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Abstract. We consider a system of equations that models the stationary flow of two immiscible
turbulent fluids on adjacent subdomains. The equations are coupled by nonlinear boundary condi-
tions on the interface which is here a fixed given surface. We propose a spectral discretization of
this problem and perform its numerical analysis. The convergence of the method is proven in the
two-dimensional case, together with optimal error estimates.
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1. Introduction. In this paper, we are interested in the numerical analysis of
the spectral discretization of a model for two stationary turbulent fluids coupled by
boundary conditions on the interface:




−div
(
αi(ki)∇ui

)
+ grad pi = f i in Ωi, 1 ≤ i ≤ 2,

divui = 0 in Ωi, 1 ≤ i ≤ 2,

−div
(
γi(ki)∇ki

)
= αi(ki) |∇ui|2 in Ωi, 1 ≤ i ≤ 2,

ui = 0 on Γi, 1 ≤ i ≤ 2,

ki = 0 on Γi, 1 ≤ i ≤ 2,

αi(ki) ∂ni
ui − pi ni + (ui − uj) |ui − uj | = 0 on Γ, 1 ≤ i �= j ≤ 2,

ki = |u1 − u2|2 on Γ, 1 ≤ i ≤ 2,

(1.1)

where each triple (ui, ki, pi) is defined in the domain Ωi, 1 ≤ i ≤ 2. The vector field ui
represents the velocity of a turbulent fluid in Ωi, pi represents its pressure, and ki
represents its turbulent kinetic energy (TKE in what follows). The domains Ωi are
two- or three-dimensional bounded open sets with common interface Γ, while each Γi
stands for ∂Ωi \ Γ.
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NUMERICAL ANALYSIS OF COUPLED TURBULENT FLUIDS 2369

System (1.1) is motivated by the coupling of two turbulent fluids Fi, i = 1 and 2,
which appears in the framework ocean/atmosphere or in the case of two layers of a
stratified fluid (see, e.g., [16, Chaps. 1 and 3] or [18]). Note that, in these situations,
the operator −div

(
αi(ki)∇·) in (1.1) should be replaced by a different one, derived

from the deformation rate tensor [11, sect. 2]. However, this change leads to more
technical proofs, involving additional Korn-type inequalities, and we prefer to avoid
it for simplicity of the presentation. These fluids Fi are coupled through the interface
condition on their common boundary Γ, which is supposed to be fixed. Indeed, we
assume that the so-called “rigid lid hypothesis” holds, which is standard in geophysics
and oceanography. According to this assumption, Γ is a fixed mean interface and in
fact the values of ui, pi, and ki on Γ are mean values of the velocity, pressure, and
TKE. This law characterizes mean momentum exchanges between the fluids (see
[16, Chap. 1] and [1]), and it is derived in a rather different way from standard wall
laws [21] (but the mathematical formulation is rather similar): the turbulent mixed
layer of the two turbulent fluids is modelled by the sixth and seventh lines in (1.1)
which summarize the information related to a realistic interface ocean/atmosphere
(see, e.g., [16, sect. 1.4] for more details about this model). Slightly more realistic
models, obtained, for instance, by adding the convection term ui · ∇ui in the first line

of problem (1.1) and/or the dissipative term − 1
L k

3
2
i (where L represents the mixing

length) in the right-hand side of the third line of this problem, can also be considered.
Since their analysis relies on exactly the same arguments as for problem (1.1), we skip
these further terms for brevity.

The analysis of problem (1.1) is performed in [3] for two- or three-dimensional
domains Ωi which are either convex or of class C 1,1. In that paper, an equivalent vari-
ational formulation of problem (1.1) is written, where the equations for the TKE are
taken in the transposition sense (see [23] and [17, Chap. 2, sect. 6] for the definition
of a solution by tranposition). Indeed, due to the lack of regularity of the right-hand
side in the third line of (1.1) which belongs only to L1(Ωi), a standard formulation
cannot be used here. However, the present formulation by transposition allows one to
derive a priori estimates. Next the existence of a solution is proved. The uniqueness
of smooth solutions is also established under some rather restrictive assumptions on
the parameters and the data, and some regularity properties of the solutions are de-
rived when the domains Ωi are two-dimensional rectangles. Note, moreover, that the
transposition formulation of the equations on the TKE is equivalent to the standard
variational one when the solution is sufficiently smooth. We also refer to [2] for a
slightly different proof of the existence result.

In the present paper, we are interested in the spectral discretization of prob-
lem (1.1), which relies on the approximation by high-degree polynomials. For sim-
plicity, we consider only the key geometry where the domains are rectangles or rectan-
gular parallelepipeds. However, in order to take into account the possible anisotropy
of the flows which can be induced by the large aspect ratios of the domains, we use
different degrees of polynomials with respect to the horizontal and vertical variables.
We propose a discrete problem which, as usual for spectral methods [7, Chap. III],
relies on the variational formulation of the equations for the velocity, the pressure, and
also the TKE: it combines a conforming approximation in these spaces of polynomials
with the use of numerical integration relying on tensorized Gauss–Lobatto formulas.

As standard for nonlinear systems, the numerical analysis of the discrete prob-
lem is performed via the discrete implicit function theorem of Brezzi, Rappaz, and
Raviart [10]. As for the continuous problem, the main difficulty is due to the lack of
regularity of the right-hand sides in the discrete TKE equations, and, as far as we
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2370 BERNARDI, CHACÓN REBOLLO, LEWANDOWSKI, MURAT

know, the numerical analysis of problems with data in L1 has been performed only in
a few works (see [14], [13], and [12]). Thanks to the Brezzi–Rappaz–Raviart theory, in
the two-dimensional case, we derive the existence of a solution of the discrete problem
in a neighborhood of a nonsingular exact solution under some reasonable assumptions
on its regularity. We also prove the convergence of the method, together with optimal
error estimates. The same properties hold in the three-dimensional case; however, we
think that the assumptions that are needed to prove them are no longer reasonable.
A different analysis, leading to weaker convergence results, is under consideration.

To conclude, we propose an algorithm for solving the discrete problem. Its con-
vergence is currently checked via numerical experiments and is likely at least for small
variations of the functions αi and γi.

The numerical analysis of the finite element discretization of system (1.1) is under
consideration, and its convergence seems to be likely in the two- and three-dimensional
cases under realistic assumptions.

An outline of the paper is as follows.
• In section 2, we recall from [3] the variational formulation and the main prop-

erties of problem (1.1). We also write a different formulation in view of the discretiza-
tion.

• In section 3, we describe the choice of the approximation spaces and the discrete
problem. We also write a different and equivalent formulation of this problem, which
is needed for its analysis.

• Section 4 is devoted to the numerical analysis of the discrete linear Laplace
and Stokes problems with variable coefficients that are involved in the discretization.

• In section 5, we perform the numerical analysis of the coupled system. We
prove the existence of a solution and derive error estimates.

• In section 6, we propose some conclusions and present a numerical algorithm
for solving the discrete problem in the two-dimensional case.

2. Main properties of the continuous problem. In what follows, Ω1 and Ω2

stand for disjoint bounded domains in R
d, d = 2 or 3, which are either convex or of

class C 1,1. The generic point in R
2 (resp., in R

3) is denoted by x = (x, z) (resp.,
x = (x, y, z)). We assume for simplicity that the interface Γ = ∂Ω1 ∩ ∂Ω2 coincides
with the intersection of both Ω1 and Ω2 with the hyperplane z = 0, while Ω1 and Ω2

are contained in the half-spaces z > 0 and z < 0, respectively. We denote by Γi the
part of the boundary ∂Ωi\Γ. It must be noted that, in a number of practical situations,
the vertical heights of the Ωi are much smaller than their horizontal diameters.

Throughout the paper, we assume that the functions αi and γi, 1 ≤ i ≤ 2,
are continuous and bounded on R, and are continuously differentiable with bounded
derivatives. Moreover, we assume that there exists a positive constant ν such that,
for 1 ≤ i ≤ 2,

∀k ∈ R, αi(k) ≥ ν and γi(k) ≥ ν.(2.1)

We now write a variational formulation of problem (1.1). Next we recall its
properties. Finally, we write another formulation of it that relies on the introduction
of the Stokes and Laplace operators.

The variational formulation. Throughout the paper, we use the spaces Lp(Ωi),
1 ≤ p ≤ ∞, and the Sobolev spaces Hs(Ωi) and Hs

0(Ωi) for any real number s, pro-
vided with the standard norm ‖ · ‖Hs(Ωi) and seminorm | · |Hs(Ωi), together with

their analogues on Γ. We also need the special space H
1
2
00(Γ), defined, e.g., in

[17, Chap. 1, Thm. 11.7].
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NUMERICAL ANALYSIS OF COUPLED TURBULENT FLUIDS 2371

For 1 ≤ i ≤ 2, we introduce the spaces

Xi =
{
vi ∈ H1(Ωi)

d; vi = 0 on Γi
}
.(2.2)

For reasons explained in [3, sect. 2], we also define the functions Gi, 1 ≤ i ≤ 2, by

Gi(k) =

∫ k

0

γi(κ) dκ.(2.3)

Problem (1.1) can be written (see [2] and [3]) as the following variational system
of two coupled problems:

Find (ui, pi) in Xi×L2(Ωi), 1 ≤ i ≤ 2, such that, for 1 ≤ i �= j ≤ 2,

∀vi ∈ Xi,

∫
Ωi

αi(ki)∇ui : ∇vi dx−
∫

Ωi

pi(div vi) dx

+

∫
Γ

|ui − uj | (ui − uj) · vi dτ =

∫
Ωi

f i · vi dx,

∀qi ∈ L2(Ωi), −
∫

Ωi

qi(divui) dx = 0;

(2.4)

Find ki in L2(Ωi), 1 ≤ i ≤ 2, such that, for 1 ≤ i ≤ 2,

∀ϕi ∈ H2(Ωi) ∩H1
0 (Ωi),

−
∫

Ωi

Gi(ki)∆ϕi dx = −
∫

Γ

Gi(|u1 − u2|2) ∂niϕi dτ

+

∫
Ωi

αi(ki) |∇ui|2 ϕi dx.

(2.5)

Note that the equations for the velocities and the pressure are of standard varia-
tional type and involve the bilinear forms, for 1 ≤ i ≤ 2,

ai(ti;ui,vi) =

∫
Ωi

αi(ti)∇ui : ∇vi dx, bi(vi, qi) = −
∫

Ωi

qi(div vi) dx.(2.6)

However, the equation on the TKE is formulated in the transposition sense of Stam-
pacchia [23] and of Lions and Magenes [17, Chap. 2, sect. 6].

As standard for the Stokes problem, we consider the kernel

Vi =
{
vi ∈ Xi; div vi = 0 in Ωi

}
,

and we observe that, for each solution (ui, pi) of problem (2.4), the velocity ui is a
solution of the following problem:

Find ui in Vi, 1 ≤ i ≤ 2, such that, for 1 ≤ i �= j ≤ 2,

∀vi ∈ Vi,

∫
Ωi

αi(ki)∇ui : ∇vi dx

+

∫
Γ

|ui − uj | (ui − uj) · vi dτ =

∫
Ωi

f i · vi dx.
(2.7)

Conversely, we recall from [3, Lem. 3.1] that, for 1 ≤ i ≤ 2, there exists a positive
constant βi such that the following inf-sup condition holds:

∀qi ∈ L2(Ωi), sup
vi∈Xi

bi(vi, qi)

‖vi‖H1(Ωi)d
≥ βi ‖qi‖L2(Ωi).(2.8)
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2372 BERNARDI, CHACÓN REBOLLO, LEWANDOWSKI, MURAT

This yields, for any solution ui of problem (2.7), the existence of a unique function pi
in L2(Ωi) such that the pair (ui, pi) is a solution of problem (2.4). So, for the next
results, we work with the simpler system (2.5)–(2.7).

Main properties. We first recall from [3, Lems. 3.3 and 4.2] the following a priori
estimates: for any f i in L2(Ωi)

d, 1 ≤ i ≤ 2, every solution (u1,u2) of problem (2.7)
satisfies

‖u1‖H1(Ω1)d + ‖u2‖H1(Ω2)d ≤ c

ν

(‖f1‖L2(Ω1)d + ‖f2‖L2(Ω2)d
)
,(2.9)

and, for any real number s, 0 ≤ s < 1
2 , and for 1 ≤ i ≤ 2, every solution !i of

problem (2.5) satisfies

‖!i‖Hs(Ωi) ≤ cs
(‖u1‖2

H1(Ω1)d
+ ‖u2‖2

H1(Ω2)d

)
.(2.10)

The constants c and cs depend on the geometry of Ω, on ν, and on the maximal value
of the αi and γi; moreover, the constant cs depends on s.

Using these estimates, an existence result is proved in [3, Cor. 5.3]. We only state
it.

Theorem 2.1. For any f i in L2(Ωi)
d, 1 ≤ i ≤ 2, system (2.4)–(2.5) has a

solution (Ũ1, Ũ2) with each Ũi = (ui, pi, ki) in Xi ×L2(Ωi)×L2(Ωi). Moreover, each
function ki, i = 1 and 2, is nonnegative and belongs to Hs(Ωi) for all s < 1

2 .
In contrast, the uniqueness result in [3] (see also [11] for a similar result) is rather

disappointing. It states that, if system (2.4)–(2.5) admits a solution (ui, pi, ki)1≤i≤2

such that each ui belongs to W 1,p(Ωi)
d for some p > 2d, and if its norm in this space

is small enough with respect to the relative variation of the αi, then this solution
(ui, pi, ki)1≤i≤2 is unique. So our idea is to give up making any uniqueness assumption
for the analysis of the discretization.

Finally, let us recall the regularity property of the solution which is proved in
[3, Thm. 7.5] when the domains Ω1 and Ω2 are two-dimensional rectangles: let (Ũ1, Ũ2)
be any solution of system (2.4)–(2.5), with Ũi = (ui, pi, ki), such that ui, i = 1 and 2,
belong to Hs−(Ωi)

2 for some s− > 1; then, this solution satisfies

Ũi ∈ Hs(Ωi)
d ×Hs−1(Ωi)×Hs(Ωi), i = 1 and 2,

for all s ≤ s0 � 1.5946, where the value of s0 is derived from [20, Cor. 4.2]. So the
following assumption seems reasonable, especially in dimension d = 2.

Hypothesis 2.2. System (2.4) and (2.5) admits a solution (Ũ∗
1 , Ũ

∗
2 ) such that each

Ũ∗
i , 1 ≤ i ≤ 2, belongs to Hs∗(Ωi)

d ×Hs∗−1(Ωi)×Hs∗(Ωi) for some s∗ > d
2 .

Remark 2.3. Assume that the functions ui, i = 1 and 2, belong to Hs(Ωi)
d, for

some s > d
2 . If a solution ki of problem (2.5) belongs to H1(Ωi), then it satisfies the

more standard formulation of this problem:
Find ki in H1(Ωi), 1 ≤ i ≤ 2, with

ki = 0 on Γi and ki = |u1 − u2|2 on Γ,

such that, for 1 ≤ i ≤ 2,

∀ϕi ∈ H1
0 (Ωi), ci(ki; ki, ϕi) =

∫
Ωi

αi(ki) |∇ui|2 ϕi dx,(2.11)

where the bilinear form ci(ti; ·, ·) is defined by

ci(ti; !i, ϕi) =

∫
Ωi

γi(ti)∇!i · ∇ϕi dx.(2.12)
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NUMERICAL ANALYSIS OF COUPLED TURBULENT FLUIDS 2373

The discretization below relies on this last formulation. However, for technical reasons,
we consider in what follows its extension to the case where ki is sought for in H1−ε(Ωi)
and ϕi runs through H1+ε(Ωi) for a small positive ε.

Another presentation. For 1 ≤ i ≤ 2, we first introduce a generalized Laplace
operator, which we still denote by Li for simplicity: for a fixed ti in L1(Ωi), the
operator Li(ti) associates with any gi in L1(Ωi) and λi in L2(Γ) the solution ki =
Li(ti)(gi, λi) in Hs(Ωi), s < 1

2 , defined by transposition, of the problem




−div
(
γi(ti)∇ki

)
= gi in Ωi,

ki = 0 on Γi,

ki = λi on Γ, 1 ≤ i ≤ 2.

(2.13)

The existence and uniqueness of this solution are checked for instance in [3, sect. 4].
Similarly, we introduce the Stokes operator Si: for a fixed ti in L1(Ωi), the operator
Si(ti) associates with any gi in the dual space of Xi and λi in the dual space of

H
1
2
00(Γ) the solution ui = Si(ti)(gi,λi) in Vi of the Stokes problem




−div
(
αi(ti)∇ui

)
+ grad pi = gi in Ωi,

divui = 0 in Ωi,

ui = 0 on Γi,

αi(ti) ∂niui − pi ni = λi on Γ.

(2.14)

Next it is readily checked that problem (1.1) can be written as




u1

k1

u2

k2


+




S1(k1) 0 0 0
0 L1(k1) 0 0
0 0 S2(k2) 0
0 0 0 L2(k2)







(−f1,λ1(u1,u2))
(−g1(k1,u1), λ(u1,u2))

(−f2,λ2(u1,u2))
(−g2(k2,u2), λ(u1,u2))


 = 0,

(2.15)

with

λi(u1,u2) = (ui − uj) |ui − uj |, gi(ki,ui) = αi(ki) |∇ui|2,
λ(u1,u2) = −|u1 − u2|2.

(2.16)

Let T (k1, k2) denote the diagonal matrix made of the operators Si(ki) and Li(ki)
that appears in (2.15), and let G(U1, U2) stand for the last vector in this formula. For
technical reasons, we introduce a small parameter ε, 0 < ε < 1

2 , and we consider the
spaces

Xi = Xi ×H1−ε(Ωi), X = X1 ×X2.(2.17)

Then problem (1.1) is equivalent to finding a solution (U1, U2) in X of the equation(
U1

U2

)
+ T (k1, k2)G(U1, U2) = 0.(2.18)
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2374 BERNARDI, CHACÓN REBOLLO, LEWANDOWSKI, MURAT

In view of [10], we work with a solution (U∗
1 , U

∗
2 ) of (2.18) which satisfies the following

hypothesis, as usual for the discretization of nonlinear problems.
Hypothesis 2.4. The solution (U∗

1 , U
∗
2 ), of system (2.5)–(2.7), with each U∗

i =
(u∗

i , k
∗
i ), is such that the operator

Id +DT (k∗
1 , k

∗
2)G(U∗

1 , U
∗
2 ) + T (k∗

1 , k
∗
2)DG(U∗

1 , U
∗
2 )(2.19)

(where D stands for the differential operator) is an isomorphism of X .
The idea is that the conditions for the global uniqueness of the solution (U∗

1 , U
∗
2 ),

if they exist, are most often too restrictive (see [3, Thm. 6.3]). Hypothesis 2.4 ensures
only the local uniqueness of the solution, which is much weaker. Indeed the analogous
assumption for the standard Navier–Stokes equations is often used for the numerical
analysis of the discretization and is not at all restrictive. Note that Hypothesis 2.4 is
equivalent to the well-posedness of the linearized system for any data (gi,λi) in the

dual space of Xi ×H
1
2
00(Γ) and (gi, λi) in H−1−ε(Ωi)×H

1
2−ε(Γ):

Find (wi, ri) in Xi×L2(Ωi), 1 ≤ i ≤ 2, such that, for 1 ≤ i �= j ≤ 2,

∀vi ∈ Xi,∫
Ωi

αi(k
∗
i )∇wi : ∇vi dx+

∫
Ωi

α′
i(k

∗
i )!i∇u∗

i : ∇vi dx−
∫

Ωi

ri(div vi) dx

+

∫
Γ

(u∗
i − u∗

j ) · (wi −wj)

|u∗
i − u∗

j |
(u∗

i − u∗
j ) · vi dτ +

∫
Γ

|u∗
i − u∗

j | (wi −wj) · vi dτ

=

∫
Ωi

gi · vi dx+

∫
Γ

λi · vi dτ,

∀qi ∈ L2(Ωi), −
∫

Ωi

qi(divwi) dx = 0;

(2.20)

Find !i in H1−ε(Ωi), 1 ≤ i ≤ 2, with

!i = 0 on Γi and !i = λi + 2 (u∗
1 − u∗

2) · (w1 −w2) on Γ,

such that, for 1 ≤ i ≤ 2,

∀ϕi ∈ H1+ε
0 (Ωi),∫

Ωi

γi(k
∗
i )∇!i · ∇ϕi dx+

∫
Ωi

γ′
i(k

∗
i )!i∇k∗

i · ∇ϕi dx =

∫
Ωi

gi ϕi dx

+ 2

∫
Ωi

αi(k
∗
i )∇u∗

i : ∇wi ϕi dx+

∫
Ωi

α′
i(k

∗
i )!i |∇u∗

i |2 ϕi dx.

(2.21)

Even if this is nothing but a linear problem, writing it is rather technical.
In what follows, we always assume that Hypotheses 2.2 and 2.4 hold. These

assumptions are nearly realistic and seem necessary for proving the convergence of
any type of discretization.

3. Description of the discrete problem. From now on, we assume that the
Ωi are rectangles in the case d = 2, and rectangular parallelepipeds in the case d = 3.
More precisely, as illustrated in Figure 1, by an appropriate scaling, we take Ω1 (resp.,
Ω2) equal to ]−1, 1[d−1× ]0, h1[ (resp., ]−1, 1[d−1× ]−h2, 0[ ), where the hi are positive
real numbers. As already said, the hi are often small in practical situations.
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Ω

ΩΓ

Γ

Γ 11

2 2

Fig. 1.

We first describe the discrete problem. Second, as for the continuous problem,
we write it in a different form, in order to apply the theory of Brezzi, Rappaz, and
Raviart [10] for its numerical analysis.

The discrete problem. For each pair of nonnegative integers (k, n), we intro-
duce the space Pk,n(Ωi) of restrictions to Ωi of polynomials with degree ≤ k with
respect to x (and also to y in the case d = 3) and with degree ≤ n with respect to z.
We denote by Pk(Γ) the space of restrictions to Γ of polynomials with degree ≤ k with
respect to each tangential variable. We fix a 4-tuple δ = (K1, N1,K2, N2) of positive
integers, in order to define the discrete spaces of velocities and turbulent energies,

Xiδ = PKi,Ni(Ωi)
d ∩Xi, Yiδ = PKi,Ni(Ωi) ∩H1

0 (Ωi).(3.1)

As for the standard Stokes problem, two different choices exist for the discrete spaces
of pressures Miδ, namely

M1
iδ = PKi−2,Ni−2(Ωi) and M2

iδ = PKi−2,Ni−2(Ωi) ∩ P[λKi],[λNi](Ωi),(3.2)

for a parameter λ, 0 < λ < 1, where the brackets [·] denote the integral part.
We denote by (Ln)n≥0 the orthogonal basis of L2(−1, 1) made by the Legendre

polynomials. Each Ln has degree n and satisfies Ln(1) = 1. For any positive integer n,
let ξnj and ρnj , 0 ≤ j ≤ n, be the nodes (in increasing order) and weights of the Gauss–
Lobatto formula on ]−1, 1[, which is exact on all polynomials with degree ≤ 2n − 1.
We recall that ξn0 (resp., ξnn) is equal to −1 (resp., 1), that the ξnj , 1 ≤ j ≤ n− 1, are
the zeros of L′

n, and that the ρnj are given by

ρnj =
2

n(n+ 1)L2
n(ξ

n
j )

, 0 ≤ j ≤ n.(3.3)

For simplicity, we denote by xik and ρik, 0 ≤ k ≤ Ki, the nodes ξKi

k and

weights ρKi

k . In the z-direction, we set, for 0 ≤ j ≤ Ni,

zij =
hi
2
((−1)i+1 + ξNi

j ) and ωij =
hi
2

ρNi
j .

We introduce the grids

Ξiδ =

{{
(xik, zij); 0 ≤ k ≤ Ki, 0 ≤ j ≤ Ni

}
in the case d = 2,{

(xik, xi�, zij); 0 ≤ k, ! ≤ Ki, 0 ≤ j ≤ Ni

}
in the case d = 3,
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2376 BERNARDI, CHACÓN REBOLLO, LEWANDOWSKI, MURAT

and we denote by Iiδ the Lagrange interpolation operator on the grid Ξiδ with values
in PKi,Ni

(Ωi). Two different grids are then defined on the interface Γ: we denote
by IΓ

iδ the Lagrange interpolation operator on the grid Ξiδ ∩Γ with values in PKi(Γ).
Finally, we introduce the discrete product, for all functions u and v continuous

on Ωi,

(
u, v

)
iδ
=

{∑Ki

k=0

∑Ni

j=0 u(xik, zij)v(xik, zij) ρikωij in the case d = 2,∑Ki

k=0

∑Ki

�=0

∑Ni

j=0 u(xik, xi�, zij)v(xik, xi�, zij) ρikρi�ωij in the case d = 3,

and its analogue on Γ

(
u, v

)Γ
iδ
=

{∑Ki

k=0 u(xik)v(xik) ρik in the case d = 2,∑Ki

k=0

∑Ki

�=0 u(xik, xi�)v(xik, xi�) ρikρi� in the case d = 3.

We fix an operator ΠΓ
iδ from H

1
2
00(Γ) into PKi

(Γ) ∩ H
1
2
00(Γ) which will be made

precise later on. We are now in a position to state the discrete problem associated
with problem (1.1). It reads as follows:

Find (Ũ1δ, Ũ2δ), with each Ũiδ = (uiδ, piδ, kiδ) in Xiδ×Miδ×PKi,Ni
(Ωi),

such that, for 1 ≤ i �= j ≤ 2,

kiδ = 0 on Γi and kiδ = ΠΓ
iδ(|u1δ − u2δ|2) on Γ,(3.4)

and

∀viδ ∈ Xiδ,

aiδ(kiδ;uiδ,viδ) + biδ(viδ, piδ) +
( |uiδ − ujδ| (uiδ − ujδ),viδ

)Γ
iδ
=

(
f i,viδ

)
iδ
,

∀qiδ ∈ Miδ, biδ(uiδ, qiδ) = 0,

∀ϕiδ ∈ Yiδ, ciδ(kiδ; kiδ, ϕiδ) =
(
αi(kiδ) |∇uiδ|2, ϕiδ

)
iδ
,

(3.5)

where, for any continuous function ti, the bilinear forms aiδ(ti; ·, ·), biδ(·, ·), and
ciδ(ti; ·, ·) are now defined by

aiδ(ti;uiδ,viδ) =
(
αi(ti)∇uiδ,∇viδ

)
iδ
, biδ(viδ, qiδ) = −(

qiδ,div viδ
)
iδ
,

ciδ(ti; kiδ, ϕiδ) =
(
γi(ti)∇kiδ,∇ϕiδ

)
iδ
.

(3.6)

Remark 3.1. A natural choice of operator ΠΓ
iδ would be the Lagrange interpo-

lation operator IΓ
iδ. However, for K1 �= K2, since two different discrete products are

defined on the interface Γ, the trace of u1δ on Γ must be re-interpolated on the nodes
of Ξ2δ∩Γ and conversely. Moreover, the convergence of the interpolate of a function ϕ

toward this function in H
1
2
00(Γ) or even in H

1
2−ε(Γ) would require too much regularity

of the function ϕ; see [7, sect. 14]. Other choices of operator ΠΓ
iδ, such as orthogonal

projection operators, are possible but seem more expensive to implement.
Remark 3.2. For the choices M1

iδ and M2
iδ of discrete pressure spaces introduced

in (3.2), and thanks to the exactness property of the quadrature formula, each biδ(·, ·)
can be replaced by bi(·, ·) in formulation (3.5).

The numerical analysis of system (3.4)–(3.5) is rather technical. However, we
begin with the same simplication as for the continuous problem. For i = 1 and 2, we
introduce the discrete kernel

Viδ =
{
viδ ∈ Xiδ; ∀qiδ ∈ Miδ, biδ(viδ, qiδ) = 0

}
.
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NUMERICAL ANALYSIS OF COUPLED TURBULENT FLUIDS 2377

Note that, for the two choices Miδ = M1
iδ and Miδ = M2

iδ proposed in (3.2), Viδ is
not contained in Vi, i.e., is not made of exactly divergence-free polynomials. It is
readily checked with this definition that, for each pair (Ũ1δ, Ũ2δ) solution of system
(3.4)–(3.5), the reduced pair (U1δ, U2δ) of discrete velocities and discrete turbulent
energies is a solution of the following system:

Find (U1δ, U2δ), with each Uiδ = (uiδ, kiδ) in Viδ × PKi,Ni
(Ωi),

satisfying (3.4) and such that, for 1 ≤ i �= j ≤ 2,

∀viδ ∈ Viδ, aiδ(kiδ;uiδ,viδ) +
( |uiδ − ujδ| (uiδ − ujδ),viδ

)Γ
iδ
=

(
f i,viδ

)
iδ
,

∀ϕiδ ∈ Yiδ, ciδ(kiδ; kiδ, ϕiδ) =
(
αi(kiδ) |∇uiδ|2, ϕiδ

)
iδ
.

(3.7)

The converse property relies on a discrete inf-sup condition, which is derived in
two steps, relying on the arguments in [8] and [9], respectively. For a while, let M̃m

iδ

stand for the subspace of Mm
iδ made of polynomials with a null integral on Ωi.

Lemma 3.3. For i = 1 and 2, and for the discrete spaces M̃m
iδ , m = 1 and 2,

there exists a constant β̃miδ > 0 such that

∀qiδ ∈ M̃m
iδ , sup

viδ∈Xiδ∩H1
0 (Ωi)d

biδ(viδ, qiδ)

‖viδ‖H1(Ωi)d
≥ β̃miδ ‖qiδ‖L2(Ωi).(3.8)

Moreover, these constants β̃mi satisfy, for i = 1 and 2,

β̃1
i ≥ cK

2−d
2

i inf{K− 1
2

i , N
− 1

2
i } and β̃2

i ≥ c.(3.9)

Proof. Since any qiδ in M̃iδ has a null integral on Ωi, there exists [15, Chap. I,
Cor. 2.4] a function vi in H1

0 (Ωi)
d such that

div vi = qiδ in Ωi and ‖vi‖H1(Ωi)d ≤ c ‖qiδ‖L2(Ωi).

Next, we recall from [8, Lems. 3.2 and 3.3] that, for any µ, 0 < µ < 1, there exists
an operator πµn from H1

0 (−1, 1) onto P[(1+µ)n](−1, 1) ∩H1
0 (−1, 1) which preserves all

polynomials in Pn−1(−1, 1) and satisfies, for all ϕ in H1
0 (−1, 1),

‖(πµnϕ)′‖L2(−1,1) ≤ ‖ϕ′‖L2(−1,1) and ‖πµnϕ‖L2(−1,1) ≤ c µ− 1
2 ‖ϕ‖L2(−1,1).

The idea consists of choosing the operator πmKi
in the x- or y-direction equal to π

µ(Ki)
M ,

with

(1 + µ(Ki))M = Ki and M =

{
Ki − 1 if m = 1,
[ 1+λ2 Ki] if m = 2

(recall that λ is introduced in (3.2)), and denoting them by π
m(x)
Ki

and π
m(y)
Ki

, respec-

tively. Similarly, the operator πmNi
in the z-direction is equal to π

µ(Ni)
M , with

(1 + µ(Ni))M = Ni and M =

{
Ni − 1 if m = 1,
[ 1+λ2 Ni] if m = 2,

and denoted by π
m(z)
Ni

. Next we set

vsiδ =

{
π
m(x)
Ki

◦ π
m(z)
Ni

vi in the case d = 2,

π
m(x)
Ki

◦ π
m(y)
Ki

◦ π
m(z)
Ni

vi in the case d = 3.
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2378 BERNARDI, CHACÓN REBOLLO, LEWANDOWSKI, MURAT

From the properties of these operators, it is readily checked that

biδ(viδ, qiδ) = −
∫

Ωi

qiδ (div vi) dx =

∫
Ωiδ

(qiδ)
2 dx,

while the norm of viδ in H1
0 (Ω)

d is bounded by

‖viδ‖H1(Ωi)d ≤ c sup {µ(Ki)
2−d
2 µ(Ni)

− 1
2 , µ(Ki)

1−d
2 } ‖vi‖H1(Ωi)d .

Evaluating the quantities µ(Ki) and µ(Ni) as a function of Ni or Ki for m = 1 or 2
leads to the desired result.

Lemma 3.4. For i = 1 and 2, and for the discrete spaces Mm
iδ , m = 1 and 2,

defined in (3.2), there exists a constant βmiδ > 0 such that

∀qiδ ∈ Mm
iδ , sup

viδ∈Xiδ

biδ(viδ, qiδ)

‖viδ‖H1(Ωi)d
≥ βmiδ ‖qiδ‖L2(Ωi).(3.10)

Moreover, these constants βmiδ , i = 1 and 2, satisfy (3.9).
Proof. Any function qiδ in Mm

iδ admits the expansion

qiδ = q̃iδ + qiδ, with qiδ =
1

2d−1 hi

∫
Ωi

qiδ(x) dx.

Since the function q̃iδ belongs to M̃m
iδ , it follows from Lemma 3.3 that there exists a

ṽiδ in Xiδ ∩H1
0 (Ωi)

d such that

biδ(ṽiδ, q̃iδ) = ‖q̃iδ‖2
L2(Ωi)

and ‖ṽiδ‖H1(Ωi)d ≤ 1

β̃miδ
‖q̃iδ‖L2(Ωi).

On the other hand, the function viδ equal to (0, viδ) in dimension d = 2, and to
(0, 0, viδ) in dimension d = 3, with

viδ =

{(
L0(x)− L2(x)

) (
(−1)i+1hi − z

)
qiδ in dimension d = 2,(

L0(x)− L2(x)
) (

L0(y)− L2(y)
) (

(−1)i+1hi − z
)
qiδ in dimension d = 3,

belongs to Xiδ and satisfies, for a fixed constant c0,

biδ(viδ, qiδ) = ‖qiδ‖2
L2(Ωi)

and ‖viδ‖H1(Ωi)d ≤ c0 ‖qiδ‖L2(Ωi).

Next we take viδ equal to ṽiδ + λviδ for a fixed constant λ. Indeed, it follows by
integration by parts that biδ(ṽiδ, qiδ) vanishes so that

biδ(viδ, qiδ) = biδ(ṽiδ, q̃iδ) + λ biδ(viδ, qiδ) + λ biδ(viδ, q̃iδ).

The previous properties, together with the continuity of biδ(·, ·) (which coincides
with bi(·, ·) everywhere in the previous equation), yield

biδ(viδ, qiδ) ≥ ‖q̃iδ‖2
L2(Ωi)

+ λ ‖qiδ‖2
L2(Ωi)

− cλ ‖viδ‖H1(Ωi)d ‖q̃iδ‖L2(Ωi)

≥ ‖q̃iδ‖2
L2(Ωi)

+ λ ‖qiδ‖2
L2(Ωi)

− cc0λ ‖q̃iδ‖L2(Ωi) ‖qiδ‖L2(Ωi),

whence

biδ(viδ, qiδ) ≥ 1

2
‖q̃iδ‖2

L2(Ωi)
+ λ

(
1− c2c20λ

2

)
‖qiδ‖2

L2(Ωi)
.
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NUMERICAL ANALYSIS OF COUPLED TURBULENT FLUIDS 2379

We now choose λ equal to 1
c2c20

, which gives (note that q̃iδ and qiδ are orthogonal

in L2(Ωi))

biδ(viδ, qiδ) ≥ inf
{1

2
,
λ

2

}
‖qiδ‖2

L2(Ωi)
.

We also have

‖viδ‖H1(Ωi)d ≤ ‖ṽiδ‖H1(Ωi)d + λ ‖viδ‖H1(Ωi)d ≤
(( 1

β̃miδ

)2

+ c20λ
2

) 1
2

‖qiδ‖L2(Ωi),

which concludes the proof.
Remark 3.5. From the previous proofs, the constants βmiδ given in (3.9) a priori

depend on hi. However, by using the vertical homothety that maps Ωi onto the
reference square or cube, it is readily checked that these constants satisfy

β1
i ≥ cK

2−d
2

i inf{hiK− 1
2

i , N
− 1

2
i } and β2

i ≥ c hi,(3.11)

where c is now independent of hi.
So we now work with system (3.4)–(3.7). The first idea consists of writing it in a

more appropriate form which is the discrete analogue of (2.18).
Another presentation. For i = 1 and 2, we introduce the discrete Laplace

operator Liδ. For a fixed continuous function ti, the operator Liδ(ti) associates with
any gi in H−1(Ωi) and any function λi in H

1
2
00(Γ), the solution kiδ = Liδ(ti)(gi, λi) of

the following problem:
Find kiδ in PKi,Ni(Ωi) such that

kiδ = 0 on Γi and kiδ = ΠΓ
iδλi on Γ,(3.12)

and

∀ϕiδ ∈ Yiδ, ciδ(ti; kiδ, ϕiδ) =

∫
Ωi

gi ϕiδ dx.(3.13)

It follows from (3.3) that the weights ρik and ωij are positive. When combined
with (2.1), this yields that the only solution of (3.12)–(3.13) for gi = 0 and λi = 0
is zero. Hence, since problem (3.12)–(3.13) results into a square linear system, the
operator Liδ(ti) is well-defined.

Similarly, we introduce the discrete Stokes operator Siδ. For a fixed continuous
function ti, the operator Siδ(ti) associates with any gi in the dual space of Xi and

λi in the dual space of H
1
2
00(Γ)

d the solution uiδ = Siδ(ti)(gi,λi) in Viδ of the following
Stokes problem:

Find uiδ in Viδ such that

∀viδ ∈ Viδ, aiδ(ti;uiδ,viδ) =

∫
Ωi

gi · viδ dx+

∫
Γ

λi · viδ dτ.(3.14)

There also it follows from (3.3) and (2.1) that the operator Siδ(ti) is well-defined.
Finally, the matrix Tδ(t1, t2) is defined by

Tδ(t1, t2) =




S1δ(t1) 0 0 0
0 L1δ(t1) 0 0
0 0 S2δ(t2) 0
0 0 0 L2δ(t2)


 .(3.15)D
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2380 BERNARDI, CHACÓN REBOLLO, LEWANDOWSKI, MURAT

We introduce the vector Gδ(U1δ, U2δ),

Gδ(U1δ, U2δ) =




(−f1δ,λ1δ(u1δ,u2δ))
(−g1δ(k1δ,u1δ), λ(u1δ,u2δ))

(−f2δ,λ2δ(u1δ,u2δ))
(−g2δ(k2δ,u2δ), λ(u1δ,u2δ))


 ,(3.16)

where the functions f iδ, giδ, and λiδ are defined by duality, for smooth enough func-
tions vi and ϕi (we do not make precise the spaces),

〈
f iδ,vi

〉
=

(
f i,vi

)
iδ
,

〈
λiδ(u1δ,u2δ),vi

〉
=

( |uiδ − ujδ| (uiδ − ujδ),vi
)Γ
iδ
,〈

giδ(kiδ,uiδ), ϕi
〉
=

(
αi(kiδ) |∇uiδ|2, ϕi

)
iδ
.

(3.17)

The quantity λ(u1,u2) is defined in (2.16).
Thus, it is readily checked that problem (3.4)–(3.7) can be equivalently written

Uδ + Tδ(k1δ, k2δ)Gδ(U1δ, U2δ) = 0, with Uδ =




u1δ

k1δ

u2δ

k2δ


 .(3.18)

This formulation is fully appropriate for performing its numerical analysis thanks to
the theory of Brezzi, Rappaz, and Raviart [10].

4. The discrete Laplace and Stokes operators. As a first step for the nu-
merical analysis of the discrete problem (3.4)–(3.5), we investigate the properties of
the discrete quasi-linear operators Liδ and Siδ; more precisely, we prove stability and
error estimates. In all that follows, c, c′, and c′′ stand for generic constants that may
vary from one line to the other but are always independent of δ.

The discrete Laplace operator. For i = 1 and 2, and for a fixed continuous
function ti, let us first consider the operator Liδ(ti) defined from problem (3.12)–
(3.13). In order to prove its stability, we first recall [7, Form. (13.10)] that, for any
polynomial ϕn of degree ≤ n on ]−1, 1[,

‖ϕn‖2
L2(−1,1) ≤

n∑
j=0

ϕ2
n(ξ

n
j ) ρ

n
j ≤ 3 ‖ϕn‖2

L2(−1,1).(4.1)

Combined with the boundedness and positivity of γi (see (2.1)), this obviously yields
some basic properties of the form ciδ(·, ·) that we now state.

Lemma 4.1. For any continuous function ti, the form ciδ(ti; ·, ·) satisfies the
following properties of continuity:

∀ψiδ ∈ PKi,Ni
(Ωi), ∀ϕiδ ∈ PKi,Ni

(Ωi),

ciδ(ti;ψiδ, ϕiδ) ≤ c ‖ψiδ‖H1(Ωi)‖ϕiδ‖H1(Ωi),
(4.2)

and of ellipticity

∀ψiδ ∈ Yiδ, ciδ(ti;ψiδ, ψiδ) ≥ c ‖ψiδ‖2
H1(Ωi)

.(4.3)

Let Ri be a continuous lifting operator form H
1
2
00(Γ) into H1(Ωi), defined as

follows. For any λ in H
1
2
00(Γ), Riλ belongs to H1(Ωi), is equal to λ on Γ, vanishes
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NUMERICAL ANALYSIS OF COUPLED TURBULENT FLUIDS 2381

on Γi, and satisfies (this is proven by using the analogous lifting operator on the unit
square or cube), for all s ≥ 1,

∀λ ∈ H
s− 1

2	 (Γ), ‖Riλ‖Hs(Ωi) ≤ c h
1
2−s
i ‖λ‖

H
s− 1

2� (Γ)
,(4.4)

where H
s− 1

2	 (Γ) stands for the intersection Hs− 1
2 (Γ)∩H

1
2
00(Γ), provided with the norm

of H
1
2
00(Γ) if s is equal to 1, of Hs− 1

2 (Γ) if s > 1. A similar operator Riδ, satisfying
the same properties, is constructed in [19] and [4], which maps polynomials in PKi(Γ)
vanishing on ∂Γ into PKi,Ki

(Ωi). Moreover, this operator satisfies, for all s ≥ 1,

∀λδ ∈ PKi(Γ) ∩H
1
2
00(Γ), ‖Riδλδ‖Hs(Ωi) ≤ c h

1
2−s
i ‖λδ‖

H
s− 1

2� (Γ)
.(4.5)

However, in order to obtain a lifting operator of the same space of polynomials into
PKi,Ni(Γ), we apply the interpolation operator Iiδ to Riδλδ and derive from the sta-
bility properties of this operator on polynomials (see [7, Forms. (13.27) and (13.28)])
that

∀λδ ∈ PKi(Γ) ∩H
1
2
00(Γ), ‖IiδRiδλδ‖H1(Ωi) ≤ c sup

{
h
− 1

2
i ,

Ki

Ni
h

1
2
i

}
‖λδ‖

H
1
2
00(Γ)

.(4.6)

Lemma 4.2. For any continuous function ti, the following stability property holds
for any gi in H−1(Ωi) and any continuous function λi on Γ:

‖Liδ(ti)(gi, λi)‖H1(Ωi) ≤ c

(
‖gi‖H−1(Ωi) + sup

{
h
− 1

2
i ,

Ki

Ni
h

1
2
i

}
‖ΠΓ

iδλi‖
H

1
2
00(Γ)

)
.(4.7)

Proof. The function k0
iδ = Liδ(ti)(gi, λi) − IiδRiδΠ

Γ
iδλi belongs to Yiδ so that

applying the ellipticity property (4.3) leads to

c ‖k0
iδ‖2

H1(Ωi)
≤ ciδ(ti; k

0
iδ, k

0
iδ) =

∫
Ωi

gi k
0
iδ dx− ciδ(ti; IiδRiδΠ

Γ
iδλi, k

0
iδ).

The continuity property (4.2) gives

‖k0
iδ‖H1(Ωi) ≤ c

(‖gi‖H−1(Ωi) + ‖IiδRiδΠ
Γ
iδλi‖H1(Ωi)

)
,

whence, by a triangle inequality,

‖Liδ(ti)(gi, λi)‖H1(Ωi) ≤ c
(‖gi‖H−1(Ωi) + ‖IiδRiδΠ

Γ
iδλi‖H1(Ωi)

)
.

The desired estimate then follows from (4.6).
Remark 4.3. Note from the previous proof that estimate (4.7) can be replaced

by

‖Liδ(ti)(gi, λi)‖H1(Ωi) ≤ c

(
‖gi‖Y ′

iδ
+ sup

{
h
− 1

2
i ,

Ki

Ni
h

1
2
i

}
‖ΠΓ

iδλi‖
H

1
2
00(Γ)

)
,(4.8)

where the dual norm ‖ · ‖Y ′
iδ

is defined in a trivial way by

‖gi‖Y ′
iδ
= sup

ϕiδ∈Yiδ

∫
Ωi

giϕiδ dx

‖ϕiδ‖H1(Ωi)
.
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2382 BERNARDI, CHACÓN REBOLLO, LEWANDOWSKI, MURAT

This modified estimate is needed later on.
Next we define the integers K ′

i and N ′
i as the integral parts of Ki−1

2 and Ni−1
2 ,

respectively. For technical reasons, we introduce the modified parameter δ′ =
(K ′

1, N
′
1,K

′
2, N

′
2).

Lemma 4.4. For any continuous function ti, the following error estimate holds for

any gi in H−1(Ωi) and any continuous function λi in H
1
2
00(Γ) such that Li(ti)(gi, λi)

belongs to Hs(Ωi), s > 1,

‖(Li − Liδ)(ti)(gi, λi)‖H1(Ωi)

≤ c sup
{
h
− 1

2
i ,

Ki

Ni
h

1
2
i

}(
(K1−s

i + hs−1
i N1−s

i )h
1
2−s
i ‖Li(ti)(gi, λi)‖Hs(Ωi)

+ ‖λi −ΠΓ
iδλi‖

H
1
2
00(Γ)

+ inf
γiδ′∈PK′

i
,N′

i
(Ωi)

‖γi(ti)− γiδ′ ‖L∞(Ωi)‖Li(ti)(gi, λi)‖H1(Ωi)

)
.

(4.9)

Proof. We set ki = Li(ti)(gi, λi), kiδ = Liδ(ti)(gi, λi). The proof is performed in
several steps.

(1) We introduce an approximation λiδ′ of λi in PK′
i
(Γ) which vanishes on ∂Γ and

we take k′
i = ki −Ri(λi − λiδ′). It follows from (4.4) that

‖ki − k′
i‖H1(Ωi) ≤ c h

− 1
2

i ‖λi − λiδ′‖
H

1
2
00(Γ)

and also that

‖k′
i‖Hs(Ωi) ≤ ‖ki‖Hs(Ωi) + c h

1
2−s
i

(‖λi‖
Hs− 1

2 (Γ)
+ ‖λiδ′‖

Hs− 1
2 (Γ)

)
.

Next we set k′
iδ = Liδ(ti)(gi, λiδ′) and we deduce from Lemma 4.2 that

‖kiδ − k′
iδ‖H1(Ωi) ≤ c sup

{
h
− 1

2
i ,

Ki

Ni
h

1
2
i

}(
‖λi − λiδ′‖

H
1
2
00(Γ)

+ ‖λi −ΠΓ
iδλi‖

H
1
2
00(Γ)

)
.

Thanks to the triangle inequality

‖ki − kiδ‖H1(Ωi) ≤ ‖ki − k′
i‖H1(Ωi) + ‖k′

i − k′
iδ‖H1(Ωi) + ‖kiδ − k′

iδ‖H1(Ωi),

it remains to estimate ‖k′
i − k′

iδ‖H1(Ωi).
(2) The functions k0

i = k′
i − Riδ′λiδ′ and k0

iδ = k′
iδ − Iiδ′Riδ′λiδ′ belong to

H1
0 (Ωi) and Yiδ, respectively, and satisfy

∀ϕi ∈ H1
0 (Ωi),

ci(ti; k
0
i , ϕi) =

∫
Ωi

giϕi dx− ci(ti;Riδ′λiδ′ , ϕi)− ci(ti;Ri(λi − λiδ′), ϕi),

∀ϕiδ ∈ Yiδ, ciδ(ti; k
0
iδ, ϕiδ) =

∫
Ωi

giϕiδ dx− ciδ(ti; Iiδ′Riδ′λiδ′ , ϕiδ).

(4.10)

So, denoting by ϕ0
iδ′ the orthogonal projection of k0

i onto Yiδ′ for the norm of H1
0 (Ωi)

and adding the difference of these equations, we deduce from the ellipticity prop-
erty (4.3) that

‖k0
iδ − ϕ0

iδ′‖2
H1(Ωi)

≤ c ciδ(ti; k
0
iδ − ϕ0

iδ′ , k
0
iδ − ϕ0

iδ′)
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NUMERICAL ANALYSIS OF COUPLED TURBULENT FLUIDS 2383

≤ c
(
ci(ti; k

0
i − ϕ0

iδ′ , k
0
iδ − ϕ0

iδ′) + ci(ti;Ri(λi − λiδ′), k
0
iδ − ϕ0

iδ′)

+ ci(ti; (Id− Iiδ′)Riδ′λiδ′ , k
0
iδ − ϕ0

iδ′)

+ (ci − ciδ)(ti;ϕ
0
iδ′ , k

0
iδ − ϕ0

iδ′) + (ci − ciδ)(ti; Iiδ′Riδ′λiδ′ , k
0
iδ − ϕ0

iδ′)
)

Thanks to a triangle inequality, this yields

‖k′
i − k′

iδ‖H1(Ωi)

≤ c

(
‖k0

i − ϕ0
iδ′‖H1(Ωi) + c h

− 1
2

i ‖λi − λiδ′‖
H

1
2
00(Γ)

+ ‖(Id− Iiδ′)Riδ′λiδ′‖H1(Ωi)

+ sup
χiδ∈Yiδ

∫
Ωi

γi(ti)∇(ϕ0
iδ′ + Iiδ′Riδ′λiδ′) · ∇χiδ dx− ciδ(ti;ϕ

0
iδ′ + Iiδ′Riδ′λiδ′ , χiδ)

‖χiδ‖H1(Ωi)

)
.

(3) In order to evaluate the last term, we observe that, for any χiδ in Yδ, any ψiδ′

in PK′
i
,N ′

i
(Ωi), and any γiδ′ in PK′

i
,N ′

i
(Ωi),∫

Ωi

γiδ′ ∇ψiδ′ · ∇χiδ dx = (γiδ′ ∇ψiδ′ ,∇χiδ)iδ.

Adding and subtracting this quantity and using the continuity property (4.2) leads
to, for any χiδ in Yiδ,∫

Ωi

γi(ti)∇(ϕ0
iδ′ + Iiδ′Riδ′λiδ′) · ∇χiδ dx− ciδ(ti;ϕ

0
iδ′ + Iiδ′Riδ′λiδ′ , χiδ)

≤ c ‖γi(ti)− γiδ′ ‖L∞(Ωi)‖ϕ0
iδ′ + Iiδ′Riδ′λiδ′‖H1(Ωi)‖χiδ‖H1(Ωi).

Moreover, it follows from the definition of ϕ0
iδ′ that

‖ϕ0
iδ′ + Iiδ′Riδ′λiδ′‖H1(Ωi) ≤ ‖k0

i ‖H1(Ωi) + ‖Iiδ′Riδ′λiδ′‖H1(Ωi)

≤ ‖k′
i‖H1(Ωi) + ‖Riδ′λiδ′‖H1(Ωi) + ‖Iiδ′Riδ′λiδ′‖H1(Ωi).

Thanks to (4.5) and (4.6), we obtain

‖ϕ0
iδ′ + Iiδ′Riδ′λiδ′‖H1(Ωi) ≤ ‖k′

i‖H1(Ωi) + c sup
{
h
− 1

2
i ,

Ki

Ni
h

1
2
i

}
‖λiδ′‖

H
1
2
00(Γ)

.

(4) To conclude, we note that the trace λi of ki belongs to Hs− 1
2 (Γ) and choose

the polynomial λiδ′ such that (see [7, Thm. 7.4])

‖λi − λiδ′‖
H

1
2
00(Γ)

≤ cK1−s
i ‖λi‖

Hs− 1
2 (Γ)

, ‖λiδ′‖
Hs− 1

2 (Γ)
≤ c ‖λi‖

Hs− 1
2 (Γ)

.

Next it can be observed that, for any polynomial riδ′ in PK′
i
,N ′

i
(Ωi),

‖(Id− Iiδ′)Riδ′λiδ′‖H1(Ωi) = ‖(Id− Iiδ′)(Riδ′λiδ′ − riδ′)‖H1(Ωi).

Using the stability properties of the operator Iiδ′ on polynomials (see [7, Forms. (13.27)
and (13.28)]) and taking riδ′ equal to the orthogonal projection of Riδ′λiδ′ in H1(Ωi)
yields

‖(Id−Iiδ′)Riδ′λiδ′‖H1(Ωi) ≤ c sup
{
h
− 1

2
i ,

Ki

Ni
h

1
2
i

}
(K1−s

i +hs−1
i N1−s

i ) ‖Riδ′λiδ′‖Hs(Ωi),
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2384 BERNARDI, CHACÓN REBOLLO, LEWANDOWSKI, MURAT

whence, from (4.5),

‖(Id−Iiδ′)Riδ′λiδ′‖H1(Ωi) ≤ c sup
{
h
− 1

2
i ,

Ki

Ni
h

1
2
i

}
(K1−s

i +hs−1
i N1−s

i )h
1
2−s ‖λiδ′‖

Hs− 1
2 (Γ)

.

Finally, using the previous estimates also yields

‖k0
i − ϕ0

iδ′‖H1(Ωi) ≤ c (K1−s
i + hs−1

i N1−s
i )

(
‖k′

i‖Hs(Ωi) + h
1
2−s
i ‖λiδ′‖

Hs− 1
2 (Γ)

)
.

To conclude, we observe that ‖λi‖
Hs− 1

2 (Γ)
is bounded by a constant ‖ki‖Hs(Ωi). This

ends the proof.
Remark 4.5. The following estimate can be derived by combining [7, Thm. 7.4]

with a Gagliardo–Nirenberg inequality: if the function γi is of class C
m with bounded

derivatives of order ≤ m and if the function ti belongs to Hs(Ωi),
d
2 < s ≤ m,

inf
γiδ′∈PKi,Ni

(Ωi)
‖γi(ti)− γiδ′ ‖L∞(Ωi) ≤ c (K

d
2−s
i + h

s− d
2

i N
d
2−s
i ) ‖ti‖Hs(Ωi).(4.11)

Moreover, a more sophisticated argument, using the full regularity of Li(ti)(gi, λi)
allows us to replace when s is > d

2 the last term in (4.9) by the better estimate

c (K1−s
i + hs−1

i N1−s
i ) ‖ti‖Hs(Ωi)‖Li(ti)(gi, λi)‖Hs(Ωi).(4.12)

Remark 4.6. If the function γi is differentiable with bounded derivative and if
the function ti belongs to Hr(Ωi) for r > 1, the Aubin–Nitsche duality argument
[7, Thm. 15.4] leads to the improved estimate

‖(Li − Liδ)(ti)(gi, λi)‖H1−ε(Ωi)

≤ c
(
(K−ε

i + hεi N
−ε
i )‖(Li − Liδ)(ti)(gi, λi)‖H1(Ωi)

+ inf
γiδ′∈PK′

i
,N′

i
(Ωi)

‖γi(ti)− γiδ′ ‖L∞(Ωi)‖Li(ti)(gi, λi)‖H1(Ωi)

)
.

(4.13)

Finally, we investigate the dependency of Liδ(ti)(gi, λi) with respect to ti.
Lemma 4.7. For any continuous functions ti and t′i, the following stability prop-

erty holds for any gi in H−1(Ωi) and any continuous function λi on Γ:

‖Liδ(ti)(gi, λi)− Liδ(t′i)(gi, λi)‖H1(Ωi)

≤ c ‖γi(ti)− γi(t
′
i)‖L∞(Ωi)‖Liδ(ti)(gi, λi)‖H1(Ωi).

(4.14)

Proof. Setting kiδ = Liδ(ti)(gi, λi) and k′
iδ = Liδ(t′i)(gi, λi), we observe that the

function kiδ − k′
iδ belongs to Yiδ and satisfies

∀ϕiδ ∈ Yiδ,
(
γi(ti)∇kiδ,∇ϕiδ

)
iδ
=

(
γi(t

′
i)∇k′

iδ,∇ϕiδ
)
iδ
,

whence

ciδ(t
′
i; kiδ − k′

iδ, kiδ − k′
iδ) =

(
γi(t

′
i) (∇kiδ −∇k′

iδ), (∇kiδ −∇k′
iδ)

)
iδ

= −((
γi(ti)− γi(t

′
i)
)∇kiδ, (∇kiδ −∇k′

iδ)
)
iδ
.

So the desired estimated follows from the properties of ciδ(·; ·, ·); see Lemma 4.1.
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NUMERICAL ANALYSIS OF COUPLED TURBULENT FLUIDS 2385

The discrete Stokes operator. We now present similar properties for the
Stokes operator Siδ defined by (3.14); however, we skip the proofs except for the error
estimates.

Lemma 4.8. For any continuous function ti, the form aiδ(ti; ·, ·) satisfies the
following properties of continuity:

∀uiδ ∈ Xiδ, ∀viδ ∈ Xiδ, aiδ(ti;uiδ,viδ) ≤ c ‖uiδ‖H1(Ωi)d‖viδ‖H1(Ωi)d ,(4.15)

and of ellipticity:

∀viδ ∈ Xiδ, aiδ(ti;viδ,viδ) ≥ c ‖viδ‖2
H1(Ωi)d

.(4.16)

Lemma 4.9. For any continuous function ti, the following stability property holds

for any gi in L2(Ωi)
d and any λi in the dual space of H

1
2
00(Γ)

d:

‖Siδ(ti)(gi,λi)‖H1(Ωi)d ≤ c
(‖gi‖L2(Ωi)d + ‖λi‖

H
1
2
00(Γ)′ d

)
.(4.17)

Remark 4.10. As for the Laplace operator, the norms of gi and λi in the right-
hand side can be replaced, respectively, by the dual norms of Xiδ (when provided with

the norm ‖ · ‖H1(Ωi)d) and of PKi(Γ)
d∩H

1
2
00(Γ)

d (provided with the norm ‖ · ‖
H

1
2
00(Γ)d

).

However, the proof of the convergence estimate is slightly different (but simpler).
Lemma 4.11. For any continuous function ti, the following error estimate holds

for any gi in L2(Ωi)
d and any λi in the dual space of H

1
2
00(Γ)

d:

‖(Si − Siδ)(ti)(gi,λi)‖H1(Ωi)d

≤ c inf
wiδ∈Xiδ′∩Vi

(
‖Si(ti)(gi,λi)−wiδ‖H1(Ωi)d

+ inf
αiδ′∈PK′

i
,N′

i
(Ωi)

‖αi(ti)− αiδ′ ‖L∞(Ωi)‖wiδ‖H1(Ωi)d

)
.

(4.18)

Proof. Setting ui = Si(ti)(gi,λi) and uiδ = Siδ(ti)(gi,λi), we derive from (4.16)
that, for any wiδ′ in Xiδ′ ∩ Vi,

‖uiδ −wiδ′‖2
H1(Ωi)d

≤ c aiδ(ti;uiδ −wiδ′ ,uiδ −wiδ′).

Using (2.14) (in variational form) and (3.14), we derive

‖uiδ −wiδ′‖2
H1(Ωi)d

≤ c
(
ai(ti;ui,uiδ −wiδ′)− aiδ(ti;wiδ′ ,uiδ −wiδ′)

)
.

Next we deduce from the exactness of the quadrature formula that, for any αiδ′ in
PK′

i
,N ′

i
(Ωi),∫

Ωi

αiδ′ ∇wiδ′ · ∇(uiδ −wiδ′) dx = (αiδ′ ∇wiδ′ ,∇(uiδ −wiδ′))iδ.

Adding and subtracting this quantity yield

‖uiδ −wiδ′‖2
H1(Ωi)d

≤ c
(
ai(ti;ui −wiδ′ ,uiδ −wiδ′)

+

∫
Ωi

(αi(ti)− αiδ′)∇wiδ′ · ∇(uiδ −wiδ′) dx

− ((αi(ti)− αiδ′)∇wiδ′ ,∇(uiδ −wiδ′))iδ

)
.
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2386 BERNARDI, CHACÓN REBOLLO, LEWANDOWSKI, MURAT

So the desired estimate follows from the continuity property (4.15), together with a
triangle inequality.

Remark 4.12. In dimension d = 2, it is easy to evaluate the distance of a func-
tion ui in Vi to Xiδ∩Vi by introducing the stream function ψi such that ui = curl ψi.
Indeed, the functions curl ψiδ, where ψiδ belongs to PKi,Ni(Ωi), satisfies the desired
boundary conditions and approximates ψi in H2(Ωi), belongs to Xiδ∩Vi, and provides
a good approximation of ui. The case of dimension d = 3 is more complex; however,
the right approximation properties have been proved in [22] for smooth functions and
extended in [5] to arbitrary functions. So the general result reads as follows: for any
function ui in Hs(Ωi)

d ∩ Vi, s ≥ 1,

inf
wiδ∈Xiδ∩Vi

‖Si(ti)(gi,λi)−wiδ‖H1(Ωi)d ≤ c (K1−s
i + hs−1

i N1−s
i ) ‖ui‖Hs(Ωi)d .(4.19)

Note also that the last term in (4.18) can be bounded analogously to (4.11) or (4.12).
Lemma 4.13. For any continuous functions ti and t′i, the following stability

property holds for any gi in L2(Ωi)
d and any λi in the dual space of H

1
2
00(Γ)

d:

‖Siδ(ti)(gi,λi)− Siδ(t′i)(gi,λi)‖H1(Ωi)d

≤ c ‖αi(ti)− αi(t
′
i)‖L∞(Ωi)‖Siδ(ti)(gi,λi)‖H1(Ωi)d .

(4.20)

5. Numerical analysis of the discrete problem. The aim of this section is to
prove that, if Hypotheses 2.2 and 2.4 hold, problem (3.4)–(3.5) has a unique solution
in a neighborhood of (U∗

1 , U
∗
2 ) and that this solution converges to (U∗

1 , U
∗
2 ). We also

derive optimal error estimates. To this aim, we check the assumptions of the theorem
of Brezzi, Rappaz, and Raviart [10] in Propositions 5.5 to 5.7.

From now on, we denote by Xiδ, i = 1 and 2, the space Xiδ×PKi,Ni
(Ωi), provided

with the norm of Xi, and by Xδ the product X1δ ×X2δ.
In view of (4.6), (4.9), and (4.19), for instance, we decide to take the Ni, i =

1 and 2, such that, for a fixed constant κ,

κhiKi ≤ Ni < κhiKi + 1,(5.1)

and we do not any longer take into account the dependency of the constants with re-
spect to the hi. We also choose an approximation (U∗

1δ′ , U
∗
2δ′), with U∗

iδ′ = (u∗
iδ′ , k

∗
iδ′),

of the solution (U∗
1 , U

∗
2 ) in

∏2
i=1(Xiδ′ × PK′

i
,N ′

i
(Ωi)) which satisfies the following

approximation properties for 0 ≤ r ≤ s∗, where s∗ is introduced in Hypothesis 2.2:

‖u∗
i − u∗

iδ′‖Hr(Ωi)d ≤ cKr−s∗
i ‖u∗

i ‖Hs∗ (Ωi)d ,

‖k∗
i − k∗

iδ′‖Hr(Ωi) ≤ cKr−s∗
i ‖k∗

i ‖Hs∗ (Ωi).
(5.2)

The existence of such an approximation is stated in [7, Thm. 7.4]. Finally, we assume
that the functions αi and γi are of class C

2, with bounded derivatives up to order 2 and

also that the operators ΠΓ
iδ satisfy, for all s ≥ 1

2 (the notation H
s− 1

2	 (Γ) is introduced
in (4.4)),

∀λ ∈ H
s− 1

2	 (Γ), ‖λ−ΠΓ
iδλ‖

H
1
2
00(Ωi)

≤ cK1−s
i ‖λ‖

H
s− 1

2� (Γ)
.(5.3)

In a first step, we must prove the analogue of Hypothesis 2.4 for the discrete
operator. The proof relies on the expansion

Id +DTδ(k∗
1δ′ , k

∗
2δ′)Gδ(U∗

1δ′ , U
∗
2δ′) + Tδ(k∗

1δ′ , k
∗
2δ′)DGδ(U∗

1δ′ , U
∗
2δ′)

= Id +DT (k∗
1 , k

∗
2)G(U∗

1 , U
∗
2 ) + T (k∗

1 , k
∗
2)DG(U∗

1 , U
∗
2 ) +

4∑
j=1

Oj ,
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NUMERICAL ANALYSIS OF COUPLED TURBULENT FLUIDS 2387

with

O1 = −(
DT (k∗

1 , k
∗
2)G(U∗

1 , U
∗
2 )−DTδ(k∗

1 , k
∗
2)G(U∗

1δ′ , U
∗
2δ′)

)
− (T − Tδ)(k∗

1 , k
∗
2)DG(U∗

1 , U
∗
2 ),

O2 = −(
DTδ(k∗

1 , k
∗
2)−DTδ(k∗

1δ′ , k
∗
2δ′)

)G(U∗
1δ′ , U

∗
2δ′)

− (Tδ(k∗
1 , k

∗
2)− Tδ(k∗

1δ′ , k
∗
2δ′)

)
DG(U∗

1 , U
∗
2 ),

O3 = −Tδ(k∗
1δ′ , k

∗
2δ′)

(
DG(U∗

1 , U
∗
2 )−DG(U∗

1δ′ , U
∗
2δ′)

)
,

O4 = −DTδ(k∗
1δ′ , k

∗
2δ′)

(G(U∗
1δ′ , U

∗
2δ′)− Gδ(U∗

1δ′ , U
∗
2δ′)

)
− Tδ(k∗

1δ′ , k
∗
2δ′)

(
DG(U∗

1δ′ , U
∗
2δ′)−DGδ(U∗

1δ′ , U
∗
2δ′)

)
.

So we now prove that each Oj tends to zero when K1 and K2 go to +∞, in the norm
of the space L (Xδ,Xδ) of linear mappings from Xδ into itself. These properties are
stated in the following lemmas.

Let us first observe that, for any W = (W1,W2) in X , with Wi = (wi,mi),

DG(U∗
1 , U

∗
2 ) ·W =




(0, Dλ1(u
∗
1,u

∗
2).(w1,w2))

(−Dg1(k
∗
1 ,u

∗
1).(m1,w1), Dλ(u∗

1,u
∗
2).(w1,w2))

(0, Dλ2(u
∗
1,u

∗
2).(w1,w2))

(−Dg2(k
∗
2 ,u

∗
2).(m2,w2), Dλ(u∗

1,u
∗
2).(w1,w2))


 ,(5.4)

with

Dλi(u
∗
1,u

∗
2).(w1,w2) = |u∗

i − u∗
j | (wi −wj) +

(u∗
i − u∗

j ) · (wi −wj)

|u∗
i − u∗

j |
(u∗

i − u∗
j ),

Dgi(k
∗
i ,u

∗
i ).(mi,wi) = 2αi(k

∗
i )∇u∗

i · ∇wi + α′
i(k

∗
i )mi |∇u∗

i |2,
Dλ(u∗

1,u
∗
2).(w1,w2) = −2 (u∗

1 − u∗
2) · (w1 −w2).

(5.5)

Moreover, we have the following formula (which can be derived from the explicit form
(2.20)–(2.21) of the linearized problem):

DT (k∗
1 , k

∗
2)G(U∗

1 , U
∗
2 ) + T (k∗

1 , k
∗
2)DG(U∗

1 , U
∗
2 )

= T (k∗
1 , k

∗
2)(DG(U∗

1 , U
∗
2 ) +DH(U∗

1 , U
∗
2 )),

(5.6)

with

DH(U∗
1 , U

∗
2 ).(m1,m2) =




(−div (α′
1(k

∗
1)m1∇u∗

1),0)
(−div (γ′

1(k
∗
1)m1∇k∗

1), 0)
(−div (α′

2(k
∗
2)m2∇u∗

2),0)
(−div (γ′

1(k
∗
2)m2∇k∗

2), 0)


 .

A similar formula would hold for the discrete problem

DTδ(k∗
1 , k

∗
2)G(U∗

1 , U
∗
2 ) + Tδ(k∗

1 , k
∗
2)DG(U∗

1 , U
∗
2 )

= Tδ(k∗
1 , k

∗
2)(DG(U∗

1 , U
∗
2 ) +DHδ(U

∗
1 , U

∗
2 )),

(5.7)

where the duality product of the first part of the first and third components with a viδ
in Viδ, respectively, of the second and fourth components with a !iδ in Yδ, are given
by the formulas

(α′
i(k

∗
i )miδ ∇u∗

i ,∇viδ)iδ, (γ′
i(k

∗
i )miδ ∇k∗

i ,∇!iδ)iδ.
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2388 BERNARDI, CHACÓN REBOLLO, LEWANDOWSKI, MURAT

(Here, the differential operator is applied to a Wδ = (W1δ,W2δ) in Xδ, with each Wiδ

equal to (wiδ,miδ).)
From now on, we fix ε such that 2ε < s∗ − d

2 .
Lemma 5.1. If Hypothesis 2.2 is satisfied, the following property holds:

lim
K1→+∞,K2→+∞

‖O1‖L (Xδ,Xδ) = 0.(5.8)

Proof. Due to formulas (5.6) and (5.7), we observe that

‖O1‖L (Xδ,Xδ) ≤ ‖(T − Tδ)(k∗
1 , k

∗
2)
(
DG(U∗

1 , U
∗
2 ) +DH(U∗

1 , U
∗
2 )
)‖L (Xδ,Xδ)

+ ‖Tδ(k∗
1 , k

∗
2)
(
DH(U∗

1 , U
∗
2 )−DHδ(U

∗
1δ′ , U

∗
2δ′)

)‖L (Xδ,Xδ).

(1) To bound the first term, we note that, when (W1δ,W2δ) runs through the unit
sphere of Xδ, the quantities

Dλi(u
∗
1,u

∗
2).(w1δ,w2δ), Dgi(k

∗
i ,u

∗
i ).(miδ,wiδ), and Dλ(u∗

1,u
∗
2).(w1δ,w2δ)

belong to a bounded set in L2(Ωi)
d, H−1(Ωi), and H

1
2
00(Γ), respectively. Then it

can be checked that Si(k∗
i )(0, Dλi(u

∗
1,u

∗
2).(w1δ,w2δ)) remains inside a bounded set

of Hs(Ωi)
d for some s > 1. Thanks to (4.18), (4.19), and the analogue of (4.11),

this yields the uniform convergence of (Si−Siδ)(k∗
i )(0, Dλi(u

∗
1,u

∗
2).(w1δ,w2δ

)). The
convergence of the other terms, say

(Li − Liδ)(k∗
i )(Dgi(k

∗
i ,u

∗
i ).(miδ,wiδ), Dλ(u∗

1,u
∗
2).(w1δ,w2δ)),

follows from (4.13) together with the fact that both

Li(Dgi(k
∗
i ,u

∗
i ).(mi,wi), Dλ(u∗

1,u
∗
2).(w1,w2))

and its discrete analogue

Liδ(k∗
i )(Dgi(k

∗
i ,u

∗
i ).(mi,wi), Dλ(u∗

1,u
∗
2).(w1,w2))

are bounded in H1(Ωi); see (4.7). So combining these facts yields

lim
K1→+∞,K2→+∞

‖(T − Tδ)(k∗
1 , k

∗
2)DG(U∗

1 , U
∗
2 )‖L (X ,X ) = 0.

(2) Similarly, we observe that, when (W1δ,W2δ) runs through the unit sphere
of Xδ, the quantities α′

i(k
∗
i )miδ ∇u∗

i and γ′
i(k

∗
i )miδ ∇k∗

i belong to a bounded set

of Hs(Ωi)
d2

and Hs(Ωi)
d, for some s > 0, so that their divergence belongs to

Hs−1(Ωi)
d and Hs−1(Ωi), respectively. This implies

lim
K1→+∞,K2→+∞

‖(T − Tδ)(k∗
1 , k

∗
2)DH(U∗

1 , U
∗
2 )‖L (X ,X ) = 0.

(3) To prove the convergence of the last term, we observe from (4.8) that it
suffices to prove, for any miδ in the intersection of PKi,Ni(Ωi) with the unit sphere
of H1−ε(Ωi), the convergence of

sup
�iδ∈Yiδ

∫
Ωi

γ′
i(k

∗
i )miδ ∇k∗

i · ∇!iδ dx− (γ′
i(k

∗
i )miδ ∇k∗

iδ′ ,∇!iδ)iδ

‖!iδ‖H1(Ωi)
.
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NUMERICAL ANALYSIS OF COUPLED TURBULENT FLUIDS 2389

Handling the other terms is similar. Denoting by δ′′ the 4-tuple (K ′′
1 , N

′′
1 ,K ′′

2 , N
′′
2 )

with each K ′′
i equal to the integral part of Ki−1

4 and each N ′′
i equal to the integral part

of Ni−1
4 , we derive from the exactness of the quadrature formula for any γ̃iδ′′ and miδ′′

in PK′′
i
,N ′′

i
(Ωi),∫

Ωi

γiδ′′miδ′′ ∇k∗
iδ′ · ∇!iδ dx = (γiδ′′miδ′′ ∇k∗

iδ′ ,∇!iδ)iδ.

By adding and subtracting this line, we prove that the previous quantity is bounded
by the sum of the terms

‖γ′
i(k

∗
i )‖L∞(Ωi)‖miδ ∇(k∗

i − k∗
iδ′)‖L2(Ωi)d ,

‖γ′
i(k

∗
i )‖L∞(Ωi)‖(miδ −miδ′′)∇k∗

iδ′‖L2(Ωi)d ,

‖γ′
i(k

∗
i )− γ̃iδ′′‖L∞(Ωi)‖miδ′′ ∇k∗

iδ′‖L2(Ωi)d ,

‖γ′
i(k

∗
i )‖L∞(Ωi)‖Iiδ

(
(miδ −miδ′′)∇k∗

iδ′
)‖L2(Ωi)d ,

‖γ′
i(k

∗
iδ)− γ̃iδ′′‖L∞(Ωi)‖Iiδ

(
miδ′′ ∇k∗

iδ′)‖L2(Ωi)d .

Thanks to the choice of ε, the product of two functions is continuous from
H1−ε(Ωi) × Hs∗−1−ε(Ωi) into L2(Ωi) so that the uniform convergence of the first
term follows from (5.2). Again, thanks to the choice of ε, the product of two functions
is continuous from H1−2ε(Ωi) × Hs∗−1(Ωi) into L2(Ωi) so that the uniform conver-
gence of the second term is obtained by taking miδ′′ equal to the projection of miδ

onto PK′′
i
,N ′′

i
(Ωi) for the scalar product of H1−ε(Ωi) and using the approximation

properties of this projection operator; see [7, Thm. 7.4]. Similarly, the convergence of
the third term follows from (4.11). The convergence of the last two terms is derived by
similar arguments combined with the stability on the operator Iiδ on polynomials; see
[7, Form. (13.28)].

So the proof is complete.
Lemma 5.2. If Hypothesis 2.2 is satisfied, the following property holds:

lim
K1→+∞,K2→+∞

‖O2‖L (Xδ,Xδ) = 0.(5.9)

Proof. From (5.7), we have

‖O2‖L (Xδ,Xδ) = ‖(Tδ(k∗
1 , k

∗
2)−Tδ(k∗

1δ′ , k
∗
2δ′)

)(
DG(U∗

1 , U
∗
2 )+DHδ(U

∗
1δ′ , U

∗
2δ′)

)‖L (Xδ,Xδ).

When (W1δ,W2δ) runs through the unit sphere of Xδ, the quantity

Tδ(k∗
1 , k

∗
2)
(
DG(U∗

1 , U
∗
2 ) +DHδ(U

∗
1 , U

∗
2δ′)

)
remains bounded in X so that the desired convergence result follows from (4.14) and
(4.20), combined with (5.2) and the embedding of Hs(Ωi) into L∞(Ωi) for all s > d

2 .
Lemma 5.3. If Hypothesis 2.2 is satisfied, the following property holds:

lim
K1→+∞,K2→+∞

‖O3‖L (Xδ,Xδ) = 0.(5.10)

Proof. Here, the convergence of each term is a straightforward consequence
of (5.2).

Lemma 5.4. If Hypothesis 2.2 is satisfied and if the data f i, 1 ≤ i ≤ 2, belong
to Hσ(Ωi)

d for some σ > d
2 , the following property holds:

lim
K1→+∞,K2→+∞

‖O4‖L (Xδ,Xδ) = 0.(5.11)
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2390 BERNARDI, CHACÓN REBOLLO, LEWANDOWSKI, MURAT

Proof. Thanks to (4.8) and its analogue for the Stokes problem, the convergence
of the term

‖Tδ(k∗
1δ, k

∗
2δ)

(
DG(U∗

1δ′ , U
∗
2δ′)−DGδ(U∗

1δ′ , U
∗
2δ′)

)‖L (Xδ,Xδ)

is a consequence of the convergence of the terms

sup
wiδ∈Xiδ

∫
Ωi

αi(k
∗
iδ)∇u∗

iδ · ∇wiδ dx− (αi(k
∗
iδ)∇u∗

iδ,∇wiδ)iδ

‖wiδ‖H1(Ωi)d
,

sup
miδ∈Yiδ

∫
Ωi

α′
i(k

∗
iδ)miδ ∇u∗

iδ · ∇u∗
iδ dx− (α′

i(k
∗
iδ)miδ ∇u∗

iδ,∇u∗
iδ)iδ

‖miδ‖H1−ε(Ωi)

and of their analogues for the Stokes problem. As in the end of the proof of Lemma 4.1,
this is obtained by adding and subtracting appropriate terms of lower degree.

Similar arguments yield the convergence of Gδ(U∗
1δ′ , U

∗
2δ′) toward G(U∗

1δ′ , U
∗
2δ′),

whence the convergence of the second term in O4.
Combining the results of Lemmas 5.1 to 5.4 leads to the following result.
Proposition 5.5. If Hypotheses 2.2 and 2.4 are satisfied and if the data f i,

1 ≤ i ≤ 2, belong to Hσ(Ωi)
d for some σ > d

2 , there exists a constant K such that,
for K1 ≥ K and K2 ≥ K, the operator

Id +DTδ(k∗
1δ′ , k

∗
2δ′)Gδ(U∗

1δ′ , U
∗
2δ′) + Tδ(k∗

1δ′ , k
∗
2δ′)DGδ(U∗

1δ′ , U
∗
2δ′)(5.12)

is an isomorphism of Xδ. Moreover, the norm of its inverse is bounded by a constant γ
independent of K1 and K2.

The following proposition states a Lipschitz property for the discrete operator.
Since its proof is simpler than for the previous result, we only sketch it.

Proposition 5.6. The following property holds for all nonnegative real numbers
α and for any (Z1δ, Z2δ) in Xδ which satisfies ‖(Z1δ, Z2δ)− (U∗

1δ′ , U
∗
2δ′)‖X ≤ α, with

Ziδ = (ziδ, riδ):

‖DTδ(k∗
1δ′ , k

∗
2δ′)Gδ(U∗

1δ′ , U
∗
2δ′) + Tδ(k∗

1δ′ , k
∗
2δ′)DGδ(U∗

1δ′ , U
∗
2δ′)

−DTδ(r1δ, r2δ)Gδ(Z1δ, Z2δ)− Tδ(r1δ, r2δ)DGδ(Z1δ, Z2δ)‖L (Xδ,Xδ) ≤ c κδ α,
(5.13)

where according to the dimension d the constant κδ is given by

κδ = K
2(d−2)+2ε
i (logKi)

3−d
2 .(5.14)

Proof. We must bound the four terms

‖Tδ(r1δ, r2δ)
(
DGδ(U∗

1δ′ , U
∗
2δ′)−DGδ(Z1δ, Z2δ)

)‖L (Xδ,Xδ),

‖(Tδ(k∗
1δ′ , r

∗
2δ′)− Tδ(r1δ, r2δ)

)
DGδ(U∗

1δ′ , U
∗
2δ′)‖L (Xδ,Xδ),

‖Tδ(r1δ, r2δ)
(
DHδ(U

∗
1δ′ , U

∗
2δ′)−DHδ(Z1δ′ , Z2δ′)

)‖L (Xδ,Xδ),

‖(Tδ(k∗
1δ′ , r

∗
2δ′)− Tδ(r1δ, r2δ)

)
DHδ(U

∗
1δ′ , U

∗
2δ′)‖L (Xδ,Xδ).

For instance, in the first term, we must bound the quantity, for miδ running through
the unit ball of Yiδ,

∑
�iδ∈Yiδ

(
α′
i(k

∗
iδ′)miδ |∇(uiδ′ − ziδ)|2, !iδ

)
iδ

‖!iδ‖H1(Ωi)
.
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NUMERICAL ANALYSIS OF COUPLED TURBULENT FLUIDS 2391

Applying the inverse inequalities

∀ϕiδ ∈ PKi,Ni(Ωi), ‖ϕiδ‖L∞(Ωi) ≤
{

cKd−2+2ε
i ‖ϕiδ‖H1−ε(Ωi),

cKd−2
i (logKi)

3−d
2 ‖ϕiδ‖H1(Ωi),

we have to bound the term, for all miδ in PKi,Ni(Ωi),

K
2(d−2)+2ε
i (logKi)

3−d
2 ‖∇(u∗

iδ′ − ziδ)‖L2(Ωi) ‖∇(u∗
iδ′ + ziδ)‖L2(Ωi).

This yields the value of κδ. The other terms are simpler; they can be evaluated by
similar arguments.

Finally, we must evaluate the quantity

εδ =

∥∥∥∥
(

U∗
1δ′

U∗
2δ′

)
+ Tδ(k∗

1δ′ , k
∗
2δ′)Gδ(U∗

1δ′ , U∗
2δ′)

∥∥∥∥
X
.(5.15)

Proposition 5.7. If Hypothesis 2.2 is satisfied and if the data f i, 1 ≤ i ≤ 2,
belong to Hσ(Ωi)

d for some σ > d
2 , the following estimate holds for a constant C only

depending on the norm of (U∗
1 , U

∗
2 ) in

∏2
i=1

(
Hs∗(Ωi)

d ×Hs∗(Ωi)
)
:

εδ ≤ C (inf{K1,K2})1−s∗ .(5.16)

Proof. By using formulation (2.18), we observe that

εδ ≤ ‖U∗
1 − U∗

1δ‖X1
+ ‖U∗

2 − U∗
2δ‖X2

+ ‖(T − Tδ)(k∗
1 , k

∗
2)G(U∗

1 , U∗
2 )‖X + ‖(Tδ(k∗

1 , k
∗
2)− Tδ(k∗

1δ′ , k
∗
2δ′)

)G(U∗
1 , U∗

2 )‖X
+ ‖Tδ(k∗

1δ′ , k
∗
2δ′)

(G(U∗
1 , U∗

2 )− G(U∗
1δ′ , U∗

2δ′)
)‖X

+ ‖Tδ(k∗
1δ′ , k

∗
2δ′)

(G(U∗
1δ′ , U∗

2δ′)− Gδ(U∗
1δ′ , U∗

2δ′)
)‖X .

The bound for the first two terms in the right-hand side comes from (5.2), and the
bound for the third term is derived from (4.9) and its analogue for the Stokes problem
together with the regularity Hypothesis 2.2. The fourth term is easily bounded from
(4.14) and (4.20), while estimating the fifth one relies on (4.7) and (4.17), combined
with (5.2). Finally, estimating the last term also relies on (4.7) and (4.17) together
with the introduction of approximations of αi(k

∗
i ) and γi(k

∗
i ) in PK′

i
,N ′

i
(Ωi); see (4.12).

We are now in a position to apply the Brezzi–Rappaz–Raviart theorem [10] (see
also [15, Chap. IV, Thm. 3.1]).

Theorem 5.8. If Hypotheses 2.2 and 2.4 are satisfied with s∗ > 2(d − 2) + 1
and if the data f i, i = 1, 2, belong to Hσ(Ωi)

d for some σ > sup{d2 , s∗ − 1}, there
exist an integer K0 and a constant λ such that, for K1 ≥ K0 and K2 ≥ K0, problem
(3.4)–(3.7) has a unique solution (U1δ, U2δ), with each Uiδ equal to (uiδ, kiδ), in the
neighborhood U of U = (U∗

1 , U
∗
2 ) defined as follows:

U =
{
Zδ = (Z1δ, Z2δ) ∈ Xδ; ‖U − Zδ‖X ≤ λκ−1

δ

}
.(5.17)

Moreover, the following error estimates hold for i = 1 and 2:

‖u∗
i − uiδ‖H1(Ωi)d + ‖k∗

i − kiδ‖L2(Ωi) ≤ C0 (inf{K1,K2})1−s∗(5.18)

for a constant C0 depending only on the norms of (U∗
1 , U

∗
2 ) in

∏2
i=1(H

s∗(Ωi)
d ×

Hs∗(Ωi)) and of (f1,f2) in
∏2

i=1 Hσ(Ωi)
d.
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2392 BERNARDI, CHACÓN REBOLLO, LEWANDOWSKI, MURAT

We conclude with an estimate on the pressure, which is easily derived from the
inf-sup condition established in Lemma 3.4.

Corollary 5.9. If the assumptions of Theorem 5.8 are satisfied, for the solution
(U1δ, U2δ) exhibited in Theorem 5.8, there exists a unique pair (p1δ, p2δ) in Mm

1δ×Mm
2δ

such that (Ũ1δ, Ũ2δ), with each Ũiδ equal to (uiδ, piδ, kiδ), is a solution of problem
(3.4)–(3.5). Moreover, the following error estimates hold for i = 1 and 2:

‖p∗i − piδ‖L2(Ωi) ≤ C ′
0 (β

m
iδ )

−1 (inf{K1,K2})1−s∗(5.19)

for the constants βmiδ evaluated in (3.9) and a constant C ′
0 depending only on the norms

of (Ũ∗
1 , Ũ

∗
2 ) in

∏2
i=1(H

s(Ωi)
d×Hs−1(Ωi)×Hs(Ωi)) and of (f1,f2) in

∏2
i=1 Hσ(Ωi)

d.

6. Conclusions and numerical algorithms. The regularity assumptions in
Theorem 5.8 in the three-dimensional case are very unlikely; however, they seem
unavoidable. This comes from the fact that the linearized problem (2.20) and (2.21)
makes sense only for a smooth solution U∗. Nevertheless, this does not prevent the
convergence of numerical experiments.

In contrast, the assumptions of Theorem 5.8 are fully reasonable in the two-
dimensional case and, if these assumptions hold, optimal error estimates are derived
for the velocity, the kinetic energy, and the pressure for appropriate choices of the
spaces Miδ. In this case, the maximal regularity s∗ would very likely coincide with
the s0 � 1.5946 introduced in section 2 so that the error would be smaller than
C0 (inf{K1,K2})−0.5946. Moreover, in the case of the rectangle, the explicit form of
the singular functions associated with the Stokes operator with Dirichlet–Neumann
boundary conditions is known [20]. As usual [6], this would lead to double the con-
vergence order: for smooth enough data f i, i = 1 and 2, the error would be smaller
than C0 (inf{K1,K2})−1.1892.

The most standard choice of an operator ΠΓ
iδ satisfying (5.3) would be the orthog-

onal projection operator Π
1
2

Ki
from H

1
2
00(Γ) onto PKi(Γ)∩H

1
2
00(Γ); however, computing

this operator is not easy. So we take ΠΓ
iδ equal to IΓ

iδ Π
1
2

Ki
. Indeed, estimate (5.3)

is still satisfied by this operator and, in this case, the boundary conditions at the
interface can be written in a very simple way:

kiδ = IΓ
iδ(|u1δ − u2δ|2) on Γ.

Note, moreover, that in the present situation there is no theoretical reason to choose
K1 �= K2 and that, when K1 and K2 coincide, these conditions are still less expensive
to enforce. However, for more complex geometries (for instance, if the Ωi are convex
quadrilaterals), different values of K1 and K2 can be needed since the regularity
properties of the velocities in Ω1 and Ω2 are different.

Exactly the same arguments as for Theorem 5.8 prove [10] the convergence of New-
ton’s algorithm for solving the nonlinear problem (3.4)–(3.5), when the initial guess
(U0

1δ, U
0
2δ) belongs to the domain U introduced in (5.17); however, this method seems

too expensive for the present problem. Instead of this, for an initial guess (U0
1δ, U

0
2δ),

we propose to solve iteratively the following problem: if the pair (Ũn
1δ, Ũ

n
2δ), with

Ũn
iδ = (uniδ, p

n
iδ, k

n
iδ), is supposed to be known, then we solve the following problem:
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Find (un+1
iδ , pn+1

iδ ) in Xiδ ×Miδ such that

∀viδ ∈ Xiδ,

aiδ(k
n
iδ;u

n+1
iδ ,viδ) + biδ(viδ, p

n+1
iδ )

+
( |uniδ − unjδ| (un+1

iδ − un+1
jδ ),viδ

)Γ
iδ
=

(
f i,viδ

)
iδ
,

∀qiδ ∈ Miδ, biδ(u
n+1
iδ , qiδ) = 0;

(6.1)

Find kiδ in PKi,Ni(Ωi), such that

kn+1
iδ = 0 on Γi and kn+1

iδ = IΓ
iδ(|un+1

1δ − un+1
2δ |2) on Γ,(6.2)

and

∀ϕiδ ∈ Yiδ, ciδ(k
n
iδ; k

n+1
iδ , ϕiδ) =

(
αi(k

n
iδ) |∇un+1

iδ |2, ϕiδ
)
iδ
.(6.3)

Clearly, these two linear problems are well-posed and the sequence (Ũn
1δ, Ũ

n
2δ)n con-

verges. Numerical experiments to check the efficiency of the algorithm are under
consideration.
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Dunod, Paris, 1968.

[18] J.-L. Lions, R. Temam, and S. Wang, Models for the coupled atmosphere and ocean, Comput.
Mech. Adv., 1 (1993), pp. 1–120.
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