
Bol. Soc. Esp. Mat. Apl.
no42(2008), 127–135

NUMERICAL MODELING OF BUOYANT TURBULENT
MIXING LAYERS
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Abstract

We introduce in this paper some elements for the mathematical
and numerical analysis of turbulence models for oceanic surface mixing
layers. In these models the turbulent diffusions are parameterized by
means of the Richardson’s number, that measures the balance between
stabilizing buoyancy forces and un-stabilizing shearing forces. The well-
possedness of these models is a difficult mathematical problem, due to
the partial monotonic nature of the space operators involved. We analyze
the existence and stability of equilibria state, and devise a conservative
numerical scheme satisfying the maximum principle. We present some
numerical tests for realistic flows in tropical seas that reproduce the
formation of mixing layers, in agreement with the physics of the problem.
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1 Introduction

This paper is devoted to the mathematical and numerical analysis of turbulence
models of surface oceanic mixing layers. The wind-stress generates intense
mixing processes in a layer below the ocean surface. This layer has two parts,
the upper one is an homogeneous layer, known as the mixed layer. This layer
presents almost-constant temperature (and salinity). The bottom of the mixed
layer corresponds to the top of the thermocline. In tropical seas a sharp
thermocline is formed. Below this layer appears a thinner layer where still
mixing processes do occur, but which has not a homogeneous structure. The
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zone formed by the two layers is known as the mixing layer. Its thickness
may vary between ten meters and a few hundred of meters, depending on the
latitude. It also presents seasonal variations.

The parametrization of turbulence in the mixing layer must take into account
the two forces that act in the momentum and mass exchange produced by
mixing effects: Buoyancy and shear. This introduces additional complexities
with respect to the usual modeling of turbulent flows with constant density, from
both the physical and the mathematical standpoints. Closure terms are now
parameterized in terms of the Richardson number (that measures the balance
between stabilizing buoyancy forces and un-stabilizing shearing forces), that
in this sense plays a role similar to that of the Reynolds number, used to
parameterize closure terms for constant-density turbulence.

In this paper we introduce some mathematical and numerical elements for
the analysis of the simplest turbulence models of mixing layers. These are
first order closure models: Pacanowski and Philander model (called PP model,
1981, [6]) and the Large and Gent model (called KPP model, 1994, [3]) (Section
2). Let us mention that second order models have been developed by Mellor
and Yamada (called MY model, 1982, [5]) and Gaspar et al. (1990,[1]). These
models are widely used in physical oceanographic applications, but have received
few attention from the mathematical community.

We observe that, in despite of their apparent simplicity, the well-possedness
of first-order models is a difficult mathematical problem due to the partial
monotonic nature of the space operators involved (Section 3). We analyze the
existence of equilibria states, proving that these necessarily correspond to linear
profiles of velocity and temperature (or salinity) (Section 4). We also analyze
the stability of these equilibria, and prove that at least one is stable for vertical
stable configurations. We introduce a new model that has just one equilibrium
state (Section 5). We next devise a conservative numerical scheme for which
we prove a maximum principle (Section 6). We finally present some numerical
tests for realistic flows in tropical seas that reproduce the formation of mixing
layers, in agreement with the physics of the problem. We stress that our new
models produces results very close to the PP one, and in addition is able to
handle unstable profiles (Section 7).

2 Setting of model problems

Typically, the variables used to describe the mixing layer are the statistical
means of density and velocity (denoted by u and ρ). In the ocean, density
=function(temperature, salinity) (State equation). We shall consider the
density as an idealized thermodynamic variable.

We assume

U = (u(z, t), 0, w(z, t)), p = p(z, t), ρ = ρ(z, t)

and neglect Coriolis forces (hypothesis accurate for tropical oceans) and laminar
diffusion (which will be absorbed by eddy diffusion). Then the averaged Navier-
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Stokes equations reduce to





∂u

∂t
= − ∂

∂z
〈u′ w′〉 ,

∂ρ

∂t
= − ∂

∂z
〈ρ′ w′〉 ,

(1)

To close these equations, we use the concept of eddy diffusion:

−〈u′ w′〉 = ν1
∂u

∂z
, −〈ρ′ w′〉 = ν2

∂ρ

∂z
.

Coefficients ν1 and ν2 are expressed as functions of the gradient Richardson
number R defined as

R = − g

ρref

∂ρ

∂z(
∂u

∂z

)2

Note that R is the ratio between the stabilizing vertical forces due to buoyancy
and the un-stabilizing horizontal ones due to shear in a water column.

When R >> 1, a strongly stratified layer takes place. This correspond to
a stable configuration. When 0 < R << 1, a slightly stratified layer takes
place. This correspond to a configuration with low stability. The case R < 0

corresponds to a configuration statically unstable (
∂ρ

∂z
> 0), that in fact we

are not modeling. However, we must handle this situation for our numerical
experiments. A simple way is to set large constant values for the turbulent
diffusions in this case.

The set of equations, initial and boundary conditions governing the mixing
layer can now be written






∂u

∂t
− ∂

∂z

(
ν1

∂u

∂z

)
= 0,

∂ρ

∂t
− ∂

∂z

(
ν2

∂ρ

∂z

)
= 0, for t > 0 and − h 6 z 6 0,

u = ub, ρ = ρb at the depth z = −h,

ν1
∂u

∂z
= V, ν2

∂ρ

∂z
= Q at the surface z = 0,

u = u0, ρ = ρ0 at initial time t = 0.

(2)

Here, V is the forcing exerced by the wind-stress (V =
ρair

ρref
Cfriction

∣∣Uair
∣∣2),

and Q represents the thermodynamical fluxes, heating or cooling, precipitations
or evaporation.

To model the turbulent diffusions in terms of the Richardson number, a
central idea is that a stable configuration due to buoyancy forces inhibits the
turbulent exchange of mass and momentum. Pacanowski and Philander [6]
propose

ν2(R) =
Constant

(1 + σ R)n
ν1(R).



130 Bennis, Chacón, Gómez and Lewandowski

This leads to the modeling ν1 = f1 (R) , and ν2 = f2(R), with

f1 (R) = α1 +
β1

(1 + 5R)
2 , f2 (R) = α2 +

f1 (R)

1 + 5R
, for PP model, and

f1 (R) = η1 +
γ1

(1 + 10R)
2 , f2 (R) = η2 +

γ2

(1 + 10R)
3 for KPP model.

The constants are chosen to fit numerical results with experimental
measurements, these are given by α1 = 1.10−4, β1 = 1.10−2, α2 = 1.10−5,
and η1 = 1.10−4, γ1 = 1.10−1, η2 = 1.10−5, γ2 = 1.10−1 (units: m2s−1).

3 Well-possedness

Some elements for the analysis of the well-possedness of problem (2) are deduced
from the analysis of monotonicity of the space operator appearing in it.

Let us assume that the functions fi are bounded C1 functions, with

f ′
i(R) ≤ 0, (i = 1, 2). (3)

Denote v = (ρ, u)T , V = (Q,V )T , M = M(R) =

(
f1(R) 0

0 f2(R)

)
. For any

function a = a(t, z), we shall denote ∂za =
∂a

∂z
, ∂ta =

∂a

∂t
.

Thus, our system can be written under the form (we assume homogeneous
Dirichlet boundary conditions for simplicity),

∂tv − ∂z(M(R)∂zv) = 0, (4)

M(R)∂zv|z=0 = V, v|z=−h = 0, (5)

v|t=0 = v0. (6)

Let now A = A(v) and F be defined by

(A(v),w) =

∫ 0

−h

M(R)∂zv.∂zw = (M(R)∂zv, ∂zw),

(F,w) = V.w(0).

Therefore system (4) − (5) − (6) is a system of the form

dv

dt
+ A(v) = F, v(0) = v0,

in the sense that ∀w ∈ H2

d

dt
(v,w) + (A(v),w) = (F,w)

where the space H is defined by H = {u ∈ H1([−h, 0]), u(−h) = 0}.



Modeling turbulent oceanic surface mixing layers 131

We want to use the theory of monotonic operators to analyze the well-
possedness of this equation. We intend to prove that the operator A is
monotonic, in the sense that

∀ (v1,v2) ∈ H2×2, (A(v1) − A(v2),v1 − v2) ≥ 0.

In the actual stage of our research, we are able to prove that under condition
(3) indeed we have

∀ (v1,v2) ∈ H2 × H2, (A(v1) − A(v2),v1 − v2) ≥ CK‖∂zv1 − ∂zv2‖2
L2(−h,0),

(7)
if v1,v2 belong to a neighborhood K of the origin. We hope that this will allow
to prove a well-posseddness result for small data.

4 Equilibria states

Although we are not able to analyze the model system (2) in general, it is
possible to study some properties of equilibria states. Let us consider the
stationary model system:

∂

∂z

(
f1 (R)

∂u

∂z

)
= 0,

∂

∂z

(
f2 (R)

∂ρ

∂z

)
= 0. (8)

Integrating (8) with respect to z we obtain






f1 (R)
∂u

∂z
= constant = V (momentum flux),

f2 (R)
∂ρ

∂z
= constant = Q (heat flux).

(9)

Using the expression (2), we deduce an implicit equation for R

R = − g

ρ0

Q

V 2

(f1 (R))
2

f2 (R)

If this equation has a solution Re, this reads

Potential energy

Turbulent kinetic energy
(Equilibrium) =

−Q

V 2
× Constant(Re).

Note that from (9), the equilibria states are linear profiles for both velocity and
density.

PP and KPP models present several equilibria Re for a range [r∗,+∞)
of fluxes ratio r = −Q/V 2, where r∗ is negative. This corresponds to static
instability. So, these model include as mathematical equilibria some physical
static unstable configurations.
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To avoid the multiplicity of steady states, we introduce a new model, given
by

f1 (R) = α1 +
β1

(1 + 5R)
2 , f2 (R) = α2 +

f1(R)

(1 + 5R)
2 ,

with the same constants as the PP model. This new model has a unique
equilibrium Re for any fluxes ratio r. This is a mathematically favorable
property, still without physical meaning when r < 0.

5 Stability of equilibria states

We analyze the linear stability of equilibria states. To do it, we construct a
model of time evolution of a small perturbation of a equilibrium state (ue, ρe):

(u, ρ) = (ue, ρe) + (u′, ρ′)

Set ψ =
∂ρ

∂z
and θ =

∂u

∂z
, and so R = R (θ, ψ), νi = νi (θ, ψ) . The equations

satisfied by the perturbation (u′, ρ′) are deduced from model equations :





∂u′

∂t
− ∂

∂z
(ν1 (θ, ψ) (θe + θ′)) = 0,

∂ρ′

∂t
− ∂

∂z
(ν2 (θ, ψ) (ψe + ψ′)) = 0.

(10)

The linearized equations for (u′, ρ′) then are

∂V

∂t
− A

∂2V

∂z2
= 0,with V =

(
u′

ρ′

)
, (11)

where A is the amplification matrix,

A =




νe
1 + θe

(
∂ν1

∂θ

)e

, θe

(
∂ν1

∂ψ

)e

ψe

(
∂ν2

∂θ

)e

, νe
2 + ψe

(
∂ν2

∂ψ

)e



 .

Linear stability of the equilibrium solution (ue, ρe) follows if any perturbation
(u′

0, ρ
′
0) imposed at initial time t = 0 is damped as t → ∞. This is verified

if the eigenvalues λ1, λ2 of A are such that Re (λ1) > 0 and Re (λ2) > 0.
After some algebra, we conclude that all models are linearly stable for Re > 0.
But strikingly also for a small range [R∗, 0] with R∗ < 0, which (we recall)
corresponds to physically unstable configurations.

We have also investigated the non-linear stability of our models. To do it,
we have solved numerically the full non-linear system (2) starting from small
and even large perturbations of equilibria states. We have used the numerical
scheme described in the next section. Our conclusions also are that for all
models the equilibria states are non-linearly stable, and, even more, behave as
strong attractors. The typical time that a given initial state takes to approach
an equilibrium state is of the order of several months. This must be compared
with the typical time of formation of the thermocline, which is of a few days.
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6 Numerical discretization

We have performed a centered conservative semi-implicit discretization of the
PDEs appearing in model (2)by finite differences. To describe it, assume that
the interval [−h, 0] is divided into N subintervals of length ∆z = h/(N − 1),
with nodes zi = −(i − 1)h ∆z, i = 1, · · · , N . We respectively approximate the
values u(zi, tn), ρ(zi, tn) by un

i and ρn
i , where tn = n∆t. The equation for u,

for instance, is discretized at node zi, with i = 2, · · · , N − 1 by

un+1
i − un

i

∆t
−

f1(R
n
i−1/2)u

n+1
i−1 −

[
f1(R

n
i−1/2) + f1(R

n
i+1/2)

]
un+1

i + f1(R
n
i+1/2)u

n+1
i+1

(∆z)2
= 0,

where

Rn
i−1/2 = − g

ρref

(ρn
i − ρn

i−1)/∆z
[
(un

i − un
i−1)/∆z

]2 ,

and a similar discretization for the equation for ρ. The boundary conditions
have been discretized by

un+1
1 = un+1

b , ρn+1
1 = ρn+1

b ;

f1(R
n
N−1/2)

un+1
N − un+1

N−1

∆z
= V n+1

N .

This last equation allows to compute un+1
N from un+1

N−1. So we may construct our

discretization in terms of the unknowns Un+1 = (un+1
2 , · · · , un+1

N−1) and similarly
for ρ. In matrix form, this discretization reads

An+1 Un+1 = Bn+1,

where An+1 and Bn+1 respectively are the tridiagonal matrix and the vector
array defined with obvious notation by

An+1
i−1,i = −αn

i−1/2, An+1
i,i = 1+αn

i−1/2+αn
i+1/2, An+1

i+1,i = −αn
i+1/2, i = 2, · · · , N−2;

An+1
N−2,N−1 = −αn

N−3/2, An+1
N−1,N−1 = 1 + αn

N−3/2;

Bn+1 = (un
2 + αn

3/2 un
b , un

3 , · · · , un
i , · · · , un

N−2, u
n
N−1 +

∆t

∆z
V )t,

where

αn
i−1/2 =

∆t

(∆z)2
f1(R

n
i−1/2).

As f1 ≥ 0, An+1 is an M-matrix and then (An+1)−1 has positive entries. Then,
we deduce a maximum principle: If the initial data, un

b and V are positive, the
un

i are all positive.
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7 Numerical tests

We have simulated some realistic flows, corresponding to the Equatorial Pacific
region called the West-Pacific Warm Pool, located at the equator between 120◦E
and 180◦E. In this region the sea temperature is high and almost constant along
the year (28−30◦C). The precipitations are intense and hence the salinity is low.
We initialize the code with data from the TAO (Tropical Atmosphere Ocean)

Figure 1: Initial zonal velocity, meridian velocity and density profiles (from left
to right).

array (McPhaden [4]), which have been used in many numerical simulations.

Here, we present the results corresponding to a mixed layer induced by the
wind stress, using initial velocity and density profiles measured at 0◦N, 165◦E
for the time period between the 15th June 1991 and the 15th July 1991,
displayed in Figure 1. Observe that the density profile does not present a
mixed layer.

We used a two-dimensional version of model (2), with buoyancy flux equal
to −1.10−6 kg.m−2.s−1 (≃ −11 W/m2), which is realistic for this region (Cf.
[2]). We have taken as boundary conditions, a zonal wind (u1) equal to 8.1 m/s
(eastward wind) and a meridional wind (u2) equal to 2.1 m/s (northward wind).
These values are larger than the measured ones, because we want to force the
formation of a mixed layer. We have used ∆z = 1m and ∆t = 60s. The results
are grid-independent, in the sense that they remain practically unchanged when
∆z and ∆t decrease.

Figure 2 displays the results corresponding to t = 48 hours. On top we
represent the whole mixing layer, and on bottom, the upper 40m of layer.
The plots for density profiles show the formation of a pycnocline at z = −30,
approximately. Velocity and density profiles are quite close for PP and the new
model, while the velocity provided by KPP model is somewhat different, mainly
near the surface. Also, the density profiles and the pycnocline simulated by the
three models are quite similar.

Let us remark that our new model is the one that introduces the smallest
levels of turbulent viscosity and diffusion. It is also able to simulate non-stable
initial profiles, providing physically coherent results.
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Figure 2: Comparison of three turbulence models: R213 (PP), R224 (KPP),
R23 (new one) (In this notation Rijk, i, j and k represent the exponents of the
denominators in the definition of the turbulent diffusions f1 and f2). Top: Full
mixing layer. Bottom: Upper 40m of mixing layer.
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