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Abstract. In this paper we propose an unconditional energy-stable time-splitting finite-element
scheme for approximating the Ericksen—Leslie equations governing the flow of nematic liquid crystals.
These equations are to be solved for a velocity vector field and a scalar pressure as well as a director
vector field representing the direction along which the molecules of the liquid crystal are oriented.
The algorithm is designed at two levels. First, at the variational level, the velocity, pressure, and
director are computed separately, but the director field has to be computed together with an auxiliary
variable (associated to the equilibrium equation for the director) in order to deduce a priori energy
estimates. Second, at the algebraic level, one can avoid computing such an auxiliary variable if this
is approximated by a piecewise constant finite-element space. Therefore, these two steps give rise
to a numerical algorithm that computes separately only the primary variables: velocity, pressure,
and director vector. Moreover, we will use a pressure stabilization technique that allows a stable
equal-order interpolation for the velocity and the pressure. Finally, some numerical simulations are
performed in order to show the robustness and efficiency of the proposed numerical scheme and its
accuracy.
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1. Introduction. In recent years, there has been great interest in the numerical
approximation of liquid crystal flows. The reason for this is that liquid crystals are not
easy to study from experimental observations due to the effect of boundary conditions
of the confining geometries. Thus, numerical simulations may allow a clear insight
into the behavior of liquid crystals and the understanding of their underlying physical
properties. For instance, numerical simulations contribute to improving the design of
practical devices.

Liquid crystals are materials that show intermediate transitions between solid and
liquid phases, called mesophases. This means that liquid crystals combine features
of both isotropic liquids and crystalline solids. These mesophases are due, in part,
to the fact that liquid crystals are made of macromolecules of similar shape and size,
which are commonly represented as rods or plates.
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The mathematical theory describes liquid crystals based on the different degrees
of positional and orientational ordering of their molecules. Thus, the position order
alludes to the relative position of the molecules, while the orientation order refers
to the fact that the molecules tend to be locally aligned toward a certain preferred
direction. Such a direction is described by a unit vector along the molecule if rod-
shaped or perpendicular to the molecule if plate-shaped that measures the mean values
of alignments.

The simplest phase of liquid crystals, called nematic, possesses an orientational
ordering but not a positional ordering. That is, the molecules flow freely as in a
disordered isotropic liquid phase while tending to be orientated along a direction which
can be manipulated with mechanical (boundary conditions), magnetic, or electric
forces.

The simplest phenomenological description of spatial configurations in nematic
liquid crystals is the Oseen—Frank theory [31, 15]. This approach consists in modeling
equilibrium states as minima of a free energy, depending on the director vector d,
which is set up through symmetry and invariance principles to capture some properties
observed from experiments. In its most basic form, the free energy functional is given
by

E(d) = K / VP,

where K > 0 is an elastic constant. Upon minimizing this energy subject to the
sphere constraint |d| = 1, the following optimality system appears:

~Ad—|Vd[*’d=0 inQ.

The defect points or singularities in liquid crystals are regions where the anisotropic
properties of molecules are broken. That is, the liquid crystal behaves in local zones
as an isotropic fluid, where the director field cannot be defined. Mathematically, these
defects are modeled by |d| = 0. The limitation in the Oseen—Frank theory relies on
the fact that it can explain only point defects in liquid crystal materials but not the
more complicated line and surface defects that are also observed experimentally. One
way of inducing defect points is with the help of the boundary conditions.

The motion of defect points in liquid crystals can be studied via the long-time
behavior of the harmonic map flow for which it is also interesting to incorporate
the influence of the velocity. On the contrary, in many situations, the anisotropic
local orientation of the director field influences the stress tensors that govern the
fluid velocity. The hydrodynamic theory of nematic liquid crystals was established
by Ericksen [13, 12] and Leslie [22, 21]. The fundamental system consists of a set of
fully coupled, macroscopic equations, which contains the Oseen—Frank elastic theory
governing the steady state of equilibrium solutions.

The remaining part of this paper is organized as follows. Section 2 starts by
establishing some notation used throughout this paper. Then we follow with the
differential formulation of the Ericksen—Leslie and Ginzburg-Landau equations. To
end the section, we sum up the main contributions on the finite-element approximation
of the Ginzburg—Landau equations. In section 3 we give some shorthand notation
for finite-element spaces in order to be able to define the projection time-stepping
algorithm and give a brief introduction of some key ideas leading to the proposed
method. Next, in section 4, we prove a priori estimates for the algorithm. Section 5 is
devoted to some implementation improvements at the algebraic level and validating
the scheme with some numerical simulations.
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2. Statement of the problem. Let O C RM M = 2,3, be any bounded open
set with boundary 9. For 1 < p < oo, LP(2) denotes the space of pth-power
integrable real-valued functions defined on €2 for the Lebesgue measure. This space is
a Banach space endowed with the norm [|vzs(q) = ([, [v(z)|P dz)'/? for 1 < p < o0
or [|v]| o) = esssupgeq |v(x)] for p = oo. In particular, L*(Q2) is a Hilbert space
with the inner product

() = [ @p(z)ds

and its norm is simply denoted by | - ||. For m a nonnegative integer, we define the
classical Sobolev spaces as

H™(Q) = {v e L*Q); 0" € L*(Q) VY |k| < m},

associated to the norm

[ollzmey = | > 0%*]

0<|k|<m

where k = (k1,...,ky) € NM is a multi-index and |k| = Zi\il k;, which is a Hilbert
space with the obvious inner product. We will use boldface letters for spaces of vector
functions and their elements, e.g., L*(Q) in place of L*(2)M.

Let D(§2) be the space of infinitely times differentiable functions with compact
support on €. The closure of D(2) in H™ () is denoted by HJ*(£2). We will also
make use of the following space of vector fields:

V={veD):V -v=0in Q},

where V- u = Zf\il O;u; is the divergence operator. We denote by H and V the
closures of V in the L*(2)- and H'(Q)-norm, respectively, which are characterized
by (see [36])

H={ucL*Q):V-u=0inQ, u-n=0ondQ},
V={ucH'(Q):V-u=0inQ, u=0ondQ},

where n is the outward normal to 2 on 0€). This characterization is valid for €2 being
Lipschitzian. Finally, we consider

Lg(Q):{peL2(Q): /Qp(sr:)dsc:()}.

2.1. The Ericksen—Leslie problem. Let T > 0 be a fixed time. We will use
the notation @ = Q x (0,7) and X = 9 x (0,T). The Ericksen-Leslie equations are
written as

(2.1a) ord + (w-V)d — yAd —y|Vd[*d =0 in Q,
(2.1b) |d =1 inQ,
(2.1¢) du+ (u-Vu —vAu+Vp+ AV - (Vd)TVd) =0 in Q,
(2.1d) V-u=0 1inQ,
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where u : Q — RM is the fluid velocity, p : @ — R is the fluid pressure, and d : Q —
RM is the orientation of the molecules. The parameter v > 0 is a constant depending
on the fluid viscosity, A > 0 is an elasticity constant, and v > 0 is a relaxation
time constant. The operators involved in system (2.1) are described as follows. The
Laplacian operator Au = Zf\il 0i;w; the convective operator (u-V)w = Zi\il u; O;w.
Moreover, (Vd)” denotes the transposed matrix of Vd = (9;d;); ;, and |d| = |d(z,t)]
is the Euclidean norm in R,

The system (2.1) provides a phenomenological description for the hydrodynamics
of nematic liquid crystals from the macroscopic point of view. It was reduced to
essentials by Lin [23] from the fundamental set of fully coupled, macroscopic equations
derived by Ericksen [13, 12] and Leslie [22, 21], which contains the Oseen—Frank elastic
energy governing the steady state as equilibrium solutions.

Equation (2.1a) models the conservation of the angular momentum; in particular,
together with (2.1b), it is a convective harmonic heat map flow equation into spheres.
The latter indicates that d is not a state variable; it only describes the orientation
of the nematic liquid crystal molecules. Equations (2.1¢c) and (2.1d) are the Navier—
Stokes equations related to the conservation of the linear momentum. The molecules
add (elastic) stress to the fluid via the term AV - ((Vd)?Vd), and the fluid transports
the molecules via the term (u - V)d.

To these equations we will add homogeneous Dirichlet conditions for the velocity
field and homogeneous Neumann boundary conditions for the director field,

(2.2) u(x,t) =0, Opd(x,t)=0 for (x,t) € X,
and the initial conditions
(2.3) d(x,0) = do(x), u(z,0) =uo(x) for x e

Here ug : Q — RM | with ug € H, and dy : Q — RM | with dy € H'(Q) satisfying
|do] = 1 in Q, are given functions.

The following energy law for system (2.1) holds under some regularity assumptions
for u and d:

d (1 A
(2.4) g <§||u||2 + §|Vd||2> +v[|Vu|? + M| Ad + [VdPd|* = 0.

However, it requires that d must have the unit length, i.e., |[d| = 1 almost everywhere
in @. It makes system (2.1) difficult to manage from the numerical point of view since
the satisfaction of the sphere constraint at the nodes is not implied at any other points
via interpolation. For this reason, two approaches have been considered for dealing
with it: a penalty method and a saddle-point method. These techniques provide
numerical schemes with an associated energy law without the need of satisfying the
sphere constraint for d. The penalty method has been intensively studied compared
to the saddle-point strategy since the latter makes it more challenging to perform the
numerical analysis rigorously. The difficulty lies in proving an inf-sup condition for
the Lagrangian multiplier related to the sphere constraint. In order to hold an inf-sup
condition [20], a stronger regularity than that provided by (2.4) is needed; therefore
establishing an inf-sup condition under the regularity stemming from (2.1) is still an
interesting, open problem.
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2.2. A Ginzburg—Landau penalized problem. A general penalty version of
system (2.1) to enforce the sphere constraint reads as

(2.5a) od+ (u-V)d+ 'y<€i2f(d) — Ad) =0 inQ,
(2.5b) Hu+ (u-V)u—vAu+Vp+ AV - ((Vd)'Vd) =0 in Q,
(2.5¢) V-u=0 inQ,

where f(d) is the penalty function related to the constraint |d| = 1, and € > 0 is the
penalty parameter. It is important to select f(d) to be the gradient of a scalar-valued
function F(d), i.e., f(d) = VqF(d) for all d € RM. This penalty term can also
be physically meaningful and represents a possible extensibility of molecules. Let us
define a truncated potential

1
Z(|d|2 —1)% if|d| <1,

(2.6) F(d) = 5 :
(1 1> if |d| > 1;
hence
(Idf* - 1)d  if]d| <1,
(2.7) VaF(d) = f(d) = 2(|d| — 1)% if |d| > 1.

The virtue of system (2.5) is that its solutions satisfy an energy law without assuming
any restriction on d as was mentioned above. We give here a sketch of the proof of the
energy estimate obtained in [6] based on that of [24] in order to have a clear picture
of how our numerical scheme is designed. First, note that

AV - (Vd)TVd) = \V <%|Vd|2 + 6—12F(d)) —A(Vd)" <—Ad+ a—lzf(d))
and
(u-V)d]- <—Ad + E%f(d)) — (Va)T (—Ad+ 6—12f(d)> .
Next, multiplying (2.5a) and (2.5b) by A(~Ad + % f(d)) and u, respectively, and

integrating over €2, we obtain, after some integrations by parts,
2

d 1
(2.8) ag(u,d)+u|Vu||2+)\7H—Ad+ gf(d) =0,
where
(2.9) E(ud) = L ul? + 2|Vd)? + 2 / F(d)
' ) 2 e? Jo

represents the total energy involving the model, which consists of the kinetic energy
L|lul|?, the elastic energy 3||Vd||?, and the penalty energy % [, F(d).

System (2.5) can be viewed as being a regularization of the Ericksen—Leslie equa-~
tions (2.1) since one can prove the extra regularity estimate [6]:

T
C
2dt < —
/0 |ad()|?dt < 5.

Obviously, such an estimate has no meaning as the penalization parameter ¢ goes to
ZEro.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/16/16 to 150.214.182.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

B266 CABRALES, GUILLEN-GONZALEZ, GUTIERREZ-SANTACREU

2.3. Known results. We discuss briefly the previous numerical schemes applied
to the Ginzburg-Landau problem. The first two numerical schemes for problem (2.5)
were the works of Liu and Walkington [28, 29]. The former used an implicit Euler
time-stepping scheme together with LBB-stable finite elements for the velocity and
pressure and Hermite bicubic C'-finite elements for the director. Nevertheless, the
algorithm turned out to be computationally expensive due to the number of degrees
of freedom involving in the resolution together with the fact that the performance
was not an easy task because of the set of finite-element basis functions connecting
derivatives up to second order. The latter scheme used the same time discretization
but took advantage of using the auxiliary variable w = Vd in order to rule out the
complexity of using C''-finite elements, even though the number of new unknowns
made the algorithm inefficient for large-scale simulations. Afterwards came the work
of Lin and Liu [26], who utilized a time-stepping semiexplicit Euler algorithm, where
the stress tensor V- ((Vd)T Vd) was explicitly discretized, separating the computation
of the velocity and pressure from that of the director. Girault and Guillén-Gonzélez
[16] introduced the auxiliary variable w = —Ad in order to design a semiexplicit
Euler scheme where the Ginzburg-Landau function was explicitly discretized. It is
clear that the use of the Laplacian operator in place of the gradient operator as in [29]
reduced considerably the number of global unknowns. One common feature of all of
these numerical schemes described above is that no discrete energy law equivalent to
(2.8) was proved, and hence a priori estimates independent of the penalty parameter
e could not be deduced.

To the best of our knowledge, the only numerical scheme that preserved a discrete
version of (2.8) made use of the auxiliary variable w = —Ad + % f(d) along with an
explicit-concave, implicit-convex time discretization of the Ginzburg—Landau penalty
function f(d) = (|d|* — 1)d (see [6]) leading to a nonlinear scheme. Following the
same ideas as in [6], a linear scheme was developed in [18] by using a fully explicit time
integration of the potential term, either truncated or not. The algorithm presented
in this paper starts from [18].

Recently, in [3], a saddle-point strategy was suggested for both the Ericksen—
Leslie and the Ginzburg—Laundau equations resulting in numerical algorithms which
maintain an energy equality comparable to (2.8). The reader is referred to [4] for a
survey of numerical methods on the Ginzburg—Landau approximation.

2.4. The main contribution of this paper. An important observation con-
cerning numerical schemes which embody an energy law from system (2.5) is that
the time integration couples all the unknowns; therefore, the computational work re-
quired to solve a time step makes them extremely expensive. Thus, the difficulty in
designing an efficient numerical approximation for system (2.5) lies in choosing a time
discretization that, as well as providing energy estimates independent of the penalty
parameter €, decouples all the variables being computed. Observe that problem (2.5)
consists of the Navier—Stokes equations for velocity and pressure with an extra “elas-
tic” stress tensor, and a convective harmonic map heat flow system to govern the
dynamics of the director field.

Projection time-stepping strategies are used in the context of Navier—Stokes as ef-
ficient time-splitting integrations. The starting point of most projection time-stepping
methods is the Chorin—Temam algorithm [9, 35], which decouples the computation
of the velocity field from that of the pressure, separating the incompressibility con-
straint from the momentum equation. However, in order to apply such a method
to the Ginzburg-Landau equations, we need some additional strategies so that the
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computation of the director vector can be also segregated. The same difficulty arises
in the context of magnetohydrodynamics (MHD) fluids for which Armero and Simo
[1] designed an algorithm which decoupled the computation of the velocity field from
that of the magnetic field. We refer the reader to [5], where the ideas of Chorin and
Temam are combined with those of Armero and Simo for the MHD equations. It is
in this spirit that the algorithm presented in [30] is designed for a triphasic Navier—
Stokes/Cahn-Hilliard problem, decoupling the Navier-Stokes subproblem from the
Cahn—Hilliard one.

The goal of this paper is then to extend these types of strategies for developing
a numerical scheme for (2.5) which is linear, uses low-order finite elements, decouples
the angular, the momentum, and the incompressibility equations, preserves a discrete
energy law without requiring a relation between the discretization parameters and
the penalty parameter, does not need any additional variable, and avoids an inf-sup
condition for velocity and pressure.

3. Finite element approximation.

3.1. Preliminaries. Herein we introduce the hypotheses that will be required
throughout this paper.

(H1) Let © be a bounded domain of R™ with a polygonal or polyhedral Lipschitz-
continuous boundary.

(H2) Let {Tx}n>0 be a family of regular, quasi-uniform triangulations of 2 made
up of triangles in two dimensions and tetrahedra in three dimensions, so that
Q =UgeT, K.

(H3) Conforming finite-element spaces associated with 7, are assumed.

(H4) We suppose that (ug,do) € H x H*(Q) with |do| = 1 a.e. in €.

Hypothesis (H3) is extremely flexible and allows equal-order finite-element spaces
for velocity and pressure. In particular, let Py (K) be the set of linear polynomials on
K. Thus the space of continuous, piecewise polynomial functions associated to 7y, is
denoted as

Xn={v,€C°Q) : va|lx € PL(K) VK € Tp},
and the set of piecewise constant functions as
Yo ={wn, € L™®(Q) : wp|lk e RVK € Tp}.
We choose the continuous finite-element spaces
D, =X, V,=X,nH}Q), and P, =X, NLi(Q)

for approximating the director, the velocity, and the pressure, respectively. Addition-
ally, we select the extra discontinuous finite-element W = Y, to be the space for
an auxiliary variable related with the vector director.

Observe that our choice of the finite-element spaces for velocity and pressure does
not satisfy the discrete inf-sup condition

, V.o
(3.1) Ionliaey <o sup LoV TRy cp

onevi{o} lvnllar @)

for a > 0 independent of h.
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The following proposition is concerned with an interpolation operator I associ-
ated with the space Dy. In fact, we can think of I; as the Scott—Zhang interpolation
operator; see [33].

PROPOSITION 3.1. Assuming hypotheses (H1)~(H3), there exists I, : H () —
Dy, an interpolation operator satisfying

(3:2) |d = Ind|| < Capp b||Vd|| Vd e H'(Q)
and

(33) [1ndllL=(0) < Cstalld|L=@) Vde L>™(Q),
(3.4) 11hdl| 11 () < Cstalldl| 1) Vd € HY(Q),

where Copp > 0 and Cgiq > 0 are constants independent of h.

3.2. The time-stepping method. We consider the following time-splitting
finite-element method for approximating (2.5) based on the nonincremental projection
technique.

Let (dy,u},p}) € Dy x Vi, x Py, be given. For n+ 1, do the following steps:

1. Find (d}™', wl™) € Dy, x W, satisfying

dZ-H_dZ = = n n+1l =
(3.58) S, ) + (@ - V)i n) + A (wi ) = 0,

m 7 1 mn 3
(Vdy ™, vdy) + E—Q(f(dh)a dn)

H } .
(3.50) PO d ) — (g dp) = 0
for all (dy,wy) € Dy, x Wy, where

(3.6) Up = u) — kVp} + \k(Vd))Tw) ™!

and Hr > 0 is a bound of the L°°-norm of the Hessian matrix associated to
F(d). For instance,

(3'7) Hp = (M32 + (M2 _ M)22)1/2

with M being the space dimension (see the proof of Lemma 4.1).
2. Find u"*! € V, satisfying

k
+(Vp},an) — A(VA) Tw) ™ a,) =0

un+1 o un
(3.8) (hih, uh> +c(uf, up ™t ay) + v(Va) T Vay,)

for all wy, € V.
3. Find pZ’Ll € P, satisfying
(3.9) E(Vpptt, Vpn) + G(op o) = —(V - up ™ pr)
for all p, € Py, with
s 7 * S 7 7 — _
(3.10) J( h+17ph) = ;(th - Ho(th%ph —o(pr)),

where S is an algorithmic constant and Ily is the L2-orthogonal projection
operator onto Yy, which is a piecewise constant finite-element space.
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To ensure the skew-symmetry of the trilinear convective term in (3.8), we have

defined
c(uh, vy, wh) = ((uh . V)vh,wh) + %(V s Up, Vp, - wh)
for all up, vy, wy, € V. Thus c(up, vy, vy) =0 for all uy, vy, € Vy,.

It is important to mention that we use the version of the nonincremental projec-
tion method to design scheme (3.5)—(3.10) where the end-of-step velocity has been
eliminated.

The idea for the stabilization term j(-,-) in (3.10) is to penalize the difference
between the pressure and its projection onto the space of piecewise constant functions
Y}. This stabilization technique was proposed for the Stokes problem in [11]. The
stabilization term j(-,-) was inspired by the fact that the pressure stability provided
by the crude projection time-stepping method depends on the time step k so that
loss of pressure stability is expected when k is considerably small. The reader can
refer to [8] for a general description of this stabilization technique. See also [2] for a
stabilization using a Scott—Zhang projection operator.

It is good to point out that scheme (3.5)—(3.10) decouples the computation of the
pair (d) ", w) ™), the velocity u}™', and the pressure p)™'. The auxiliary variable
wZ’Ll is introduced only to help us prove a priori energy estimates. The condensation
of the degrees of freedom of wZ’Ll will be treated in detail in section 5 when we set
up the algebraic version for (3.5).

For suitable initial approximations (uop, dop) of (ug, dp), we consider do, € Dy,
such that

(3.11) doy, = I dy
and (wop, pon) € V', X P, such that

(3.12a) { (won, wn) + (Vpon, an) = (wo, ),
(3.12b) (V - won, pn) + 3 (pon, bn) =0

for all (ﬁh,ﬁh) eV x Py

In what follows we prove the existence and uniqueness of a solution to scheme
(3.5)—(3.10). Since scheme (3.5)-(3.10) is a linear square finite-dimensional system
(having the same number of unknowns as equations), uniqueness implies existence.
Let dd; " and dw] ™ denote the difference between two possible solutions to (3.5).
It is not hard to check that 6djt" and dw) ™! satisfy

1
(3.13a) E(ad’,;ﬂ, wy) + Ak(VA)Tsw) ™ (Vdp) Twy) + y(dwit wy) = 0,
_ H _ _
(3.13b) (Vodi+t, vdy,) + é(ddﬁ“, dp) — (6w, dy) =0

for all (dy,wy) € Dy, x Wp,. Substituting w; = 5wz+1 and d, = 5dz+1/k into
(3.13a) and (3.13b), respectively, we have

Hp
2ke?
This implies that 5w’,:+1 = 0 and 5dﬁ+1 = 0. Thus we have proved uniqueness of a

solution to (3.5). Analogously, we can prove the existence and uniqueness of a solution
to (3.8) and (3.9).

1 n 3 n n n
ZIVody T * + |0, | + yllowi I + Ak[(Veg) T dwp | = 0.
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4. A priori energy estimates. This section is devoted to proving a priori
energy estimates for scheme (3.5)—(3.10). First, we prove that the potential approxi-
mation is stable owing to the additional term depending on Hp.

LEMMA 4.1. It follows that

) () ) @ - a > (Pt - Fla)
holds, where Hp > 0 is a bound of the L*-norm of the Hessian matriz associated to
F(d). For instance, Hp = (M3? + (M? — M)2%)'/? as was defined in (3.7).

Proof. The Taylor expansion of F(d) of order 1 with center d}’ evaluated at dj '
gives

F(dnJrl) _ F(dn) _ VdF(dn) . (dnJrl _ dn)

1
+ 5(dnJrl _ dn)THdF(dnJrH)(dnJrl _ dn)’

where d"™ = 0d" ™" 4 (1 — §)d" for some # € (0,1) and

2d;d; + (|d|* — 1)6;; if |d| < 1,
did; _|d] -1 .

2 J 2———0;5 fld 1
P I A ke

HyF(d);; =

is the Hessian matrix of F' with respect to d. Since F' is truncated to have quadratic
growth at infinity, we obtain that Hg is uniformly bounded. In fact, we find that

[HaF (-)ijll oo mory < (2 + 04);

hence, the Frobenius norm is bounded by

" 1/2
D N HaF()ij e @) < Hp.
,J
In particular,
1 n+1 n\T n—+0 n+1 n HF n+1 n|2
(4.2) S = AT HaP(d ) (@ = d) < ZE(d - dr P

Consequently, (4.1) is satisfied. O

Now, we are in a position to prove a local-in-time discrete energy law.

LEMMA 4.2. Assume that hypotheses (H1)-(H4) hold. Then the solution (u) ™+,
Pt dpt wl ) to scheme (3.5)-(3.10) satisfies the inequality

(43) syt - G, dy) + k (v Val 2 4+ M llwr ) <o,
where E(u, d) is defined in (2.9) and
(4.4) aptt = wltt - Evpnt

Proof. We have, by using p, = pZH as a test function in (3.9) and taking into

account (4.4),

At = (™ = RV V) = (@ Vit
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and hence we obtain, by squaring (4.4),
1 ~n+12 1 n+1 2 n-+12 n+1 n+1l
Slun ™17 = gl ™" + HVP 17+ kilpy™ Py ) =0.

Next, by substituting @y, given in (3.6) into (3.8) and selecting @), = ku}t! as a test
function in (3.8), it follows that

1 1 .
S = Sl 5 gt = @l 4 ke 2 = .

By adding these last two equations, we find

leanrlHQ 2|‘uh||2+yk|‘vun+1”2 2||un+1 ath

(4.5) N N N
B2 + kg (pp L pp ) = 0.

Moreover, if we choose w;, = Ak w) ™ in (3.5a) jointly with dj = A\(d}™' — dJ!) in
(3.5b), and take into account (4.1), we arrive at
(I\Vcl"“ll2 IV 1P + IV (dy ™ = di) %) + Ay kllwy ™

16
Y _/ F(di+) F(dZ)) + M ((@n - V)dy, with) < 0.

By testing (3.6) by uy, we have

1., .. 1 ~n 1, . ~n n n F~
Sl = SIGRI2 + 5 lan — @2 = AK(Vdi) Twpt n) = 0.

This equality, together with (4.5), (4.6), and the fact that
—((Vdp) wit ) + ((@n - V)dy, wi ™) =0,
implies that
ECEL ) — )+ KONV e
b =l S~ DIV - d)+ e
+k]( L pntly < g,

This completes the proof. a

We are now ready to state the a priori global-in-time energy estimates for scheme
(3.5)-(3.10). The proof follows easily from (4.3).

THEOREM 4.3. Assume (H1)~(H4). The discrete solution {(u},dy, wi ™)},
of scheme (3.5)—(3.10) satisfies
(4.7)

max {s(u’;*l,dz*l) kY (Vv + Aylwp )} < &(uon, don)-
n=0

ref0,...,.N—1}

In order to have a good initialization of scheme (3.5)—(3.10) we need the initial
energy &(wop, dop,) to be bounded independent of (h, k, €).
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LEMMA 4.4. Assume hypotheses (H1)—(H4) hold. If (h,e) are chosen satisfying

h
(4.8) - <K
€
for some constant K > 0, then
(4.9) S(uOh,dOh) < Cy

for the initial approximations (wop, dor) defined in (3.11) and (3.12).
Proof. We use u = ugp, and pp, = pop, as test functions in (3.12) to obtain

(4.10) —HUOhH + j(Pon, pon) < —||“0H2

Moreover, from (3.4), we have

(4.11) ldonll e @) < Clldoll g1 (0)-

Now, as in [18], we bound

/ Fldon) < /(|d0h|2 ~ |dof?)? = /(|d0h + do||don — do))?
Q Q
(4.12) < || don + do|| 7 oy lldon — dol|* < C h?||do|| 31 (0

where (3.3) and (3.2) have been applied. Combining (4.12) with (4.10) and (4.11)
together with (4.8), we obtain (4.9). O

Remark 4.5. Hypothesis (4.8) is rarely explicitly mentioned in numerical papers
based on algorithms using the penalty approach, but it is required to guarantee a
priori energy estimates independent of €. It seems that this condition is overlooked.
Nevertheless, it is important to underline that the constraint (4.8) for (h,e) comes
only from the approximation of dy in D}, but not from the discrete scheme itself.

Remark 4.6. In the present paper we have developed a time-splitting algorithm
based on the nonincremental projection method, even though it could be applied to the
incremental projection method with obvious modifications. For clarity of exposition,
we have considered only the nonincremental approach since it involves fewer terms
and requires a much easier initialization.

5. Numerical results. We present a reformulation of system (3.5) to avoid com-
puting the auxiliary variable w"Jrl Based on this reformulation, we will show some
numerical experiments that 111ustrate the stability, accuracy, efficiency, and reliability
of the scheme. In doing so, we first test our numerical approximation simulating anni-
hilation of singularities. Next we will investigate the numerical accuracy with respect
to time and space, in order to conclude that the splitting error does not deteriorate
the convergence rate of the velocity and pressure from the nonincremental projection
method for the Navier—Stokes equations [32, 34, 17]. Finally, we will check numeri-
cally the conditional stability which depends on the size of the stabilization constant
Hp.

We take the approximating spaces Dy, V', and P, described in (H3). The nu-
merical solutions are implemented with the help of FreeFem++ [19)].
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5.1. Implementation strategy. It is clear that the computation of the aux-
iliary vector w) ™! in (3.5) gives rise to an important amount of computer memory
and time in comparison with systems (3.8) and (3.9). Thus, scheme (3.5)—(3.8) will
become much more efficient if we are able to remove w} ™ from (3.5).

Let Ny = dim(Dy,) and N,, = dim(W},), and let {¢¢}Y4 and {4} be finite-
element bases for Dj and W, respectively, constructed from the local basis of X}
and Y}, respectively. Thus, define the following matrices. For W, we have

Md,w=(/ﬂ¢f-¢>;fj), cw=(/ﬂ<<VdZ>T¢;”-V> Z-eb?), sz(/ﬂas;”-qs;”).

For Dy, we have

Md:(/ggbg.qsg), Mw,d:</g¢;ﬂ.¢;¥>, Ld:(/gwf.w?).

Moreover, let us denote by W € RY¥» and D € RM¢ the coordinate vectors, with
respect to the fixed bases, of the finite-element functions w, € Wy and d, € Dy,
respectively. Thus, we can rewrite system (3.5) as

1 1
(51&) EMd,an—,—l 4 ()\ka + ")/Mw) WTL+1 —_ EMd,an _ Fun
n HF n " 1
(5.1b) LD 4 @Mdo M, W = _gp,

where F,, € RV and F € RV are defined, respectively, as
(5.2)

Fu={ [ ((uf —kVpp)-V)dyp -9 ) and F= —% o Fdn) ) o)
Q Q

From (5.1a), we have

1

Wn+1 _ E71
Yo lk

Md,w (Dn o Dn+1) _ Fw:| ,

where E,, = A\kC,, + YM,, can be seen in two different ways depending on the re-
ordering of the degrees of freedom of W"*+1: (1) a block-diagonal M-by-M matrix,
which is easy to invert by using a block Gauss—Jordan elimination, or (2) an M-by-
M Dblock-diagonal matrix, since the degrees of freedom of two different elements are
not coupled, which is also easily invertible by using block computations. The first
approach is much more adequate especially for legacy code bases, which is our case
here.

If we now replace the above equality in equations (5.1b), after some simple cal-
culations, the resulting algorithm reads as

1 H 1
Lo+ —My dE ' My + —My ) D" = My, EL [ =My D" — F, | — =F.
k ’ ’ 2e2 ’ k" €

Observe that the matrix Ly + %Mde;lMdﬂU + %Md is the Schur complement
of system (5.1) with respect to E,.
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(€) ||d]loo = 0.9960688. (d) ||d||ce = 0.9981066.

(e) [|v]los = 0.1220603. (f) ||v]lcc = 0.07930149. (g) ||v]lcc = 0.1052532. (h) [[v]|oo = 0.00276648.

Fia. 1. Evolution of the director field (a)—(d) and velocity field (e)—(h) for the annihilation of
two singularities at times t = 0.1, 0.4, 0.6, and 1.

5.2. Annihilation. This numerical example is concerned with the phenomenon
of annihilation of singularities. We will consider two numerical experiences consisting
of the motion of two and four singularities. We will show the behavior of the energies,
the singularities, and the velocity fields for each of these simulations.

The phenomenon of annihilation for two singularities was originally proposed in
[28] for a Dirichlet boundary condition for the director field and also performed in
[6] for a Neumann boundary condition as considered herein. It is computed on the
domain Q = (—1,1) x (=1, 1) with the initial conditions being

d

Vide +e2

and the physical parameters being v = A\ = v = 1. The discretization and penaliza-
tion parameters are set as (k, h,e) = (0.001,0.068986,0.05). In Figure 1, we present
snapshots of the director and velocity fields displayed at times ¢t = 0.1, 0.4, 0.6, and 1.
One can see how the two singularities are carried to the origin by the velocity field
forming four vortices. The evolution of kinetic, elastic, and penalization energies,
as well as the total energy, is depicted in Figure 2. Observe that the total energy
decreases after each iteration as predicted by inequality (4.3). Moreover, the kinetic
energy reaches its maximum level at the annihilation time. These numerical results
are in good qualitative agreement with those obtained in [6].

For the annihilation of four singularities a zero initial velocity field ug = 0 is also
set as before, and the initial director field is considered as follows:

uy =0, dy= , where d = (% +y* — 0.25,9),

d ~ 2 2
dy= — whered:(ac——i—?’l——l,—:zcy>7

= ’ 2 2
\/1d|? + €2 et b

where a = 0.5 and b = 0.25. Observe that the initial director field has two singularities
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0014

0012

F1G. 2. Evolution in time of the energies for the experiment of two singularities. Kinetic energy
(top) and total, elastic, and penalization energies (bottom).

at (£0.5,0) and two more at (0,40.25). The physical domain and parameters are the
same as for the example with two singularities.

Contrary to what one might think at first sight, the four singularities mutually
annihilate each other at the same time despite the fact that they are not at the
same distance from the origin. To be more precise, the singularities at (+0.5,0) start
advancing toward the origin, while the ones at (0, £0.25) remain without moving, as
depicted in Figure 3. This happens until the four singularities are equally spaced on
a circle centered at the origin. Then the four singularities move together to the origin
until disappearing at the same time. This is due to the fact that the velocity field in
Figure 3 prevents the singularities at (0,40.25) from moving toward each other while
making the singularities at (£0.5,0) get closer and closer to each other.

Concerning the evolution of the energy, note that the annihilation time 7y = 0.14
(see bottom image in Figure 4) does not occur at the maximum value of the kinetic
energy Trin = 0.04 (see top image in Figure 4). The total and elastic energies decrease,
and the penalty energy increases at the beginning of the simulation and then decreases
as shown in the bottom image of Figure 4.

5.3. Convergence rate. We are now interested in the accuracy with respect to
time and space. For this, we are going to use the experimental order of convergence

method, considering 2 = (0,1) X (—%, %), A=v=v =1, and € = 0.05. The initial
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(e) [[v]loo = 0.1220603. (f) ||v]lcc = 0.07930149. (g) ||v]lco = 0.1052532. (h) ||v]|eo = 0.00276648.

F1a. 3. Ewvolution of the director field (a)—(d) and velocity field (e)—(h) for the annihilation of
four singularities at times t = 0.05, 0.1, 0.14, and 0.25.

L L
025 03 035 04

F1G. 4. Ewolution in time of the energies for the annihilation of four singularities. Kinetic
energy (top) and total, elastic, and penalization energies (bottom).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/16/16 to 150.214.182.169. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

APPROXIMATION OF THE ERICKSEN-LESLIE EQUATIONS B277

10* T

~ & — Orientation vector
- v — Velocity

- & — Pressure

Sauare root Function y=x'?
—— Linear Function y=x

— & — Orientation vector
10k - ¥~ Velocity 3
- & — Pressure

Square root Function y=x'?
10k —— Linear Function y=x E

FiG. 5. Behavior of the time error in the L%(Q2)-norm (top) and the H'(Q2)-norm (bottom)
for the director, velocity, and pressure fields.

TABLE 1
The time convergence rates for the velocity, pressure, and director fields.

k L?-rate-p | L2-rate-v | L2-rate-d | H'-rate-p | H'-rate-v | H'-rate-d
10-3 _ _ _ _ _ _
51074 0.2115 0.5686 0.6989 0.1951 0.4600 0.7158
2.5-107% 0.4910 0.7478 0.8513 0.4689 0.5559 0.8572
1.25-10~4 0.7699 0.8897 0.9579 0.7657 0.7631 0.9596
6.25-107° 0.9173 1.0142 1.0542 0.9065 0.9355 1.0545

data are taken as
uo =0 and dy = (sin(a),cos(a)), where a = 7m(cos(mz) + sin(my)).

which satisfies homogeneous Dirichlet conditions for the velocity field and homoge-
neous Neumann boundary conditions for the director field.

To measure the time error, the reference solution is taken as the numerical ap-
proximation computed on the discrete parameters (k,h) = (1.5625¢107%,0.068986).
In Figure 5 and Table 1, we illustrate the time error behavior and the convergence rate
for the director, velocity, and pressure fields measured in the L?(Q)- and H!()-norms
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F1G. 6. Behavior of the space error in the L?(Q)-norm (top) and the H(Q)-norm (bottom) for
the director, velocity, and pressure fields.

for several time steps. The tests have been performed by comparing our reference so-
lution with the numerical approximation computed on five time steps k;+1 = 0.5k; for
i =1,2,3,4 with k; = 1073, We approach O(k) in the L*(Q)-norm for the velocity
and director vector, which is consistent with the results for the velocity in the context
of the nonincremental projection method for the Navier—Stokes equations. The error
for the director field in the H™'(Q)-norm is of O(k), which means the splitting error
associated to the segregation has no influence on the order of the director. Instead,
the error for the velocity field in the H'(€)-norm does not maintain the first-order
accuracy, which could mean that the order of the segregation will be less than first or-
der. Furthermore, the error for the pressure in the L?(Q)- and H'()-norms behaves
as that for the velocity for the H!(2)-norm.

With respect to the space error behavior, we compute the reference solution on
(h,k) = (0.0083,0.001). The corresponding approximate errors, defined as the differ-
ence with this reference solution, is performed for h = 0.0673, 0.0456, 0.0345, 0.0277,
and 0.0232. In Figure 6 and Table 2, we show the spatial convergence rate on the
director, velocity, and pressure fields measured in the L?(2)- and H'(Q)-norms for
several mesh sizes. The velocity and director errors in the L?*(Q)- and H!(Q)-norms
are of O(h'*%) and O(h), and O(h?) and O(h':%), respectively, and the pressure errors
in the L?(Q)- and H'(Q)-norms are of O(h?) and O(h!®). It is rather surprising
that the accuracy for the pressure is better than that for the velocity, although the
absolute errors for the velocity are lower than those for the pressure; see Figure 6.
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TABLE 2

The space convergence rates for the velocity, pressure, and director fields.

B279

L?-rate-p | L2-rate-v | L?-rate-d | H'-rate-p | H'-rate-v | H'-rate-d
0.0673 - - - - -
0.0456 1.7761 1.6878 2.0255 1.6420 1.0313 1.1675
0.0345 1.9376 1.7025 2.0688 1.7667 0.9731 1.2747
0.0277 2.0554 1.7212 2.1841 1.8265 1.3396 1.3637
0.0232 2.1681 1.7269 2.2921 1.8875 1.0663 1.4823
TABLE 3

Stability dependence of scheme (3.5)—(3.10) on the parameters M and € for the annihilation
phenomenon with two singularities. T4 is the annihilation time.

e\M 0 0.5 1 1.5 2

v v v v v Stab.

0.1 0.215 0.235 0.247 0.258 0.269 Ta
0.01670914 0.01443464 0.01328788 0.01233513 0.01150359 Exin
v v v v v Stab.

0.05 0.327 0.451 0.526 0.596 0.664 Ta
0.04200973 0.02695581 0.02166554 0.01806961 0.01539423 Exin
X v v v v Stab.

0.01 —— No annihil. No annihil. No annihil. | No annihil. Ta
—— 0.003715506 0.001635032 0.0009440176 | 0.0006196211 | FEpgipn
X v v v v Stab.

0.001 —— No annihil. No annihil. No annihil. No annihil. Ta
—— 0.006349918 0.002473232 0.00134994 0.0008570226 | FEprin

5.3.1. Dependence of the stability on the constant Hr. Next we want to
study the sensitivity of scheme (3.5)—(3.10) with respect to the stabilization constant
Hyp given in (3.7), which depends on the space dimension M in an increasing manner
and on the penalty parameter €. In doing so, we will consider the phenomenon of
annihilation of two singularities described above for fixed (h, k) = (0.068986,0.001)
and varying (¢, M) in the range ¢ = 0.1, 0.05, 0.01, and 0.001 and M = 0, 0.5, 1,
1.5, and 2. The annihilation times T4 reported in Table 3 are taken as those times
where the value of the kinetic energy is maximum. For these values, we observe that
scheme (3.5)—(3.10) is unconditionally stable for M > 0.5 and conditionally stable
for M = 0, because strong spurious oscillations appear for ¢ = 0.01 and 0.001. In
particular, for M = 0, it can be proved by following the analysis performed in [18]
that a relation among (k, h, ) must be small enough in order to get energy stability.
Moreover, for e = 0.1 and 0.05, the annihilation time becomes smaller and smaller as
M decreases to 0, and the maximum of the kinetic energy decreases as Hp becomes
bigger and bigger. But the qualitative behavior remains the same. However, this
situation changes drastically as ¢ takes the values 0.01 and 0.001 where there is no
longer annihilation (see Figure 7). A possible explanation of this fact might be that
the velocity field produced via the elastic tensor is not enough to move the defect
points through the convective term in the director equation. In particular, observe
that the kinetic energy for ¢ = 0.01 and 0.001 decays practically to zero from the
beginning. In light of the above, one might think that if the kinetic energy associated
to a velocity field was large enough to move the singularities, then they would move
each other.
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Fia. 7. The time evolution of the kinetic energy for e = 0.1, 0.05, 0.01, 0.001 for two singulari-
ties (top). Since the mazimum values of the kinetic energy for € = 0.01, 0.001 are 6.1962-10~* and
8.5702 - 10~4, respectively, we include these separately (bottom,).

N

(a) ||d]joo = 1.068284. (b) ||d||co = 1.036288. (c) ||d||co = 1.031044. (d) ||d|co = 1.000078.

Fia. 8. Ewvolution of the director field for a rotating flow at times t = 0.5, 2.5, 5.5, and 8.

In order to corroborate the above statement, we will consider an initial and bound-
ary velocity corresponding to a rotating flow of the form u = w(—y, z)” with w = 100.
We must point out that the rotating flow does not carry the singularities to be closer
to each other. They might be rotating continuously without annihilating. The pa-
rameters are selected as (k,h,e) = (0.001,0.068986,0.01). In Figure 8, we plot the
director field at four different times: at ¢ = 0.05, where the singularities are swirled
around with the flow; at t = 2.5, where the singularities keep on moving closer and
closer to each other with the flow; at ¢ = 5.5, with the singularities just prior to
annihilation; and, finally, at t = 8, where a equilibrium solution is reached.
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Thus we can conclude that the velocity field plays an important role in the anni-
hilation of singularities. It seems that there exists a relation between the amount of
the kinetic energy and the size of the penalty parameter € that makes the singulari-
ties move. Moreover, the fact that the singularities disappear is due to their opposite
signs; otherwise, they would move apart toward a steady state solution determined
by the boundary conditions.

6. Conclusions. In this paper a time-splitting numerical algorithm based on the
Chorin—Temam projection method has been proposed for approximating the Ericksen—
Leslie equations, where a variant of the Ginzburg—Laundau penalization for approxi-
mating the sphere constraint has been considered. To the best of our knowledge, the
algorithm proposed herein is the first one that is linear and unconditionally stable.
The key ingredient for this is to introduce an adequate numerical dissipation depend-
ing on a first-order Taylor approximation for the penalty function F'(d). Another key
feature is that this algorithm does not require introducing any auxiliary variable in
the director problem (at the algebraic level) and allows equal-order interpolation for
all the unknowns, in particular, for the velocity and pressure.

We have carried out several numerical experiments of annihilation of singularities
so that our method can be compared with existing methods. In particular, the results
of the annihilation phenomenon of two singularities fits pretty well with those reported
in [6] and [3]. Furthermore, we have checked the numerical accuracy in time and space.
Concerning the time error behavior, the results indicate that the splitting error is first-
order in accordance with those for the Chorin—Temam projection method. It is worth
noting that we have obtained interesting results for small ¢ for the two singularities
problem, establishing a relation between the kinetic energy and the annihilation of
singularities from the numerical point of view. This has been possible due to the
condition number of the linear system seeming to be less dependent on e than for
other methods. The only method with the same feature in the literature is the one
using a saddle-point approach [3], but it is fully coupled. Therefore, our method is
more efficient since it involves less computational work. Moreover, we have observed
in Table 3 that the annihilation time and the kinetic energy value are modified via
the value of Hp, but qualitatively the numerical solutions are the same.
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