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Abstract. We consider the Stokes and Navier—Stokes equations with boundary conditions of
Dirichlet type on the velocity on one part of the boundary and involving the pressure on the rest
of the boundary. We write the variational formulations of such problems. Next we propose a finite
element discretization of them and perform the a priori and a posteriori analysis of the discrete
problem. Some numerical experiments are presented in order to justify our strategy.
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1. Introduction. Most works concerning the Stokes or Navier—Stokes equations
deal with Dirichlet boundary conditions on the velocity (also called no-slip conditions);
see, for instance, [19] or [32]. However, other types of boundary conditions were
suggested in the pioneering paper [4], which was followed by a large number of works
on this subject. Among them, the conditions on the normal component of the velocity
and the vorticity were thoroughly studied and led to the so-called vorticity-velocity-
pressure formulation, introduced in [30] and studied in several other papers; see [16],
[17], and [7], for instance; their extension to mixed boundary conditions was performed
in [8]. However, it seems that the conditions on the tangential components of the
velocity and the pressure have less been studied; we refer the reader to [28] and [14]
for first works on these topics and also to [5] in the case of a simple geometry and
of the linear Stokes problem. Recent papers deal either with the analysis of the
equations [3], [25] or with their discretization [22], [23], [27], [31]. Unfortunately this
discretization most often relies on finite difference schemes.

We wish here to propose a discretization in the case of mixed boundary condi-
tions, Dirichlet conditions on the velocity in part of the boundary, conditions on the
tangential components of the velocity and on the pressure on another part, both for
the Stokes and Navier—Stokes equations. We first write the variational formulation of
these problems and recall their main properties. It can be noted that all conditions on
the velocity are prescribed in an essential way, while the boundary condition on the
pressure is treated in a natural way. Next, we consider a finite element discretization:
In view of the variational formulation, we decide to use the same finite elements as
for standard boundary conditions, more precisely the Taylor—-Hood element [21]. We
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perform the numerical analysis of the discrete problem: Optimal a priori estimates
and quasi-optimal a posteriori error estimates are derived, both in the linear and non-
linear cases. The arguments are similar to those for standard boundary conditions
but require small extensions. In a final step, we present numerical experiments that
justify the strategy of the discretization we choose.
The outline of this article is as follows:
e In section 2, we present the variational formulation of the full system and
investigate its well-posedness.
e Section 3 is devoted to the description and a priori and a posteriori error
analysis of the discretization of the Stokes problem.
e The a priori and a posteriori analysis of the discretization applied to the
Navier—Stokes equations are the object of section 4.
e In section 5, we present some numerical experiments.

2. The continuous problem and its well-posedness. Let () be a bounded
connected domain in R% d = 2 or 3, with a Lipschitz-continuous and connected
boundary 02. We assume that this boundary admits a partition without overlap into
two parts,

6QZF1UF2, FlﬂPZZ(Z)a

where both I'y and I'y have a finite number of connected components. From now on,
we also assume that both I'; and I'y; have a positive measure in ). We denote by n
the unit vector normal to 92 and exterior to €.

From now on, we use the notation of the three-dimensional case and sometimes
explain the modification in dimension d = 2. Thus, we consider the following problems
fore=0and e =1:

—vAu+e(u - V)u+gradp = f in Q,
divu =0 in Q,
(21) u =ux on Fl,
UXN =Uz XN on [y,
€
p—|—§|u|2:p2 on I's.

(In dimension d = 2, the third component of n is zero, so that u x n and us x n
mean the tangential component of w and ws, respectively, each of which is scalar.)
Indeed, the first two lines correspond to the standard Stokes model for ¢ = 0 and
to the Navier—Stokes equations for ¢ = 1. The unknowns are the velocity w and the
pressure p of the fluid, while the quantity p+% |u|? represents the dynamical pressure.
The data are a density of forces f on the whole domain and the boundary data w1,
us, and ps, while the viscosity v is a positive constant.

We write a variational formulation of problem (2.1); next we prove the existence
of a solution first for ¢ = 0 and then for ¢ = 1.

2.1. The variational formulation. With standard notation for the Sobolev
spaces H*(Q2) and H(S2) (see [1, Chap. 3] for details), we introduce the domains of
the divergence and curl operators,

H(div; Q) = {v € L*(Q)%; divv € L*(Q)},
H(curl; Q) = {v € L*(Q)%; curlv € L*(Q)

d(d—1)
2

.
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We recall from [19, Chap. I, sects. 2.2 and 2.3] that the normal trace operator, v —

v - m, is continuous from H(div; Q) into H~2(0S2) and that the tangential trace op-
d(d—1)

. . . _1
erator, v — v X n, is continuous from H(curl;) into H~2(9Q)~ =z . Thus we
introduce our variational space

(2.2) X={veH(iv;Q) NH(curl;Q); v-n=00nT; and v x n =0 on IN}.

Obviously, the trace operator v — v - n is continuous from X onto the dual space of
1 1
HEZ(Ty) (see [24, Chap. 1, sect. 11.3] for the definition of the space HZ(I'2)). So, we

denote by H&)% (T'3) its dual space and by (-, -)r, the corresponding duality pairing.

Remark 2.1. Let Q* be any domain included in €2 such that 9Q* N0 is contained
in T'y. The restrictions of functions of X to Q* belong to H'(Q2*)?; see [2, Thm. 2.5],
for instance. On the other hand, when I'y is of class C!*! or convex (where “convex”
means that there exists a convex neighbourhood of T'y in §2), it can be proven [2,
Thms. 2.12 and 2.17] that X is imbedded in H*(Q)?. Unfortunately, when T'y has
re-entrant corners or edges, it is only imbedded in H2 (Q)?; see [15].

The aim of the space X is of course to take into account the boundary conditions
on the velocity (we recall that, in dimension d = 2, v x n = 0 means that the
tangential component of v vanishes). Next we define the bilinear forms

(2.3) a(u,v) = V/Q(curl u)(x) - (curlv)(x)de, b(v,q) =— /Q(div v)(x)q(x) dz,

together with the trilinear form

(2.4) N('w,u,v):/

1 .
Q(curlu x w)(x) - v(x)dr — 3 / (u - w)(x)(divo)(x) de.

Q

Note that, in dimension d = 2, curl u is a scalar function, so that curl u x w means the
vector function with components (curlu)w, and —(curlu)w,. With this notation,
we consider the following problem: Find (u,p) in (H(div; Q)N H(curl;Q)) x L*(Q)
such that

(2.5) u=u only and uXn=1us xnonls,
(2.6) Vv e X, a(u,v)+eN(u,u,v)+b(v,p) = / f(x) -v(x)de — (p2,v - n)r,,
Q

Vq € LZ(Q), b(u,q) = 0.

Indeed, we have the following result.

PROPOSITION 2.2. Any solution (u,p) of the variational problem (2.5)—(2.6) such
that p belongs to H*(Q) is a solution of problem (2.1) (in the distribution sense).
Conversely, any solution (u,p) of problem (2.1) which belongs to C*(Q)? x C*(Q) and
also to CO(Q)? x C°(Q) is a solution of the variational problem (2.5)—(2.6).

Proof. The third and fourth lines in (2.1) are obviously equivalent to (2.5). On
the other hand, taking ¢ equal to divw in (2.6) yields the second line in (2.1). Finally,
we recall that, by integration by parts and for a function v in D(Q)? N X (note that
such a function has its trace v X n equal to zero on all the boundary 02 and that a
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weak regularity of p is needed for the last line),
a(u,v) = Z//Q curl(curl u)(x) - v(x)dex,
Nwwo) = [ (- V) @) v@) iz [l n))dn
bv.p) = [ v(e) - gradp(a) o — (.0,

where 7 stands for the tangential coordinate(s) on 9€2. Then, thanks to the identity
(2.7) —Awu = curl(curlu) — grad (divu),

taking v in D(2)? gives the first equation in (2.1). The fifth equation then follows by
taking v in D(Q2)¢ N X and looking at the terms on I'y issued from (2.6).

The converse property is proved by the same arguments, together with the regu-
larity of (u,p).

We now prove the existence of a solution for problem (2.5)—(2.6).

2.2. The Stokes problem. In the case ¢ = 0 of the Stokes problem, problem
(2.5)-(2.6) is of standard saddle-point type. So, its well-posedness requires two inf-
sup conditions. The first one is an extension of the usual inf-sup condition for the
Stokes problem to our boundary conditions; its proof can be found in [5, Proof of
Thm. 2.1] or [6, Lem. 3.1]. The space X is now provided with the graph norm of
H(div; Q) N H(curl; ), i.e.,

[N

@8 ol = (ol + ol + leurlol?, s )

which is smaller than || - || g1 ()
LEMMA 2.3. There exists a constant B > 0 such that the following inf-sup condi-
tion holds:

b(v,
(2.9) vae 2@,  sup 229 > Bl
vex 0llx

The next lemma requires the kernel
V ={v eX; Vqge L*(Q), b(v,q) = 0},
which is obviously characterized by
V={veX divv=0inQ}.

LEMMA 2.4. There exists a constant o« > 0 such that the following ellipticity
property holds:

(2.10) Yv €V, a(v,v) > a|v|%.

Proof. Due to the definition of V, we have for all v in V that

otv.0) = ((Jeurlof?, s + vl ).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/17/16 to 150.214.182.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

1260 C. BERNARDI, T. CHACON REBOLLO, AND D. YAKOUBI

Since the boundary of €2 is connected, this last quantity is bounded from below by
cllv]| (see [2, Cor. 3.19]), whence the desired ellipticity property.

We are now in a position to prove the first existence result. For any data u; on
I’y and us on I's, we denote by C(ui,us) the function equal to u; on I'y and to us
on I's.

THEOREM 2.5. Assume that the data f, wy, us, and pa satisfy

(2.11) FeXe  Clui,u) € HH OO,  pye He (D).

Then, problem (2.5)~(2.6) for ¢ = 0 has a unique solution (u,p). Moreover, this
solution satisfies

212) e+ Il < ¢ (1l + 100w, 3 g+l s )
00

Proof. Let w be a function in H'(Q)? such that its trace on dQ coincides with
C(u1,u2) and which, moreover, satisfies

||’LUHH1(Q)d <c Hc(uhu?)HH%(aQ)d'

Then, the pair (ug, p), with ug = w — w, must be found in X x L?(Q) and satisfy

(2.13) Vv eX, a(ug,v)+0b(v,p)= /Qf(w) cv(x)de — (p2,v - n)p, — a(w,v),
Vg € L*(Q),  bluo,q) = ~b(w,q).

The well-posedness of this last problem follows from Lemmas 2.3 and 2.4; see [19,
Chap. I, Cor. 4.1]. This yields the existence and uniqueness of a solution to problem
(2.5)-(2.6), together with estimate (2.12). .

Remark 2.6. All this study makes use of data pp in H3(I'2) for generality.
However, it follows from [15] that ps can often be less regular, for instance in L?(T')
when 2 is a polygon or a polyhedron.

2.3. The Navier—Stokes equations. In the case ¢ = 1 of the Navier—Stokes
equations, we decide to work with homogeneous boundary conditions on the velocity,
namely

(2.14) u=0onIl and uxn=0onTy,

in order to avoid the technical difficulties due to the Hopf lemma; see [19, Chap. IV,
Lem. 2.3], for instance. Proving the existence of a solution relies on Brouwer’s fixed
point theorem and requires the next lemma.

LEMMA 2.7. The spaces X and V are separable.

Proof. The space D(Q)? is dense in H(div; Q) N H(curl; Q) (see [2, Prop. 2.3]),
so this space is separable. Since it is a Banach space and X is a closed subspace of it
(this is due to the continuity of the trace), X is also separable; see [11, Prop. 3.22],
for instance. Finally, since V is a closed subspace of X, it is once more separable.

The main result of this section requires a further assumption.

ASSUMPTION 2.8. The space X is compactly imbedded in L*(2)?.

It follows from Remark 2.1 that this assumption always holds when I'5 is of class
CHt or convex, and also from [15] that it holds when  is a two-dimensional polygon.
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However, Assumption 2.8 seems to be less restrictive as far as the geometry of the
domain is concerned.
THEOREM 2.9. Assume that the data f and ps satisfy

(2.15) FELXQ)Y,  poe HEYTY).

Then, if Assumption 2.8 holds, problem (2.6)—(2.14) for e =1 has at least a solution
(u,p). Moreover, this solution satisfies

C
(2.16) e < £ (1 cas +onl )

o (T2

2
C/
<
Ipllz2) < c <||f|L2(Q)d + |p2|HO%O(F2)> + 2 (||f||L2(Q)d + |p2”H§,(r2)) )

where both constants ¢ and ¢’ are independent of v.

Proof. We proceed in several steps.

Step 1. We first note that, if (u,p) is a solution of problem (2.6)—(2.14), its part
u belongs to V and satisfies

(2.17) Yo eV, a(u,v)+ N(u,u,v)= /Q f(x) -v(x)dx — (p2,v - n)r,,

where the new trilinear form N (-, -,-) is defined by

N(w,u,v) = /Q(curlu x w)(xz) - v(x)de.

We first investigate the existence of a solution for this problem.
Step 2. Let us introduce the mapping @, defined from V into its dual space by

(P(u),v) = a(u,v) —|—N(u,u,v) —/Qf(a:) cv(x)dx + (p2,v - n)r,.

By noting that N(u, u, u) is zero, we derive by the same arguments as in Lemma 2.4

(@(u), u) > alluli — c(f,p2) llufx,

where the constant c¢(f,p2) = [|fllr2@) + ||p2||H%(F2) depends only on the data.
Thus, (®(u), u) is nonnegative on the sphere with radius % (note that o = cv).

Step 3. It follows from Lemma 2.7 that there exists an increasing sequence of
finite-dimensional subspaces V,, of V such that U, V,, is dense in V. For any fixed
n, the function & satisfies the same properties as previously on V,. So applying
Brouwer’s fixed point theorem (see [19, Chap. IV, Cor. 1.1], for instance) yields that

there exists a u,, in V,, which satisfies
v'Un S Vna <q)(un)7vn> = 0

Moreover, this u,, belongs to the ball with radius efop2)

Step 4. Since the sequence (u,,), is bounded in X, Assumption 2.8 implies that
there exists a subsequence, still denoted by (u,, ), for simplicity, which converges to a
function u of V weakly in X and strongly in L*(©2)?. Moreover, due to the weak lower
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semicontinuity of the norm, the limit w still belongs to the ball with radius %

and hence satisfies the first part of estimate (2.16).
Step 5. For a fixed m < n, since the sequence (V,,),, is increasing, each function
u, satisfies

Yo, € Vi,  (D(uy),v,) =0.

Then, passing to the limit on n follows from the previous convergence properties. Due
to the density of U,,,V,,, into V| it is thus readily checked that the function u satisfies

VoeV, (®(u),v)=0,

and hence is a solution of problem (2.17).
Step 6. From the previous lines and thanks to the definition of V, the quantity

/ flx x)dx — (p2,v - n)r, —a(u,v) — N(u,u,v)

vanishes for all v in V. So, it follows from Lemma 2.3 (see [19, Chap. I, Lem. 4.1])
that there exists a p in L?() such that

Vv eX, bv,p) / f(z x)dx — (p2,v - n)r, —a(u,v) — N(u,u,v).

Thus, the pair (u,p) is a solution of problem (2.6)—(2.14).
Step 7. It also follows from Lemma 2.3 that

fQ x)dx — (p2,v - n)r, —alu,v) — N(u,u,v).

[[0]lx

Ipllr2@) < B!

Thanks to the estimate on u, the quantity p satisfies the second part of (2.16).

It is readily checked that any solution (w,p) of problem (2.6)—(2.14) satisfies
estimate (2.16). This yields the uniqueness of the solution, but unfortunately with a
rather restrictive condition on the data.

THEOREM 2.10. Assume that the data f and ps satisfy (2.15) and, moreover,

I#lloys + el y

(2.18) <c

V2

for an appropriate constant c¢. Then, if Assumption 2.8 holds, problem (2.6)—(2.14)
for e =1 has at most a solution (u,p).

Proof. Let (u1,p1) and (usg,p2) be two solutions of (2.6)—(2.14). Then, u; and
u9 belong to V, and their difference satisfies

Vo eV, a(ur —us,v) = N(uz,uz,v) — N(ui, u,v).

Next, taking v equal to w; — up and noting that N(w,v,v) vanishes for all v, we
obtain

v ||curl (u; — U2)||2 ad-1y = N(ug — U, U2, U1 — U2).
L2(Q)” 2

We recall that

vweV, lwlx <clleurlw|?® 4.,
L2(Q
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so that using estimate (2.16) for us yields

(g —us)|? <= (g —us)|? Iy
ot ()2, s < 5 (Ufllays + ol ) ot (=), e

2 00
Thus, when (2.18) is satisfied with a small enough constant ¢, curl (u; —u2) vanishes.
It thus follows from [2, Cor. 3.19] that, since both u; and usy are divergence-free, they
coincide.
In this case, the functions p; and po satisfy

Yo eX, blv,pr —p2) =0,

so that, owing to Lemma 2.3, they coincide. This concludes the proof.

2.4. A final remark. We consider once more problem (2.5)—(2.6) or (2.6)—(2.14)
but now with the form a(-,-) replaced by

ax(u,v) = 1//Q ((curlu)(x) - curlv(z) + Adivu(x)divo(x)) d.

It is easy to check that, for a positive parameter A, this modification does not change
the problems at all and that all the previous results are still valid with the modified
problems.

The main difference between the forms a(-,-) and ay(-,-) is that this new form
satisfies the next stronger ellipticity property. The interest of this new property for
the discretization is obvious: It leads to the stabilization of the divergence term.

LeMMA 2.11. For any positive parameter X\ there exists a constant o > 0 such
that the following ellipticity property holds:

(2.19) Vo € X, ax(v,v) > a min{l,\} |v|Z.

3. Discretization of the Stokes problem. From now on, we assume that {2
is a polygon or a polyhedron. We introduce a regular family of triangulations of Q
(by triangles or tetrahedra), in the usual sense that, for each h, the following hold:
e () is the union of all elements of 7j,.
e The intersection of two different elements of 7y, if not empty, is a vertex or
a whole edge or a whole face of both of them.
e The ratio of the diameter hx of any element K of 7; to the diameter of
its inscribed circle or sphere is smaller than a constant independent of h.
As usual, h stands for the maximum of the diameters hyx. We make the
further nonrestrictive assumption that I'; and T's are the union of whole
edges (d = 2) or faces (d = 3) of elements of Tj,. From now on, ¢, ¢, ...
stand for generic constants that can vary from line to line but are always
independent of h.

3.1. The discrete problem and its well-posedness. Setting
Y, = {vh € HY(Q); VK € T, valx € PQ(K)},

we define the space of discrete velocities

X, =Y¢NnX
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and the space of discrete pressures
My, = {an € H'(Q); YK € Ty, anlic € Pa(K) }.

Even if the following analysis is valid for general mixed finite elements, we have chosen
this one, called the Taylor-Hood element (see [21]), which is widely used in the case
of standard boundary conditions; see [19, Chap. II, sect. 4.2] for its main properties.
We denote by 7Z; the standard Lagrange interpolation operator with values in Yy,.

In view of Lemma 2.11, we have decided to work with A = 1, i.e., with the form
a1(-,-). The discrete problem is then constructed by the Galerkin method; it reads:
Find (up,pr) in Yﬁ x M, such that

(3.1) wp, = Zpug onI'yg and up X n =ZTypus Xxn only,

Yo € Xp, ar(wn,vn) + b(vn, pr) = / f(z) - vn(x) dx — (p2, v - M)1,,
Q
Vg € Mp,  b(un,qn) =0.

(3.2)

Proving its well-posedness relies on the same arguments as for the continuous problem;
however, a further assumption is required for the first inf-sup condition.

ASSUMPTION 3.1. At most an edge (d = 2) or a face (d = 3) of an element of
Tr is contained in I'y.

This assumption is not restrictive at all since it is always true for h small enough
and leads to the following lemma.

LEMMA 3.2. If Assumption 3.1 holds, there exists a constant . > 0 such that
the following inf-sup condition holds:

b(vp,
(3.3) Vg, € My, sup M > B ||qh||L2(Q).
wiex,  [vnllx

Proof. For any g, in M, we use the expansion

Next, we proceed in three steps.

Step 1. Since ¢ has a null integral on Q, the standard inf-sup condition (see [19,
Chap. II, Thm. 4.2], for instance) implies that there exists a function v in Y{ NHE (Q)4,
hence in X, such that
(3.4) divo = —¢ and |[|9|x < c||qllz2(q)-

Step 2. Since q is a constant, we observe that, for any v in X,
bo.m) = -7 [ (v ds.
I

We introduce a function ¢ in D(Q UT';) such that frg ©(s)ds is a positive constant
co. And we note that

/ Tho(s) ds > / o(s)ds — o — Tl sy > co — ch?,
s

s
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so that this integral is larger than % for h small enough (this requires Assumption

3.1). Now, we consider a regular extension n* of n to Q, and we take T equal to
—GZn(pn*), which gives

— _ Co_ Co _ — _
(3.5) b(v,q) > qu = m”(lﬂiz(g) and  [[?]lx < ¢ [[@]lz2(o)-

Step 3. We conclude by using the argument due to Boland and Nicolaides [10].
We take vy, equal to © + po for a positive constant p and, noting that b(9,7q) is zero,
we derive from (3.4) and (3.5) that

b('vha Qh) = b(i;a (D + /‘b(ﬁv 6) + Mb(ia (j)

- HCo — ~ _
> 13200 + Sy gy 3200 — €1 2000 200

Using a Young’s inequality thus yields

1. Co A
b(vn, an) 2 5 lldlizz () + 1 (m = ) l@llzz ),

whence, by taking p equal to W(;S(m and using the orthogonality of ¢ and g in
L?(2), we obtain

b(vh,qn) > ¢ llanll7z (o)
On the other hand, we have
[vnllx < [19[lx + p@llx < ¢"llanllr2(q)-

This yields the desired inf-sup condition.

From now on, we suppose that Assumption 3.1 holds. On the other hand, since
X}, is imbedded in X, the ellipticity of the form a;(-,-) is a direct consequence of
Lemma 2.11. So, we now state the well-posedness result.

r{.;HEOREM 3.3. Assume that the data f, uy, us, and ps satisfy, for a real number
o> %1,

(3.6) FEL2(Q),  Clui,uz) € HO(AQ),  py e HE(Ts).

Then, problem (3.1)~(3.2) has a unique solution (un,pr). Moreover, this solution
satisfies

(3.7) |uh||x+|ph|m<m3c(nfm(md+|c<u1,u2>|Ha<amd+||p2|% )
HOO(FQ)

Proof. The lifting w of the trace C(u1, u2) introduced in the proof of Theorem 2.5
can now be chosen in H 7+3(Q), at least for o small enough, and hence is continuous
on ). Thus standard arguments yield

1 Zhw|l g1 )a < cl|Clur, u2)l|gea0)a-

Writing the problem satisfied by (uj, — Zpw, pp,) and combining [19, Chap. I, Cor. 4.1]
with Lemmas 2.11 and 3.2 implies that problem (3.1)-(3.2) has a unique solution.
Then estimate (3.7) obviously follows.
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3.2. A priori analysis. Using the same lifting w as previously, we observe that
the pair (wop, pr), with wop = up — Zpw, is a solution in X, x M, of

Vo, € Xy, ai(uon, vn) + b(vn, pn)
(3.8) = / f(x) - vp(x)de — (p2, vy - n)r, — a1 (Zpw, vy),
Q
Van € My,  b(uon, qn) = —b(Zhw, qn).

On the other hand, the pair (ug, po), with ug = u — w, is a solution of the analogous
continuous problem (2.13) with a(-,-) replaced by a1(-,-). So standard arguments
(see [19, Chap. II, Thm. 1.1]), relying once more on Lemmas 2.11 and 3.2, yield the
following version of the Strang lemma.

LEMMA 3.4. The following error estimate holds between the pairs (ug,p) and
(won, pn):
(3.9)

[wo — wonllx + [P — pallL2(0)
<c ( inf JJup—wvpllx+ inf |p-— qh|L2(Q)) +d |Jw — Thwlx.
qn €My

vy €Xp
By using the triangle inequality
lw = wunlx < [Juo — wonl[x + [lw — Zhwllx,

and the approximation properties of the spaces X; and My, together with that of Zp,
(see [9, Chap. IX], for instance), we can now state the a priori estimate.

THEOREM 3.5. Assume that the data f, w1, ua, and pa satisfy (3.6) for a real
number o, 45t < o < 3, and that the solution (u,p) of problem (2.5)~(2.6) fore =0
belongs to H*TH(Q) x H*(Q) for a real number s, 0 < s < 2. Then, the following a
priori error estimate holds between this solution and the solution (up,pp) of problem
(3.1)(3.2):

lw —wunllx + |lp — pullz2(o)

3.10 1
(3.10) < ch* (Jull mossigm + 10l o) + ¢ B [Cuur, wa) s (o

Clearly, this estimate is fully optimal and, when combined with (3.7), proves the
convergence of the discretization for all solutions (u,p). On the other hand, for a
smooth solution (u,p), the error behaves like h2, so that the method is of order 2.

3.3. A posteriori analysis. This analysis requires some further notation: For
each element K of Ty,
o &x stands for the set of edges (d = 2) or faces (d = 3) of K which do not lie
on 0%);
&2 stands for the set of edges (d = 2) or faces (d = 3) of K which lie on T'y;
e wg denotes the union of elements of 7, that share at least an edge (d = 2)
or a face (d = 3) with K;
e for each e in £k, [-]. denotes the jump through e (making its sign precise is
not necessary in what follows);
e for each e in Ex or £%, he stands for the length (d = 2) or diameter (d = 3)
of e.
We now intend to prove an a posteriori error estimate between the pairs (u,p)
and (up, pn), solutions of problems (2.5)—(2.6) and (3.1)—(3.2), respectively. The first
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residual equation reads, for all v in X and vy, in Xj,

ai(u —up,v) +b(v,p—pp) = / f(x) (v—op)(x)dx — (p2, (v —vp) - )1,
Q
— a1 (up,v —vp) — b(v — vy, pp).
When integrating by parts on each element K of 7, this gives

ar(u — up,v) + b(v,p — pr)

= Z </ (f — veurl(curluy,) + vgrad(divuy,) — grad py) (z) - (v — vi)(x) da
KeTn K

+ % S [ vleurlunlo(r) - (v — v1) x n(r) — [divao(r) (v — vy) - n(7) dr

e€Ex v €

(3.11) + Z /(pg —vdivuy, — pp)(7)(v —vp) - n(T) d’T).

ecEZ ¢

Fortunately, the second residual equation is much simpler. It reads, for any ¢ in
L*(Q),

(3.12) b(u — un, q) = —b(un, q).

To go further, we introduce an approximation f, of f in M‘,il, for instance, and an
approximation py;, of pa which is continuous and affine on each edge (d = 2) or face
(d = 3) contained in I';. Thanks to (3.11) and (3.12), we are now in a position to
define the error indicators. They read, for each K in Ty,

ni = hi || f), — veurl(curlup) — grad ppL2(xye + [|diven || 220

1 1
(3.13) + Z héH[curluh]eHLQ(e)% + Z heszgh _thLQ(G)'

e€€k ecE%

These indicators are very easy to compute since they involve only polynomials of low
degree.

Remark 3.6. The term due to the jump of curlwuy, in the indicator ng defined
by (3.13) may be simplified to

1/2
Z he ||[anuht]eHL2(e)dgd2—1),
eclk

where 0,, denotes the normal derivative and wy; are the tangential components of the
velocity up, on e. This occurs because in (3.11) we have

[curlup x n). = [(curluy X n)i)e = [Opunr]e on e,

where the second equality holds because the tangential derivatives do not jump across
e. Similarly the term f;, —vcurl(curluy) — grad p;, can be replaced by f, +vAwuy, —
grad pp. With these modifications, it may be easier to see that these indicators are
of residual type (which means that, when suppressing the indices h, they vanish).
However, the expression for the curl term in (3.13) leads to an easier computation in
practice.
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We are now in a position to state the a posteriori error estimate. For this, we
introduce a neighborhood V of the re-entrant corners and edges in I'y and set

1 if K CV
- 2 ! ,
(3.14) 5K { 0 otherwise.

THEOREM 3.7. The following a posteriori error estimate holds between the so-
lution (u,p) of problem (2.5)~(2.6) for ¢ = 0 and the solution (up,pp) of problem
(3.1)—(3.2):

-

3
(3.15) Hu—uhHX—i—Hp—thLz(Q) <c < Z h}-{%zqﬁ() + e,
KeTy,
where the quantity €, is defined by
(3.16)
3
en=1_>_ <h%1_sk) If = FallZzxye + > I Ips _p2h|%2(e)>
KeTh ecEZ

+ HC(ul,ug) _Ihc(“h“?)HH%(aQ)d'

Proof. We observe from (3.11) and (3.12) that the pair (w — up,p — pp) is a
solution of problem (2.5)—(2.6) with data equal to the right-hand side R of (3.11), the
quantity C(ui,us2) — ZpC(u1, uz), and the right-hand side of (3.12). Thus, estimate
(3.15) will follow by applying estimate (2.12) to this new problem. The quantity
C(ui,u2) —ZpC(u1, u2) and the right-hand side of (3.12) are obviously bounded. To
evaluate R, we apply a Cauchy—Schwarz inequality, take v, equal to the image of v
by a Clément-type regularization operator R; with values in Xj,, and recall from [9,
sect. IX.3] or [33, Prop. 3.33] that, for any s > 1 and for any e in £k or in £%,

d

[v = Ravl[L2(rye < chie 10l s (i) v = Ruvll2(eye < che 2 (|0l o (ue)-

To conclude, we note from Remark 2.1 that functions v in X belong to H(Q\ V)
but only to H 2 (V), and we get rid of the further terms involving div u;, by using the
inverse inequalities [9, Chap. VII, Prop. 4.1], [33, Prop. 3.37],
h}( ||grad(div uh)||L2(K)d <c Hle uh||L2(K),
(3.17) PR .
hé ||div ’u,hHLz(@) <c Hle’u,h”Lz(K).
All this yields the desired estimate.

Estimate (3.15) is optimal when the domain € is convex in a neighborhood of T's.
Moreover, the lack of optimality in the general case is local, limited to )V, and exactly
the same was noted in [8, Prop. 5.3] for another type of mixed boundary conditions.
We now prove a local upper bound for the indicators. For each K in 7Ty, we denote
by || - lx(x) the restriction of the norm || - ||x to K, with obvious extension to wx-.

PROPOSITION 3.8. Each indicator ni, K € Ty, defined in (3.13) satisfies

(3.18) nx < c(l|u—unllxwg) + 1P = PrllLzwy) +€K),

where the quantity ex is defined by

1
(3.19) ex = hxllf — fall 2y + Z hé |lp2 — panllL2(e)-

ecEZ
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Proof. Since the arguments are fully standard, we only give an abridged version
of the proof. We successively bound the four terms in 7x.
Step 1. We set

I (f1, — veurl(curluy,) + vgrad(divu,) — grad py ) ¥k on K,
K= 0 elsewhere,

where ¥ is the bubble function on K (equal to the product of the barycentric co-
ordinates associated with the vertices of K). Next, we take v equal to vk, and vy,
equal to zero in (3.11). Standard inverse inequalities (see [33, Prop. 3.37]) lead to

hi || f), — veurl(curluy) + vgrad(divuy) — grad pp| 2 (ke

<c(lu—unllxx) + P = pullezx) + bl f = Frll2x)e),
or, equivalently, by using (3.17),
(3.20)

hi || fy, — veurl(curl uy) — grad pp || 2 (k)
<c(lu—wunllxx) + I[P = prllezx) + brllf — FullLzxya) + ¢ [|divun || L2 k) -

Step 2. We set

_ (divup)xk on K,
K= 0 elsewhere,

where y i is the characteristic function of K. Taking ¢ equal to gx in (3.12) gives
(3.21) [divun|zzx) < llu — wnllxx)-

Combining (3.20) and (3.21) gives the estimate for the first two terms in nx.

Step 3. For each edge (d = 2) or face (d = 3) e of K, we consider a lifting operator
L. r that maps polynomials of fixed degree on e vanishing on de into polynomials
vanishing on 0K \ e and is constructed from a fixed lifting operator on the reference
triangle or tetrahedron. If an element e of £ is shared by two elements K and K’,
we set

Le([curluyletpe)  onk € {K,K'},
v, = ’
0 elsewhere,

where 1), is now the bubble function on e. We take v equal to v., and v equal to
zero in (3.11), where ¥, is such that

Ve Xxn=v.,xn and v.-m=0 on e

Standard arguments [33, Prop. 3.37], combined with (3.20) and (3.21), yield

1
hZ H[curluh]eHL2 )

(3.22)
<c(llu = unllxxurry + 1P = prllL2korry + hillf = Frllozgurne)-

Step 4. For each e in €%, we set

| Lex((p2n — pr)nabe) on K,
Ve =
0 elsewhere.
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We finally take v equal to v., and v equal to zero in (3.11), which gives

1
hé |lpan — phllL2ce)

1
< c(llu—wunllxm) + P = prlleze) + bl F = Frllzzxya + hE Ip2 — ponllre(e))-
(3.23)

Owing to the definition (3.19) of ek, estimate (3.18) follows from (3.20) to (3.23).
Estimate (3.18) is fully optimal. Moreover, it is local, which proves the efficiency
of our indicators for mesh adaptivity.

4. Discretization of the Navier—Stokes equations. We use here all the no-
tation of section 3. We write the nonlinear discrete problem. Next, we prove simul-
taneously the existence of a solution and the a priori error estimate by following the
approach due to Brezzi, Rappaz, and Raviart [12]. We conclude by extending the
results of a posteriori analysis to the nonlinear case.

4.1. The discrete problem. As previously, the discrete problem associated
with problem (2.6)-(2.14) (for ¢ = 1) is constructed by the Galerkin method. It
reads: Find (wp,pn) in Xp, x My, such that

Vv, € Xp,  a1(un, vn) + N(wn, un, vr) + b(vn, pn)
(4.1) = / f(x) - vp(x)de — (p2, v, - n)ry,
Q
Van € Mp,  b(un,qn) = 0.
The existence of a solution for this problem can be proved by the same arguments as
in section 2.3. However, we prefer to perform its numerical analysis directly.

4.2. A priori analysis. We now introduce a different notation. Let & denote

the operator which associates with (f,ps) in L2(2)4 x HO%O(FQ) the solution (u,p) of
problem (2.6)—(2.14) with ¢ = 0, namely of the Stokes problem with zero boundary
conditions on the velocity. Then, problem (2.6)—(2.14) with ¢ = 1 can equivalently be
written as

(4.2) F(u,p) = (u,p) = S(g(u),p2) = 0,

where the function g is defined by duality
(4.3) (g(u),v) = /Q f(x) - v(x)de — N(u,u,v).

Similarly, let S;, denote the operator which associates with (f,pa) in L2()? x HO%O(].—‘Q)
the solution (wp, pp) of problem (3.1)—(3.2) with zero boundary conditions u; = us =
0 on the velocity, more precisely of the following problem: Find (wp,pp) in X, x My,
such that

(4.4) Vop € Xy, ai(up,vp) + b(vy,prn) = / f(x) - vp(x)de — (p2,vn - N)r,,
: Q
Vgn € My, b(un,qn) = 0.

Then, problem (4.1) can equivalently be written

(4.5) Fn(un,pn) = (wn,pn) — Sn(g(un),p2) = 0.
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Denoting by Z the space X x L%(Q), we recall from Theorems 3.3 and 3.5 the main
properties of the operators Sy: its stability,

(4.6) [Sh(f,p2)llz < c (||f||L2(Q)d + |p2||H%(F2)) ’

00

and the error estimate, for a smooth enough solution S(f,p2) and s < 2,
(4.7) 1S = Sn)(fsp2)llz < b |S(F, p2)ll o1 ()2 x 1 () -

All of this gives the convergence property, for any (f,p2) in L2(Q)? x HO%O(].—‘Q),

(4.8) lim [[(S = Sh)(f,p2)]|z = 0.

Due to Lemma 3.4, this convergence easily extends to data (f,p2) in X’ X H(J%O(Fz),
where X’ stands for the dual space of X.

We are thus in a position to prove some preliminary results. As usual, they require
a further assumption.

ASSUMPTION 4.1. We consider a solution (w,p) of problem (2.6)—(2.14) with
e = 1,which

(i) belongs to HsT1(Q)4 x H*(Q) for a real number s, 0 < s < 2, and

(ii) is such that DF (u,p) is an isomorphism of Z (where D denotes the differential
operator).

This assumption is much weaker than the uniqueness of the solution established
in Theorem 2.10, since part (ii) only implies the local uniqueness of the solution. We
denote by £(Z) the space of endomorphisms of Z. Owing to properties (4.6)—(4.8),
the proof of the next lemma is fully standard, and so we skip it.

LEMMA 4.2. If Assumptions 2.8 and 4.1 hold, then

(i) there exists an ho > 0 such that, for h < ho, DFy(u,p) is an isomorphism of
Z and the norm of its inverse is bounded independently of h;

(ii) there exist a neighborhood V of (u,p) in Z and a constant A > 0 such that
the mapping DJF}, satisfies the Lipschitz property

(49) V('U,q) ev? HD‘Fh(uap)_D]:h(vvq)Hl:(Z) SA”(U,p)-('D,q)”z,
(iii) the following bound holds,
(4.10) [Fn(u,p)llz < c(u, p) h?,

for a constant c¢(u, p) depending only on the reqularity of (u,p).

Owing to Lemma 4.2, all the assumptions needed for [12, Thm. 1] (see also [19,
Chap. IV, Thm. 3.1]) are satisfied. So applying this theorem leads to the main result
of this section.

THEOREM 4.3. If Assumptions 2.8 and 4.1 hold, there exist an h, > 0 and a
neighborhood V. of (w,p) in Z such that, for h < h,, problem (4.1) has a unique
solution (wp,pr) n Vi. Moreover, the following a priori error estimate is satisfied:

(4.11) lw —wnlx + lp — prllr2) < c(u,p)h®

for a constant c(u,p) depending only on (u,p).
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4.3. A posteriori analysis. The second residual equation (3.12) is the same
as in the linear case, but unfortunately the first residual equation is a little more
complex. After integration by parts on each K, it reads, for all v in X and vy, in X,

(4.12) ai(u —up,v) + N(u,u,v) — N(up, up,v) +b(v,p—pr) = R1 + Ra + R,

where
(4.13)

Ri1 = Z / (f — veurl(curluy,) + vgrad(div uy)
KeT, 'K
— (up - V)uy, — grad pp) () - (v — vp) () de,

Ro=1 3 Y [ vlleurtunl(@) - (v vn) x ()

KET, e€Ex V€
— [divup]e(T) (v — vi) - n(7)) dr,

Z Z / (pz —vdivuy, — pn — %|Uh|2) () (v —vp) -n(r)dr.

KeTh ecE? ¢

R3

This leads to the definition of the error indicators: For each K in 7, with the same
notation as previously,

nix = hg ||f, — veurl(curlup) — (up - V)up, — grad py|| p2(rye + [|div unl|pz(x)

1 1 1 9
(4.14) + > hé ||[Cur1uh]e||L2(e)ﬂ%z + Y hZ|pan—pn — S lunlllzze)-

e€€K ecEZ

Even if the nonlinear terms add polynomials of higher degree, these indicators are
still easy to compute.

In order to apply the theorem due to Pousin and Rappaz [29], we need a further
notation: Let S* denote the operator which associates with (f,x,p2) in L?(Q2)? x

L2(Q) x HO%O(].—‘Q) the solution (u,p) in X x L?(Q2) of the problem

Yo eX, a(u,v)+b(v,p)= /Qf(:n) -v(x)dx — (p2,v - N)r,,
(4.15)

Vg€ IX(Q), blu,g) = /Q (@)q() dz.

(The introduction of this more complex operator is due to the fact that the right-hand
side of (3.12) is not zero.) Then, problem (2.6)—(2.14) with € = 1 can equivalently be
written

(4.16) F(u,p) = (u,p) = §%(g(u),0,p2) = 0.

We are now in a position to prove the a posteriori error estimate.

THEOREM 4.4. For any solution (u,p) of problem (2.6)—(2.14) with ¢ = 1 such
that DF*(wu,p) is an isomorphism of Z, there exists a neighborhood V. of (u,p) in Z
such that the following a posteriori error estimate is satisfied for any solution (wp, pp)
of problem (4.1) in Vix:

2
(4.17) Hu—uhHX—l—Hp—thLz(Q) <c < Z hI_(QSK,r]%(> + e,
KeT;,
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where the parameter sk is defined in (3.14) and the quantity €, in (3.16).

Proof. The same arguments as for Lemma 4.2 imply that DF* is Lipschitz-
continuous in a neighborhood of (u,p). So we apply the theorem due to Pousin
and Rappaz [29] (see also [33, Prop. 5.1]): Any solution of problem (4.1) in this
neighborhood satisfies

lw —wunllx + lp = pallzz) < [ F*(wn, pu)llz,

whence, due to (4.16),
lw —wnllx + P = Pull2(e) < 17" (w,p) = F* (un, pn)llz-

Due to the stability property of &*, estimating the right-hand side of this equation
relies on (4.12) and (3.12) and is performed by the same arguments as were used for
Theorem 3.7. g

To prove the converse estimate, we observe that

N(u,u,v) — N(up,up,v) = N(u— up,u,v) + N(up, u — up,v).

So, when working with bounded w and wuy, proving the next proposition relies on
exactly the same arguments as for Proposition 3.8, now applied to (4.12) and (3.12).

PROPOSITION 4.5. For any solution (up,pp) of problem (4.1) in a neighborhood
of (u,p), each indicator ni, K € Tp, defined in (4.14) satisfies

(4.18) nr < c(lu = unllxws) + 1P — PrllL2wr) +€K),
where the quantity e is defined in (3.19).

5. Numerical experiments. The next computations are performed on the code
due to Hecht and Pironneau, called FreeFem++; see [20]. We start from a coarse
initial mesh and perform adaptivity following the next criterion: The diameter of
each new triangle containing an element K or contained in an element K of the old
triangulation is proportional to hx —L, where 7 is the mean value of the 7x.

We work with the Navier—Stokes equations for the data f = 0. So we use the
following iterative algorithm to treat the nonlinear term: Assuming that the solution
of the time-dependent problem with time-independent data converges to the solution
(up, ppn) of our problem, we solve the time-dependent problem via an implicit Euler
scheme where the nonlinear term is treated in a semiexplicit way. On each mesh,
we iterate this algorithm until its convergence, i.e., until the difference between two
consecutive solutions becomes smaller than a fixed tolerance.

First, we consider the two-dimensional domain made of two pipes; see Figure
1(left). Let Py be the horizontal pipe and P» the vertical one. The boundary I's is
made of the vertical edge of P; (on the left) and of the two horizontal edges of Ps,
while I'; is equal to 9Q \ T's.

We take the viscosity v equal to 0.025. The geometry and the data are similar to
those suggested in [4, sect. 3.4.1]; in particular, the data on the velocity are zero as
in (2.14), and the data on the pressure are a constant on each connected component
of 'y (see Remark 2.6 for the justification of that).

In the first test case, the constants on the two edges of P, are equal, so that,
since the viscosity v is large enough, the flow remains symmetric. More precisely and
with obvious notation, these constants are given by ¢; = 0, co— = co = —2. Figure
1(right) presents a zoom of the final adapted mesh near the re-entrant corners. Figure
2 illustrates the velocity uw, and the pressure pj on this last mesh.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/17/16 to 150.214.182.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

1274 C. BERNARDI, T. CHACON REBOLLO, AND D. YAKOUBI

AR

%

Fia. 1. Left: The domain 2 and its initial mesh. Right: Zoom of the adapted mesh.

F1G. 2. The discrete velocity uy, (left) and pressure pp, (right).

In the second test case, the data are the same, but the constants on the two edges
of Py are rather different, given by ¢; = 0, ca— = —4, coy = —2. Figure 3 presents a
zoom of the final adapted mesh. Figure 4 illustrates the velocity u; and the pressure
pp, for these new values. All these results are in good agreement with [4, Figs. 3.2 and
3.3].

Next, we study the case of a flow behind a spherical obstacle, as illustrated in
Figure 5(left). The viscosity is taken equal to %, and, with I's equal to the union of
the two vertical edges of 0f), the pressure is given equal to 5 in the left edge and to
3 on the right edge. The final adapted mesh is presented in Figure 5(right), and the
corresponding velocity in Figure 6. The existence of the Von Karman vortex street is
undeniable. There also, these results are very similar to those in [4, Fig. 3.4].

We conclude with the case of a three-dimensional channel flow, which is one of
the most popular test problems for the investigation of wall bounded turbulent flows.
This flow is well fitted to testing our pressure boundary conditions for the Navier—
Stokes equations, as it is driven by a pressure jump between the inflow and outflow
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Fic. 3. Zoom of the final adapted mesh.

Fi1G. 4. The discrete velocity uy, (left) and pressure py (right).

boundaries. In the usual formulation of Navier—Stokes equations this pressure jump
is modeled by means of a forcing term.

The characteristic parameter of the turbulent channel flow is the friction Reynolds
number Re, = *£ S where u, = \/v |Onuy| is the turbulent wall-shear velocity (u; de-
notes the tangential velocity at the wall) and d is the channel half-width. We consider
the computational domain Q = (0, L1) x (—4,9) x (0, L3), with § = 1 (wall-normal
direction), Ly = 27 (streamwise direction), and Ls = (4/3)7 (spanwise direction).
The boundary conditions are periodic in both the streamwise and spanwise direc-
tions. The viscosity is ¥ = 1/180. The Reynolds number based on a unit friction
velocity reachable at a steady state is then Re, = 180.

In the standard formulation of Navier—Stokes equations, the flow is driven by a
constant forcing f = (f,,0,0) = (1,0,0), which models an imposed pressure gradient
in the streamwise direction. The specific choice of a unit value for f, aims at obtaining
a unit value for u, in the statistically steady state, subject to the relation u, = /fph
(cf. [18]). This corresponds to a pressure jump poyt — Pin = L1.

We use the projection-based VMS (Variational MultiScale) turbulence model de-
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Fic. 5. The initial (left) and final (right) adapted meshes.

Fic. 6. The discrete velocity wyp,.

scribed in [13, Chap. 11|, which for brevity we do not detail here. In this model
the subgrid flow is modeled by means of Smagorkinsky-like eddy diffusion term with
projection structure. To impose the boundary conditions on the pressure, we just re-
formulate the Navier—Stokes equations as in (2.6) and keep the same subgrid modeling
terms as in the VMS model. We impose no-slip boundary conditions on the upper
and lower walls. We compare second-order statistics as measure of turbulence inten-
sities, for three models: The original VMS method (Method 1) with forcing term, the
present method with Dirichlet pressure boundary conditions (Method 2), both with
32 x 32 x 32 degrees of freedom, and a direct numerical simulation (DNS) of Moser,
Kim, and Mansour [26] with forcing term, obtained with 128 x 128 x 128 degrees of
freedom. Figures 7, 8, and 9 display the normalized (by u,) root-mean-square (r.m.s.)
values of velocity fluctuations in wall coordinates,
yt="Ty,
v

at the upper half-width of the channel. The errors with respect to the DNS simulation
of Methods 1 and 2 are comparable for all three fluctuations. The errors for the
streamwise velocity fluctuations are smaller for Method 1, while those for the crosswise
velocity fluctuations are smaller for Method 2. All these results are in good agreement
with the computations performed by Rubino; see [13, Chap. 11]. We thus obtain
similar results with our formulation imposing pressure jump conditions, as we might
expect.

6. Conclusions. Fluid flows in pipes and channels usually are driven by pressure
jumps between inlet and outlet boundaries. The study of such boundary conditions is
thus of high applied interest. We have performed in this work the a priori and a pos-
teriori error analysis of linear and nonlinear models of fluid flow including these kinds
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Reynolds=180

Forcing Term: (Chacon et al)
BC-Pressure
DNS: (Moser et al)

Normalized r.m.s Ux fluctuations
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y+

F1G. 7. Normalized r.m.s. Uy velocity fluctuations profiles in wall coordinates yt.

Reynolds=180

0.9
" Forcing Term: (Chacon et al)
BC-Pressure ==«
08| DNS: (Moser et al) |
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Normalized r.m.s Uy fluctuations
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FiG. 8. Normalized r.m.s. Uy velocity fluctuations profiles in wall coordinates y™.

Reynolds=180

Forcing Term: (Chacon et al)
-Pressure
DN: (Moser et al)

Normalized r.m.s Uz fluctuations
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0 20 40 60 80 100 120 140 160 180

y+

F1G. 9. Normalized r.m.s. U, welocity fluctuations profiles in wall coordinates y™.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/17/16 to 150.214.182.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

1278 C. BERNARDI, T. CHACON REBOLLO, AND D. YAKOUBI

of conditions for the pressure, which complements several previous works on the same
subject. We have addressed pressure boundary conditions with some smoothness
across boundary corners, in order to be able to give a weak sense to our formula-
tions. The smoothness of the boundary also plays a crucial role in using compactness
arguments to treat the convection term in the Navier—Stokes equations.

We have applied the a posteriori error analysis to building a grid refinement
strategy, which we have tested in some relevant pipe and channel flows. We have
verified the a priori error analysis for smooth functions and tested the convergence
for boundary conditions with low regularity, not covered by our analysis. Our results
are highly satisfying in all cases.

We conclude that our formulation of Navier—Stokes equations with pressure bound-
ary conditions is appropriate for performing an adaptive grid strategy for pressure
boundary conditions with L? regularity on the boundary. We believe that the anal-
ysis of less smooth pressure boundary conditions is possible with a weaker definition
of the solution that allows us to use smoother test functions, maybe by transposition.

Acknowledgment. The authors are very grateful to Samuele Rubino for inter-
esting discussions and comparison of their computations.
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