR,z(x, TR) = 0 in Ω.

The estimates we have been able to establish in propositions 1 and 2 written for vR,z and wR,z with final time TR

will now give
‖vR,z‖L∞(ω×(0,TR)) ≤ CR ‖w0‖L2(Ω), (32)

‖wR,z‖L2(0,TR;H1(Ω)) ≤ CR ‖w0‖L2(Ω) (33)
and

‖wR,z‖L∞(Ω×(0,TR)) ≤ CR ‖w0‖L∞(Ω), (34)
where

CR = exp
{
C(Ω, ω, T )

(
1 + a

2/3
R + B

2
+ β2

R

)}
,

B = sup
p∈RN

ess sup
(x,t)∈Q

|F2(p; x, t)|
and

βR = sup
|s|≤R

ess sup
(x,t)∈Σ

|F3(s; x, t)|.

In fact, the estimates obtained in the previous section imply (32)–(34) with CR replaced by CR(z), where

CR(z) = exp
{
C(Ω, ω)

(
1 + T−1

R + TR + ‖aR,z‖2/3
∞ + ‖Bz‖2∞

+‖βR,z‖2∞ + TR

(‖aR,z‖∞ + ‖Bz‖2∞ + ‖βR,z‖2∞
))}

;

but taking into account the definitions of TR, aR, B and βR it is clear that CR(z) ≤ CR for all z ∈ Z.
At this moment, we can extend by zero the functions vR,z and wR,z for t ∈ (TR, T ). In this way, we will have

built a control vR,z and an associated state wR,z satisfying (30)–(31) and

‖vR,z‖L∞(ω×(0,T )) ≤ CR ‖w0‖L2(Ω), (35)

‖wR,z‖Z ≤ CR ‖w0‖L2(Ω) (36)
and

‖wR,z‖∞ ≤ CR ‖w0‖L∞(Ω). (37)
We will now introduce a set-valued mapping leading to the solution to our controllability problem.

We first consider the set of admissible controls AR(z). By definition, this is the set of controls vR,z ∈
L∞(ω × (0, T )) which lead the solution to (31) to zero at time T and satisfy (35). Then, for each z ∈ Z, we
denote by ΛR(z) the set of states wR,z associated to the controls vR,z ∈ AR(z) furthermore satisfying (36)
and (37). In view of the arguments above, ΛR(z) is a nonempty subset of Z.

The plan of the rest of the proof is the following:
• We will first see that, for each R > 0, ΛR possesses a fixed point wR. This will be implied by Kakutani’s

theorem.
• Then, we will find R > 0 (large enough) such that MR(wR) = wR. At this level, the use of Proposition 2

will be crucial.
As a consequence, for large R, the fixed point wR of ΛR will be, together with some vR ∈ L∞(ω × (0, T )), a
solution to (30)–(31).

Thus, let us recall Kakutani’s fixed point theorem (see, for instance, [3]):

Theorem 2. Let Z be a Banach space and let Λ : Z �→ Z be a set-valued mapping satisfying the following
assumptions:

1. Λ(z) is a nonempty closed convex set of Z for every z ∈ Z.
2. There exists a nonempty convex compact set K ⊂ Z such that Λ(K) ⊂ K.
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3. Λ is upper-hemicontinuous in Z, i.e. for each σ ∈ Z ′ the single-valued mapping

z �→ sup
y∈Λ(z)

〈σ, y〉Z′,Z (38)

is upper-semicontinuous.
Then Λ possesses a fixed point in the set K, i.e. there exists z ∈ K such that z ∈ Λ(z).

Let us check that Kakutani’s theorem can be applied to ΛR.
That ΛR(z) is a nonempty closed convex set of Z for every z ∈ Z is very easy to verify.
Let us prove that ΛR maps a compact set into itself. In fact, let us see that ΛR maps the whole space Z into

a fixed convex compact set KR.
Our argument will be the following: we choose an arbitrary sequence {zn} in Z and a sequence {wn} with

wn ∈ ΛR(zn) for all n and we prove that {wn} possesses a strongly convergent subsequence.
Thus, let the sequences {zn} and {wn} be given. From (35)–(37), the equations satisfied by the functions wn

and the fact that ‖aR,zn‖∞ ≤ aR, ‖Bzn‖∞ ≤ B and ‖βR,zn‖∞ ≤ βR for all n ≥ 1, we deduce the existence of
subsequences {wn′} and {vn′} such that

wn′ → w weakly in Z,

wn′,t → wt weakly in L2(0, T ; H−1(Ω))

and
vn′ → v weakly-∗ in L∞(Q)

as n′ → ∞. We can also assume that the coefficients associated to zn′ converge weakly-∗ in L∞(Q) and L∞(Σ).
Thus, we can pass to the limit in the weak formulations satisfied by wn′ and deduce that w and v satisfy⎧⎪⎪⎪⎨⎪⎪⎪⎩

wt − ∆w + a(x, t)w + θ(x, t) = v1ω in Q,

∂w

∂n
+ β(x, t)w = 0 on Σ,

w(x, 0) = w0(x) in Ω

for some a ∈ L∞(Q) and β ∈ L∞(Σ), where θ ∈ L2(Q) is the weak limit of Bzn′ · ∇wn′ in L2(Q).
After substraction of the equations satisfied by the functions wn′ and w, we find that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(wn′ − w)t − ∆(wn′ − w) = a(x, t)w − aR,zn′ (x, t)wn′

+θ(x, t) − Bzn′ (x, t) · ∇wn′ + (vn′ − v)1ω in Q,

∂(wn′ − w)
∂n

+ βR,zn′ (x, t)wn′ − β(x, t)w = 0 on Σ,

(wn′ − w)(x, 0) = 0 in Ω.

Consequently,

1
2

∫
Ω

|(wn′ − w)(x, T )|2 dx +
∫ T

0

∫
Ω

|∇(wn′ − w)(x, s)|2 dxds =
∫ T

0

∫
∂Ω

(β w − βR,zn′ wn′) (wn′ − w)(x, s) dσ ds

+
∫ T

0

∫
Ω

(a w − aR,zn′ wn′) (wn′ − w)(x, s) dxds +
∫ T

0

∫
Ω

(θ − Bzn′ · ∇wn′ ) (wn′ − w)(x, s) dxds

+
∫ T

0

∫
ω

(vn′ − v) (wn′ − w)(x, s) dxds. (39)
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We are now going to check that all the terms in the right hand side of this last equality tends to zero. Among
other things, this will imply that

wn′ → w strongly in Z. (40)
• The first term in the right hand side converges to zero, since

wn′ → w strongly in L2(Σ)

and consequently
βR,zn′ wn′ → β w weakly in L2(Σ).

Indeed, the strong convergence of wn′ is an immediate consequence of the compact embedding of the space

{ z ∈ L2(0, T ; H1(Ω)) : zt ∈ L2(0, T ; H−1(Ω)) }

in L2(0, T ; Hs(Ω)) for all s ∈ (1/2, 1) and the fact that the lateral trace operator is well defined, linear and
continuous from L2(0, T ; Hs(Ω)) into L2(Σ).

• The convergence of the other three terms in the right hand side is a consequence of the weak convergence
in L2(Q) of aR,zn′ wn′ and Bzn′ ·∇wn′ , the weak convergence in L2(ω× (0, T )) of vn′ and the strong convergence
of wn′ in L2(Q).

We have thus seen that {wn} possesses a strongly convergent subsequence and, consequently, ΛR maps the
space Z into a fixed compact set.

It remains to check that ΛR is upper-hemicontinuous. Thus, assume that σ ∈ Z ′ and let a sequence {zn} be
given, with zn → z strongly in Z. We must prove that

limn→+∞ sup
w∈ΛR(zn)

〈σ, w〉Z′ ,Z ≤ sup
w∈ΛR(z)

〈σ, w〉Z′ ,Z .

Let {zn′} be a subsequence of {zn} such that

limn→+∞ sup
w∈ΛR(zn)

〈σ, w〉Z′ ,Z = lim
n′→+∞

sup
w∈ΛR(zn′)

〈σ, w〉Z′ ,Z .

Since each ΛR(zn′) is a compact set of Z, for every n′ we have

sup
w∈ΛR(zn′)

〈σ, w〉Z′,Z = 〈σ, wn′ 〉Z′,Z

for some wn′ ∈ ΛR(zn′). On the other hand, since all the states wn′ belong to the same compact set KR, at
least for a new subsequence (again indexed by n′), we must have (40). We will now prove that w ∈ ΛR(z). This
will achieve the proof of the upper hemicontinuity of ΛR.

Indeed, we can assume that the weak limits of the coefficients associated to zn′ are aR,z, Bz and βR,z ,
since zn′ converges strongly in Z towards z and therefore the coefficients aR,zn′ , Bzn′ and βR,zn′ converge
almost everywhere (observe that we are using here the C1 regularity of F and f).

On the other hand, it can be assumed that the controls vn′ converge to a function v weakly-∗ in L∞(ω×(0, T )).
Then, w solves (31) and w(T ) = 0. Moreover, since inequality (35) is independent of n, v also satisfies (35).
Therefore, v ∈ AR(z). Consequently, it is immediate that w is the solution to (31) associated to the control v.

This shows that w ∈ ΛR(z) and, therefore, ΛR is upper hemicontinuous.
In view of these arguments, Kakutani’s theorem can be applied and we deduce that, for each R > 0, ΛR

possesses at least one fixed point wR that belongs to Z and L∞(Q).
Our aim is now to find R > 0 such that

‖wR‖∞ ≤ R.

This will be a consequence of the estimates we know for wR and the properties satisfied by the functions Fi.
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From (37), we obtain

‖wR‖∞ ≤ eC(Ω,ω,T )(1+a
2/3
R +B

2
+β2

R) ‖w0‖∞. (41)
On the other hand, from (8)–(9) it is also clear that, for every ε > 0, there exists Cε > 0 such that(

ess sup
(x,t)∈Q

|F1(s, p; x, t)|
)2/3

≤ ε log(1 + |s|) + Cε ∀s ∈ R, ∀p ∈ RN ,

(
ess sup
(x,t)∈Q

|F2(p; x, t)|
)2

≤ Cε ∀p ∈ RN ,

(
ess sup
(x,t)∈Σ

|F1(s; x, t)|
)2

≤ ε log(1 + |s|) + Cε ∀s ∈ R.

(42)

Consequently, it is also true that, for every ε > 0, there exists Cε > 0 (independent of R) such that

a
2/3
R + B

2
+ β2

R ≤ ε log(1 + R) + Cε.

These estimates, together with (41) and the definitions of aR, B and βR, lead to the following inequality:

‖wR‖∞ ≤ C(Ω, ω, T, ε) (1 + R)C(Ω,ω,T ) ε ‖w0‖∞.

Accordingly, taking ε > 0 small enough to satisfy C(Ω, ω, T ) ε < 1, we can ensure that, for R > 0 sufficiently
large (depending on Ω, ω, T and ‖y0 − y0‖L∞(Ω)), one has

‖wR‖∞ ≤ R.

This ends the proof of theorem 1 when F and f are C1 functions.

Remark 3. One could think about considering a nonlinearity F also having a slightly superlinear growth in the
p variables, as in [6]; this would mean a condition similar to (7) but in the p variables instead of the s variable.
However, our arguments do not work in this case. Indeed, we would need uniform estimates of the states in
L∞(0, T ; W 1,∞(Ω)) and this is not possible if the coefficients βR,z only belong to L∞(Σ) (further regularity
with respect to the time variable would be needed).

3.2. The general case

We will now assume that f and F are locally Lipschitz-continuous functions satisfying (7)–(9).
Let us introduce the functions ρ1 ∈ C∞

c (R × RN ), ρ2 ∈ C∞
c (RN) and ρ3 ∈ C∞

c (R), with ρj ≥ 0, supp ρ1 ⊂
B((0, 0); 1), supp ρ2 ⊂ B(0; 1), supp ρ3 ⊂ [−1, 1] and∫∫

R×RN

ρ1(s, p) ds dp =
∫
RN

ρ2(p) dp =
∫
R

ρ3(s) ds = 1.

Let us consider, for each n ≥ 1, the associated mollifiers

ρ1,n(s, p) = nN+1 ρ1(ns, np), ρ2,n(p) = nNρ2(np) ∀(s, p) ∈ R × RN

and
ρ3,n(s) = n ρ3(ns) ∀s ∈ R
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and the regularized functions
Fi,n = ρi,n ∗ Fi (i = 1, 2, 3)

(the functions F1, F2 and F3 were defined in (27)–(29)).
These functions satisfy the following:

• For each n ≥ 1, F1n : R × RN × Q �→ R, F2n : RN × Q �→ RN and F3n : R × Σ �→ R are Caratheodory
functions (respectively continuous in (s, p), p and s and measurable in (x, t)).

• If we set
Fn(s, p; x, t) = F1,n(s, p; x, t)s + F2,n(p; x, t) · p

and
fn(s; x, t) = F3,n(s; x, t)s,

then the asymptotic properties (8) and (42) remain true uniformly in n. In other words, for any L > 0, there
exists M > 0 (independent of n) such that{

|Fn(s, p) − Fn(r, p)| ≤ M |s − r|, |Fn(s, p) − Fn(s, q)| ≤ M |p − q|
∀(s, r, p, q) ∈ [−L, L]2 × RN × RN .

Moreover, for each ε > 0, there exists Cε > 0 such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ess sup
(x,t)∈Q

|F1n(s, p; x, t)|
)2/3

≤ ε log(1 + |s|) + Cε ∀s ∈ R, ∀p ∈ RN ,

(
ess sup
(x,t)∈Q

|F2n(p; x, t)|
)2

≤ Cε ∀p ∈ RN ,

(
ess sup
(x,t)∈Σ

|F3n(s; x, t)|
)2

≤ ε log(1 + |s|) + Cε ∀s ∈ R,

for each n ≥ 1.

• From the definitions of Fn and fn, we also have that

Fn(zn,∇zn; ·) → F1(z,∇z; ·)z + F2(∇z; ·) · ∇z weakly in L2(Q)

and
fn(zn; ·) → F3(z; ·)z weakly-∗ in L∞(Σ)

whenever
zn → z weakly-∗ in L∞(Q) and strongly in L2(0, T ; H1(Ω)).

As a consequence, we can argue as in Section 3.1 and deduce that, for each n, there exists a control vn ∈
L∞(ω × (0, T )) such that ⎧⎪⎪⎨⎪⎪⎩

wn,t − ∆wn + Fn(wn,∇wn; x, t) = vn1ω in Q,

∂wn

∂n
+ fn(wn; x, t) = 0 on Σ,

wn(x, 0) = w0(x) in Ω

(43)
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and
wn(x, T ) = 0 in Ω. (44)

In view of the properties satisfied by the functions Fin, the estimates we have established in Section 3.1 are
independent of n. Accordingly, at least for a subsequence, we also have

vn → v weakly-∗ in L∞(ω × (0, T )),

wn,t → wt weakly in L2(0, T ; H−1(Ω))

and
wn → w weakly-∗ in L∞(Q) and strongly in L2(0, T ; H1(Ω)).

Thus, we can pass to the limit in (43) and find a control v ∈ L∞(ω × (0, T )) such that the associated solution
to (26) satisfies (30).

This ends the proof of Theorem 1.

Remark 4. The proof of theorem 1 can also be achieved by applying another fixed point argument. More
precisely, we can first introduce a small parameter ε > 0 and find a control vε such that the solution of (1)
satisfies

‖y(·, T )− y(·, T )‖L2 ≤ ε.

This can be made by previously solving an approximate controllability problem for the linear system (31) with
the control of minimal norm in Lp(ω × (0, T )) for p large enough and, then, using Schauder’s theorem. Since
all the estimates we can establish are uniform in ε, we can pass to the limit as ε → 0 and deduce the desired
result.

Appendix: Proof of Lemma 1

Let us introduce N + 1 open subsets of O satisfying

ON = O′ ⊂⊂ ON−1 ⊂⊂ ... ⊂⊂ O1 ⊂⊂ O0 ⊂⊂ O.

We will also consider subintervals of (0, T ) of the form (δ/(i + 1), T ) for 0 ≤ i ≤ N .
We will strict our considerations to the proof of Lemma 1 in the case where no initial condition is imposed.

The result concerning a vanishing initial condition will follow readily from the argument below.
We are first going to see that

y ∈ L∞(δ/(N + 1), T ; H1(O0)) and ∆y ∈ L2(δ/(N + 1), T ; L2(O0)),

with an estimate of the associated norms independent of T . To this end, let ξ0 ∈ C2
c (O) and η0 ∈ C1([0, T ]) be

two functions satisfying

ξ0(x) = 1 in O0, η0(t) = 1 in
[

δ

N + 1
, T

]
, η0(0) = 0, |η0,t(t)| ≤ C

δ
in (0, T )

(of course, C depends on N) and let us introduce the function y0 = η0 ξ0 y. Then⎧⎪⎨⎪⎩
y0,t − ∆y0 = f0 in Q,

y0 = 0 on Σ,

y0(x, 0) = 0 in Ω,

where
f0 = η0 ξ0 f + η0,t ξ0 y − 2η0 ∇ξ0 · ∇y − η0 ∆ξ0 y − a η0 ξ0 y − η0 ξ0 B · ∇y − η0(B · ∇ξ0)y.
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We have f0 ∈ L2(Q). Consequently, ∆y0 ∈ L2(Q), y0 ∈ C0([0, T ]; H1
0 (Ω)) and appropriate estimates are

satisfied. Indeed, by multiplying the equation satisfied by y0 by −∆y0 and integrating with respect to x in Ω,
we find

1
2

d
dt

‖∇y0(·, t)‖2
L2 +

∫
Ω

|∆y0(x, t)|2 dx = −
∫

Ω

f0(x, t)∆y0(x, t) dx. (45)

Since
‖f0‖L2 ≤ C

(‖f‖L2 + (1 + δ−1 + ‖a‖∞ + ‖B‖∞) ‖y‖Y

)
,

we easily obtain from (45) that

‖y0‖C0([0,T ];H1
0(Ω)) + ‖∆y0‖L2(Q) ≤ C

(‖f‖L2 +
(
1 + δ−1 + ‖a‖∞ + ‖B‖∞

) ‖y‖Y

)
. (46)

Clearly, the same estimate holds for

‖y‖L∞(δ/(N+1),T ;H1(O0)) + ‖∆y‖L2(O0×(δ/(N+1),T )).

Let us now try to improve the local space regularity properties of y. To this end, we will use the following
lemma:

Lemma 2. Let us set p0 = 2, let pi be defined by

1
pi

=
1

pi−1
− 1

2N

for 1 ≤ i ≤ N − 1 and let us set pN = +∞. Let us denote by Xi the space

Xi = L∞((i + 1)δ/(N + 1), T ; W 1,pi(Oi))

for 0 ≤ i ≤ N and suppose that y ∈ Xj−1 for some j. Then we also have y ∈ Xj and

‖y‖Xj ≤ C(O′)(T 1/2 ‖f‖∞ + D(T, δ, ‖a‖∞, ‖B‖∞) ‖y‖Xj−1),

where
D(T, δ, ‖a‖∞, ‖B‖∞) = (T 1/4 + T 1/2)(1 + δ−1 + ‖a‖∞ + ‖B‖∞). (47)

Proof of Lemma 2. Let us introduce ξj ∈ C2
c (Oj−1) and ηj ∈ C1([0, T ]), with

ξj(x) = 1 in Oj , ηj(t) = 1 in [(j + 1)δ/(N + 1), T ],

ηj(t) = 0 in [0, jδ/(N + 1)], |ηj,t(t)| ≤ C

δ
in (0, T )

and let us put yj = ηj ξj y. Then yj satisfies the following:⎧⎪⎨⎪⎩
yj,t − ∆yj = fj in Q,

yj = 0 on Σ,

yj(x, 0) = 0 in Ω
(48)

with
fj = fj,1 + fj,2 + fj,3 ,

where
fj,1 = ηj ξj f, fj,2 = ηj,t ξj y − ηj ∆ξj y − a ηj ξj y − ηj(B · ∇ξj)y,

fj,3 = −2ηj ∇ξj · ∇y − ηj ξj B · ∇y.
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From the fact that the system (48) is linear, we see that yj can be written as the sum of three solutions to
similar systems with right hand sides fj,1 , fj,2 and fj,3 . Let us respectively denote them by yj,1 , yj,2 and yj,3 .
We are now going to deduce estimates of yj,k in Xj for 1 ≤ k ≤ 3.

To this end, we will use the usual representation of yj,k provided by the semigroup S(t) associated to the
heat equation with homogeneous Dirichlet conditions, say

yj,k(·, t) =
∫ t

0

S(t − s) fj,k(·, s) ds

for all t ∈ (0, T ).
Since f ∈ L∞(Q), we can write

‖yj,1(·, t)‖W 1,pj (Ω) ≤ C

∫ t

0

(t − s)−1/2 ‖fj,1(·, s)‖Lpj (Ω) ds.

Therefore, from Young’s inequality we find that yj,1 ∈ L∞(0, T ; W 1,pj(Ω)) and

‖yj,1‖L∞(0,T ;W 1,pj (Ω)) ≤ C T 1/2 ‖fj,1‖L∞(0,T ;Lpj (Ω))

≤ C(O′)T 1/2 ‖f‖L∞(O×(0,T )) .

Taking into account that fj,2 ∈ L∞(0, T ; Lp∗
j−1(Ω)) with

p∗j−1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞ if j > N − 1,

p (arbitrary in (1, +∞)) if j = N − 1,

2N

N − j − 1
if j < N − 1,

we see that fj,2 is not worse than fj,1 and, again,

‖yj,2(·, t)‖W 1,pj (Ω) ≤ C

∫ t

0

(t − s)−1/2 ‖fj,2(·, s)‖Lpj (Ω) ds

for all t. From Young’s inequality and the assumption y ∈ Xj−1 , we also get yj,2 ∈ L∞(0, T ; W 1,pj(Ω)) and

‖yj,2‖L∞(0,T ;W 1,pj (Ω)) ≤ C T 1/2 ‖fj,2‖L∞(0,T ;L
p∗

j−1(Ω))

≤ C(O′)T 1/2 (1 + δ−1 + ‖a‖∞) ‖y‖Xj−1 .

In the definition of fj,3, we find ∇y. Consequently, we can only ensure that fj,3 ∈ L∞(0, T ; Lpj−1(Ω)). Since

−N

2

(
1

pj−1
− 1

pj

)
− 1

2
= −3

4
,

we have

‖yj,3(·, t)‖W 1,pj (Ω) ≤ C

∫ t

0

(t − s)−3/4 ‖fj,3(·, s)‖Lpj−1(Ω) ds

and now Young’s inequality gives yj,3 ∈ L∞(0, T ; W 1,pj(Ω)) and

‖yj,3‖L∞(0,T ;W 1,pj (Ω)) ≤ C T 1/4 ‖fj,3‖L∞(0,T ;Lpj−1 (Ω))

≤ C(O′)T 1/4 (1 + ‖B‖∞) ‖y‖Xj−1 .
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Putting the estimates of ‖yj,k‖L∞(0,T ;W 1,pj (Ω)) together and taking into account the definitions of ηj and ξj ,
we obtain the desired inequality for ‖y‖Xj .

This concludes the proof of Lemma 2. �
Since we already had y ∈ X0, we deduce from Lemma 2 that y ∈ XN and

‖y‖XN ≤ C(O′)(T 1/2 ‖f‖∞ + D(T, δ, ‖a‖∞, ‖B‖∞) ‖y‖XN−1),

where, D is given by (47).
We can apply Lemma 2 subsequently for j = N, N − 1, . . . , 1. The estimates we find yield

‖y‖XN ≤ C(T 1/2(1 + DN−1)‖f‖L∞(O×(0,T )) + DN ‖y‖X0).

This, together with (46), yields

‖y‖XN ≤ C(T 1/2 + T N/2)D(T, δ, ‖a‖∞, ‖B‖∞)N+1(‖f‖L∞(O×(0,T )) + ‖y‖Y ),

which is exactly (15).

References

[1] H. Amann, Parabolic evolution equations and nonlinear boundary conditions. J. Diff. Equ. 72 (1988) 201–269.
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