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The study of qualitative properties of random and stochastic differential equations is now
one of the most active fields in the modern theory of dynamical systems. In the
deterministic case, the properties of flattening and squeezing in infinite-dimensional
autonomous dynamical systems require the existence of a bounded absorbing set and
imply the existence of a global attractor. The flattening property involves the behaviour
of individual trajectories while the squeezing property involves the difference of
trajectories. It is shown here that the flattening property is implied by the squeezing
property and is in fact weaker, since the attractor in a system with the flattening
property can be infinite-dimensional, whereas it is always finite-dimensional in a system
with the squeezing property. The flattening property is then generalized to random
dynamical systems, for which it is called the pullback flattening property. It is shown to
be weaker than the random squeezing property, but equivalent to pullback asymptotic
compactness and pullback limit-set compactness, and thus implies the existence of a
random attractor. The results are also valid for deterministic non-autonomous dynamical
systems formulated as skew-product flows.
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1. Introduction

The theory of dynamical systems has been successfully used from decades ago to
analyse qualitative properties of many models of differential equations arising
from Physics, Mechanics, Chemistry, Biology, etc. (See Hale 1988; Temam 1988;
Ladyzhenskaya 1991; Vishik 1992; Chepyzhov & Vishik 2002.) More recently,
some of these ideas have also been used to describe the asymptotic behaviour of
random and stochastic differential equations (Schmalfuss 1992; Crauel & Flandoli
1994; Arnold 1998). In all cases, the concept of global attractor plays a crucial
role. When the model is related to a system of partial differential equations, the
existence of a global attractor is usually related to a kind of squeezing or flattening
of the high modes in the evolution in time of trajectories, which leads to some of
the most impressive results in the theory of infinite-dimensional dynamical
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systems. In this work, we want to go further in the clarification of the meaning of
these kind of flattening properties and its relation with the existence of attractors,
both in the deterministic and the stochastic cases.

It is often not difficult to show that a dynamical system given in terms of a
specific differential equation has a bounded absorbing set. In finite-dimensions,
such sets are compact and this is sufficient to ensure the existence of a global
attractor. In the infinite-dimensional case, however, requiring an absorbing set to
be compact is a severe restriction. An additional property to the existence of a
bounded absorbing set is needed to ensure that there is a global attractor, such as
the compactness, eventual compactness or asymptotic compactness of the flow
operator (Hale 1988; Temam 1988; Ladyzhenskaya 1991; Vishik 1992; Rosa 1998;
Robinson 2001).

An alternative idea is the squeezing property, which was introduced by Foias &
Temam in the context of the Navier–Stokes equations (Foias & Temam 1979;
Foias et al. 1988) and is applicable to many other classes of dissipative partial
differential equations (Eden et al. 1994; Temam 1988; Robinson 2001). In the
squeezing property, a finite-dimensional subspace of what are called lower order
modes is introduced and either the higher order modes are bounded by the lower
modes or the solutions are squeezed together. The squeezing property, which also
requires the existence of a bounded absorbing set, has been used with
considerable success to establish interesting properties of dissipative dynamical
systems, such as determining modes (Foias & Prodi 1967; Robinson 2001), the
finite-dimensionality of global attractors (Constantin et al. 1985) and even to
construct exponential attractors (Eden et al. 1994).

A related idea, which we shall call flattening, was introduced by Ma et al.
(2002) under the name Condition (G). It assumes the existence of a bounded
absorbing set and requires the finite-dimensional modes to become uniformly
bounded with the remaining higher order modes becoming sufficiently small. Ma
et al. (2002) showed that it is equivalent to a form of asymptotic compactness in
uniformly convex Banach spaces, and that it implies the existence of a compact
attractor. In most cases, it is not difficult to verify because estimates for the
flattening property are obtained in much the same way as those needed to show
that there is a bounded absorbing set. However, a major difference from the
squeezing property is that the resulting attractor need not be finite dimensional.

In the first part of this paper, we will show that the flattening property is
implied by the squeezing property in uniformly convex Banach spaces and then
give counter examples that satisfy the flattening property but not the squeezing
property—thus flattening is a weaker property than squeezing.

In the second and main part of the paper, we will extend the idea of flattening
to random dynamical systems and compare it with pullback squeezing, the
corresponding generalization of the squeezing property to deterministic non-
autonomous dynamical systems. Our results make no use of the topology of the
autonomous driving system of the skew product flow, therefore, apply equally
well to deterministic non-autonomous dynamical systems formulated as skew
product flows, e.g. systems generated by reaction diffusion equations with
temporally almost periodic coefficients. In particular, we do not need to assume
the existence of a uniform absorbing set as do Wang et al. (in press), who extend
the flattening concept to deterministic skew product flows, thus, our results also
generalize theirs in this context.
Proc. R. Soc. A (2007)
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We will use the following measure of non-compactness.

Definition 1.1. Let X be a metric space and D a bounded subset of X. The
Kuratowski measure of non-compactness g(D) of D is defined by

gðDÞZ inf dO0 : D admits a finite cover by sets of diameter%df g:
The following summarizes some of the basic properties of this measure of

non-compactness (e.g. Deimling 1985).

Lemma 1.2. Let X be a Banach space and let g be the measure of non-
compactness. Then

(i) g(D)Z0 if, and only if, �D is compact.
(ii) g(D1CD2)%g(D1)Cg(D2).
(iii) g(D1)%g(D2) for D13D2.
(iv) g(D1

S
D2)%max g(D1), g(D2).

(v) gð �DÞZgðDÞ.
(vi) If F1IF2. are non-empty closed sets in X such that g(Fn)/0 as n/N,

then
T

nR1Fn is non-empty and compact.

In addition, let X be an infinite-dimensional Banach space with a
decomposition XZX14X2 and let P: X/X1, Q: X/X2 be projectors with
dim X1!N. Then

(vii) g(B(e))Z2e, where B(e) is a ball of radius e.
(viii) g(D)!e for any bounded subset D of X for which the diameter of QD is

less than e.
2. The deterministic autonomous case

The observed squeezing of high modes of the difference of trajectories in
turbulent fluids has been formulated mathematically as the squeezing property
by Foias & Temam (1979), and has been used to prove many interesting and
beautiful results for the Navier–Stokes equations and similar types of dissipative
dynamical systems.

Definition 2.1 Squeezing property. Suppose that a semiflow S on a Banach
space X has a bounded absorbing set B in X. Let P be a projection onto a finite-
dimensional subspace of X and QZIKP. Then for x, y2B either

kQðSð1ÞxKSð1ÞyÞk%kPðSð1ÞxKSð1ÞyÞk;
i.e. the higher modes are bounded by the lower modes, or

kSð1ÞxKSð1Þyk%dkxKyk;
for some d2(0, 1), i.e. the solutions are squeezed together.

In applications to the planar Navier–Stokes equations, for example, P is
usually taken as the projector onto the subspace of X spanned by the first N
eigenfunctions associated with the Stokes operator A, i.e. PuZ

PN
iZ1ðu;wiÞwi,

where fwigNiZ1 is the orthonormal basis in X consisting of the eigenfunctions of A,
and the operator Q is defined as QuZ

PN
iZNC1ðu;wiÞwi.
Proc. R. Soc. A (2007)
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There is another, simpler feature of the dynamics in many dissipative systems
in infinite-dimensional spaces, namely, the dynamics in the lower order modes
becomes bounded and that in the higher modes becomes small. Ma et al. (2002)
formulated this as Condition (G) and showed that it is sufficient for the existence
of a global attractor. We will call it the flattening property here.

Definition 2.2 Flattening property. Suppose that a semi flow S on a Banach
space X has a bounded absorbing set B in X. For any bounded set D3X and for
any eO0, there exists Te(D)O0 a finite-dimensional subspace Xe of X, and a
bounded projector Pe:X/Xe such that

S
tRTeðDÞPeSðtÞD is bounded and

kðIKPeÞSðtÞx 0k!e; ctRTeðDÞ; x 02D:

The flattening and squeezing properties obviously seem to be closely related
and we want to clarify this relationship. We will show that the flattening
property is a weaker concept than the squeezing property.

In §2a,b, we will prove that squeezing implies flattening, at least when the
Banach space X is uniformly convex, i.e. for all eO0 there exists dO0 such that,
given x, y2X, kxk, kyk%1, kxKykOe, then (kxCyk/2)!1Kd. Requiring a
space to be uniformly convex is not a severe restriction in applications, since
this property is satisfied by all Hilbert spaces, the Lp spaces with 1!p!N, and
most Sobolev spaces Wk,p with 1!p!N (see Brézis 1983; section III.7). We
also give counter examples that satisfy the flattening property but not the
squeezing property.
(a ) Squeezing implies flattening

Ma et al. (2002) introduced the following concept under the name of u-limit
compact, but we will call it limit-set compact to avoid confusion in the stochastic
setting later, where u is used in another context.

Definition 2.3. A semi flow S on a Banach space is said to be limit-set compact
if for every bounded set D3X and eO0 there exists a Te(D)O0 such that

g
[

tRTeðDÞ
SðtÞD

0
@

1
A!e;

where g is a measure of non-compactness defined on the subsets of X.

They then prove (theorem 3.10 in Ma et al. (2002)) that a semi-dynamical
system is flattening if it is limit-set compact, provided X is a uniformly convex
Banach space.

The following result proves that the squeezing property is a sufficient
condition for limit-set compactness. Thus, for uniformly convex Banach spaces
X, flattening is indeed a weaker concept than squeezing.

Lemma 2.4. Suppose that BZBX(0, r), the ball in a Banach space X of radius
r!0 centred on the origin, is an absorbing set of a semi flow S on X. If S satisfies
the squeezing property on B, then it is limit-set compact and thus has a global
attractor in that B. Moreover, if X is a uniformly convex Banach space, then S has
the flattening property.
Proc. R. Soc. A (2007)
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Proof. Without lost of generality, we can suppose B is a positively invariant
absorbing set, as, if not, we could consider

S
tRtBSðtÞB as a new bounded

absorbing set for some TB, such that S(t)B3B for all tRTB.
Using the squeezing property and lemma 2.1 in Eden et al. (1994), the set

S(1)B can be covered by k 0 balls of radius r/2, in other words

Sð1ÞB3
[k 0

iZ1

Bða1i ; r=2Þ:

In turn, each of the balls Bða1i ; r=2Þ can be covered by k0 balls of radius r/2
2, so that

Sð2ÞB3
[k 2

0

iZ1

Bða2i ; r=22Þ:

Iteratively, we get that

SðnÞB3
[k n

0

iZ1

Bðani ; r=2nÞ:

Now, given eO0, there exists n 0 such that r/2n!e for all nRn 0; thus, S(n 0)B
can be covered by a finite number of balls of radius less than e. But note that

SðtÞB3Sðn0ÞB for all tRn 0;

so

g
[
tRn 0

SðtÞB
 !

!e:

Finally, if X is a uniformly convex Banach space, theorem 3.10 in Ma et al.
(2002) implies the system is flattening. &
(b ) Flattening does not imply squeezing

A clear difference between flattening and squeezing is that the finite-
dimensional subspace Xe of X in the flattening property may depend on the
choice of eO0, while the finite-dimensional projector P and subspace PX in the
squeezing property are fixed at the start.

Systems with an infinite-dimensional global attractor are counter examples in
which flattening holds but squeezing is impossible. By theorems 3.9 and 3.10 inMa
et al. (2002), the existence of a global attractor implies that the system is flattening,
whereas the squeezing property is a sufficient condition for the finite-
dimensionality of a global attractor (Eden et al. 1994; Robinson 2001). Thus, the
example in Chepyzhov & Vishik (2002; pp. 161) is flattening, but not squeezing.

Actually, simpler examples involving infinite-dimensional systems of
uncoupled ordinary differential equations (ODE) show this relationship much
more directly. The infinite-dimensional space [2 with the norm

kxk2 Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
iZ1

jxij2
s

; x Z ðx1; x 2;.Þ2R
N;

is a Hilbert space (hence a uniformly convex Banach space). The infinite-
dimensional ODE

dx1
dt

Z x1ð1Kx21Þ;
dxi
dt

ZKxi; i Z 2; 3;.; ð2:1Þ
Proc. R. Soc. A (2007)
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in [2 satisfies the squeezing property and has the global attractor (12)

AZ ½K1; 1�!
Y
iR2

f0g;

which is a one-dimensional compact subset of [2. One the other hand, the infinite-
dimensional ODE (13)

dxi
dt

Z xiðiK2Kx2i Þ; i Z 1; 2;.; ð2:2Þ
in [2 satisfies the flattening property but not the squeezing property. It has the
global attractor

AZ
Y
iR1

½KiK1; iK1�;

which is an infinite-dimensional compact subset of [2.

Remark 2.5. Chueshov & Laisecka (2004) (see also Khanmamedov (2006))
write a sufficient condition, related to a kind of squeezing in the difference of two
trajectories for the asymptotic compactness of a deterministic dynamical system.
As we will show later, there exists an equivalence between the flattening and the
asymptotically compact property of a system, so that the condition in Chueshov &
Laisecka (2004) would be also sufficient for the flattening property. It would be
interesting to study if the contrary is also true or not.

3. Random dynamical systems

Let ðU;F ;PÞ be a probability space and let X be a Banach space. Arnold (1998)
defined a random dynamical system (RDS) (q, f) on U!X in terms of a metric
dynamical system q on U, which represents the noise driving the system, and a
co-cycle mapping f : RC!U!X/X , which represents the dynamics in the
state space X and satisfies the properties

(i) f(0, u, x 0)Zf0 for all x 02X and u2U,
(ii) f(sCt, u, x 0)Zf(s, qtu)f(t, u, x 0) for all s, tR0, x 02X and u2U,
(iii) (t, x 0)1(t, u, x 0) is continuous for each u2U, and
(iv) u1f(t, u, x 0) is F -measurable for all ðt; x 0Þ2RC!X .

A metric dynamical system qhðU;F ;P; qt; t2RÞ is a family of measure
preserving transformations qt : U/U; t2R such that q0ZidU, qt+qsZqtCs for
all t; s2R, the map (t, u)1qtu is measurable and qtPZP for all t2R.

Random dynamical systems are generated by finite-dimensional differential
equations with random coefficients or stochastic differential equations with a
unique and global solution as well as by some infinite-dimensional stochastic
evolution equations.

A family DZfDu; u2Ug of non-empty closed subsets of a Banach space X is
called a random closed set if the map u1dist(x, Du) for each x2X is measurable
with respect to F. Such a family D is said to be tempered if D(u)3BX(0, r(u))
P-a.s., where r (u) is a tempered random variable, i.e. satisfying

lim
jtj/CN

rðqtuÞ
eejtj

Z 0; P-a:s:;

for all eO0.
Proc. R. Soc. A (2007)
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The following concept of a random attractor for random dynamical systems
(Schmalfuss 1992; Crauel & Flandoli 1994; Arnold 1998; Crauel et al. 1995;
Flandoli & Schmalfuss 1996) extends that of a global attractor in autonomous
deterministic systems to random dynamical systems.

Definition 3.1. A random compact set AZfAu; u2Ug of a Banach space X
is said to be a random attractor for an RDS (q, f) in X if it is f-invariant, in
other words

fðt;u;AuÞZAqtu
; tR0; P-a:s:;

where fðt;u;AuÞZ
S

a2Au
fðt;u; aÞ; and pullback attracts every tempered random

set D̂ZfDu;u2Ug in X in the sense that

lim
t/N

distX f t; qKtu;DqKtu

� �
;Au

� �
Z 0;

where distX($, $) denotes the Hausdorff semidistance between subsets of X.

The following result (see Flandoli & Schmalfuss 1996) ensures the existence of
a random attractor for an RDS on a Banach space. A partial aim of the present
paper is to establish the existence of a random attractor under weaker
assumptions on the co-cycle mapping.

Theorem 3.2. Let (q, f) be an RDS on a Banach space X such that f(t, u, $):
X/X is a compact operator for each fixed tO0 and u2U.

If there exists a tempered random set B̂ZfBu;u2Ug and a TD̂;uR0 such that

f t; qKtu;DqKtu

� �
3Bu; ctRTD̂;u;

for every tempered random set D̂ZfDu;u2Ug in X, then the RDS (q, f) has a
random pullback attractor ÂZfAu;u2Ug.

A set B̂ZfB̂u;u2Ug in X satisfying the properties required by theorem 3.2 is
called a (random) pullback absorbing set of the RDS (f, q) in X.

The pullback attraction in the definition of a random attractor is a form of
pathwise convergence. It is known that a random attractor also attracts in the
usual forwards sense in the weaker convergence in probability, i.e. given eO0,

lim
t/CN

P distX fðt;u;DuÞ;Aqtu

� �
Oe

� �
Z 0:

4. Flattening in random dynamical systems

Definition 4.1. An RDS (f, q) on a Banach space X is said to be pullback
flattening if for every tempered random bounded set BZfBu;u2Ug in X, eO0
and u2U there exists a T0ðB; e;uÞO0 and a finite-dimensional subspace Xe of X
such that

(i)
S

tRT0
Pefðt; qKtu;BqKtu

Þ is bounded, and
(ii) kðIKPeÞ

S
tRT0

fðt; qKtu;BqKtu
Þ

� �
kX!e,

where Pe:X/Xe is a bounded projection and (ii) is understood in the sense that
kðIKPeÞfðt; qKtu; x 0ÞkX!e for all x 02BqKtu

and tRT0.

Definition 4.2. An RDS (f, q) on a Banach space X is said to be pullback limit-
set compact if for every tempered random bounded set BZfBu;u2Ug in X,
Proc. R. Soc. A (2007)
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eO0 and u2U there exists a T1ðB; e;uÞO0 such that

g
[
tRT1

fðt; qKtu;BqKtu
Þ

 !
!e;

where g is a measure of non-compactness defined on the subsets of X.

Definition 4.3. A RDS (f, q) on a Banach space X is said to be pullback
asymptotically compact in X if for every tempered random bounded set BZfBu;
u2Ug in X, each u2U and sequences tk/N and xk2BqKtk

u, kZ1, 2,., the set
ffðtk ; qKtku; xkÞ, kZ1, 2,.} is precompact in X.

Remark 4.4. Brzeźniak & Li (2002, in press) define an analogous concept of a
pullback asymptotically compact RDS with respect to deterministic bounded
sets B. In particular, their weaker definition than ours is referred to deterministic
bounded sets rather than tempered sets. They are then able to prove that omega-
limit sets associated to B are non-empty strictly invariant compact random sets
which attract B. Our results, with a stronger definition, which is commonly
satisfied in applications, lead to the existence of random attractors and so, in
particular, they imply this one.

We will prove the following theorems.

Theorem 4.5. Suppose that, X is a uniformly convex Banach space. The
following three properties of a random dynamical system on X are equivalent:

(i) pullback flattening,
(ii) pullback limit-set compact, and
(iii) pullback asymptotically compact.

Proof. Wewill prove that (i)0 (ii), then (ii)0 (iii) and finally that (iii)0 (i).

— the RDS is pullback flattening 0 the RDS is pullback limit-set compact

Suppose that the RDS is pullback flattening and consider an arbitrary
bounded random set BZfBu;u2Ug in X. Then for each u2U

g
[
tRT1

fðt; qKtu;BqKtu
Þ

 !
%g P

[
tRT1

fðt; qKtu;BqKtu
Þ

 ! !

Cg ðIKPÞ
[
tRT1

fðt; qKtu;BqKtu
Þ

 ! !

%0CgðBXð0; eÞÞZ 2e;

where BX(0,e) is the open ball in X with centre 0 and radius e. Hence, the RDS is
pullback limit-set compact.

— the RDS is pullback limit-set compact 0 the RDS is pullback asymptotically
compact.

Suppose that the RDS is pullback limit-set compact and let BZfBu;u2Ug
be a tempered random bounded set in X, for each u2U and eO0 there exists
Proc. R. Soc. A (2007)

http://rspa.royalsocietypublishing.org/


171Existence of random attractors

 on May 15, 2016http://rspa.royalsocietypublishing.org/Downloaded from 
T1ðB; e;uÞO0 such that

g
[
tRT1

fðt; qKtu;BqKtu
Þ

 !
!e:

Now, if we choose end1/n and define tndT1ðB; 1=n;uÞ for nZ1, 2,., with 0!
t1!t2!., we get that

g
[
tRtn

fðt; qKtu;BqKtu
uÞ

 !
!

1

n
; n Z 1; 2;.:

From the properties of our measure of non-compactness, it follows that

g
[
tRtn

fðt; qKtu;BqKtu
Þ

 !
!

1

n
; n Z 1; 2;.:

Now the bounded sets AnðB;uÞZ
S

tRtn
fðt; qKtu;BqKtu

Þ are nested, i.e. with AnC1

ðB;uÞ3AnðB;uÞ for nZ1, 2,., thus by lemma 2.11 of Wang et al. (in press)
their intersection is a non-empty compact subset of X, in other words

:sANðB;uÞZ
\
nR1

AnðB;uÞZ
\
nR1

[
tRtn

fðt; qKtu;BqKtu
Þ: ð4:1Þ

Now consider arbitrary sequences tk/N and xk2BqKtk
u, kZ1, 2,., where

BZfBu;u2Ug is a tempered random bounded set in X. Define FjðuÞd
ffðtk; qKtku; xkÞ, kRj} and (discarding a finite number of k if necessary) define

njdmaxfn2N : tn% tjg;
thus nj/N as j/N.

fðtk ; qKtku; xkÞ2fðtk ; qKtku;BqKtk
uÞ3Anj ðB;uÞ;

for all kRj and jZ1, 2,.. Thus, FjðuÞ3FjðuÞ3Anj ðB;uÞ for all kRj and
jZ1, 2,., so

g FjðuÞ
� �

!
1

nj
/0 as j/N:

But FjC1(u)3Fj(u) for jZ1, 2,., i.e the sets are nested, thus they have their
intersection non-empty and compact with

:s �FðuÞd
\
jR1

FjðuÞ3ANðB;uÞ:

From this we conclude that the set F1ðuÞdffðtk ; qKtku; xkÞ; kR1g is
precompact, and thus that the RDS is pullback asymptotically compact.

— the RDS is pullback asymptotically compact 0 the RDS is pullback flattening.

Suppose that RDS is pullback asymptotically compact and let BZBu;u2U
be a tempered random bounded set in X.

Let u2U be arbitrary but fixed and consider the set

ANðB;uÞZ
\
nR1

AnðB;uÞZ
\
nR1

[
tRtn

fðt; qKtu;BqKtu
Þ:

It is clear that, a point a2ANðB;uÞ if, and only if, there are sequences tk/N
and xk2BqKtk

u, kZ1, 2,., such that f(t,qKtu,ak)/a as k/N.
Proc. R. Soc. A (2007)
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From the assumed pullback asymptotic compactness of the RDS it is clear
that ANðB;uÞ is non-empty. Now consider a sequence ak2ANðB;uÞ, kZ1, 2,..
Then for each kR1, there exist sequences tkRk and yk2fðt; qKtku;BqKtk

uÞ such

that kykKakk%1/k. By the pullback asymptotic compactness of the RDS there is
a convergent subsequence (which we can relabel as the original one) such that
yk/a2ANðB;uÞ. Thus, ANðB;uÞ is both non-empty and compact.

Now suppose that ANðB;uÞ does not pullback attract B. Then there is an e0O0
and sequences tk/N in R

C and yk2fðtk ; qKtku;BqKtk
uÞ such that

distðyk ;ANðB;uÞÞOe0; ckR1: ð4:2Þ
Thus by pullback asymptotic compactness of the RDS, there is a convergent
subsequence (which we can relabel) such that yk/a2ANðB;uÞ. But this
contradicts (4.2), thus ANðB;uÞ does in fact pullback attract B. In particular, for
any eO0 there is a TeZTeðe;B;uÞO0 such that

distX f t; qKtu;BqKtu

� �
;ANðB;uÞ

� �
!

e

4
; ctRTe;

in other words

f t; qKtu;BqKtu

� �
3B ANðB;uÞ;

e

4

� �
:

Now ANðB;uÞ is a compact subset of X, therefore, there exist Ne points x1,
x2,.,xNe

in X such that

ANðB;uÞ3
[Ne

iZ1

BX xi;
e

4

� �
;

from which it follows that

f t; qKtu;BqKtu

� �
3BX ANðB;uÞ;

e

4

� �
3
[Ne

iZ1

BX xi;
e

2

� �
; tRTe; ð4:3Þ

in other words [
tRTe

f t; qKtu;BqKtu

� �
3
[Ne

iZ1

BX xi;
e

2

� �
:

Now let XNe
dspan fx1; x 2;.; xNe

g. Since X is uniformly convex, there exists a
projection PNe

X/XNe
such that kxKPNe

xkZdistðx;XNe
Þ for each x2X. Then����ðIKPNe

Þ
[
tRTe

f t; qKtu;BqKtu

� � !����% e

2
%e:

PNe

S
tRTe

fðt; qKtu;BqKtu
Þ

� �
is bounded in X since

S
tRTe

fðt; qKtu;BqKtu
Þ is

bounded X. Thus the RDS is flattening.
Actually, we can easily prove that (iii) 0 (ii), i.e. if an RDS is pullback

asymptotically compact, then it is pullback limit-set compact. Indeed, from (4.3)
we get

g fðt; qKtu;BqKtu
Þ

� �
%gðANðB;uÞÞ%

e

4
; ctRTe;

which means that the RDS is pullback limit-set compact. &

Note that, in fact, we only use the uniform convexity of the Banach spaceX in the
last implication. Thus, if X is a general Banach space then we have also proved that
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pullback limit-set compact 5 pullback asymptotically compact

and

pullback flattening 0 pullback asymptotically compact.

Theorem 4.6. Suppose that an RDS (f, q) is pullback flattening and has a
random bounded absorbing set B. Then it has a unique random attractor A with
Au3Bu for every u2U.

Proof. Since the RDS has a random pullback absorbing set B̂ZfB̂u : u2Ug,
for any bounded random set B, the RDS is pullback absorbed into B̂ in a finite
time, so we need only consider the asymptotic behaviour for the RDS starting in B̂.

In addition, the RDS is flattening, thus by theorem 4.5 it is pullback limit-set
compact and from the proof of theorem 4.5, there is a non-empty compact
subset ANðB̂;uÞ of X for each u2U defined in (4.1). Define ÂudANðB̂;uÞ for
each u2U and consider the family of non-empty compact subsets of X defined by

ÂdfÂu : u2Ug:
We need to show that Â is

(i) a random set, i.e. u1Âu is measurable,
(ii) is f-invariant, i.e. fðt; qu;AuÞZAqtu

, for all, tR0, and
(iii) pullback attracting.

These are proved by standard arguments, which have appeared often in the
literature. See, for example, Crauel & Flandoli (1994) or Crauel et al. (1995) for the
first property andWang et al. (in press) for the other two (where the proofs are given
in the deterministic context but are also valid here). Concerning the uniqueness of
the random attractor, we observe that, in particular, determininstic compact sets are
attracted, so that we can apply corollary 5.8 in Crauel (1999). &

It also follows that pullback flattening is a necessary condition for the
existence of random attractors since if Au is a random attractor, then an
e-neighbourhood of Au is pullback absorbing and we have equation (4.3).

Corollary 4.7. Let (f, q) be an RDS on a uniformly convex Banach space X.
If (f, q) has a random attractor Au, then the RDS is pullback flattening.

Remark 4.8. Crauel (2001) proved that a random attractor exists if, and only
if, there exists a random compact attracting set. Note that the previous corollary
does not give the equivalence between the flattening property and the existence
of random attractors, since in theorem 4.6 we also need the existence of a random
bounded absorbing set.
5. Pullback flattening and the random squeezing property

Infinite-dimensional non-autonomous dynamical systems driven, for example, by
almost periodic functions are often very uniform in the driving system variables
and thus many concepts and results for autonomous dynamical systems carry
over to them (Chepyzhov & Vishik 2002). This holds for non-autonomous
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generalizations of the flattening property (Wang et al. in press). In contrast,
random dynamical systems are highly non-uniform and new ideas are needed to
take into account this non-uniformity.

Debussche (1997) wrote the following sufficient condition in order to prove
finite Hausdorff dimensionality of random attractors: suppose that an RDS (q, f)
on a Banach space (X,k$k) has a random bounded absorbing set BZfBu; u2Ug
with Bu3BXð0; rðuÞÞ, for all u from a q-invariant set of full measure and for a
tempered random variable r (u). Let P: X/PX be a finite-dimensional
orthogonal projector and write QZIKP.

Non-uniformity in the comparison of higher modes of trajectories can be
handled in the following way (Debussche 1997): suppose there exists a
d2(0, 1/2) and a random variable c(u) with finite expectation EðcÞ! lnð1=dÞ
such that

kQðfð1; qtu; xÞKfð1; qtu; yÞÞk%d exp

ðtC1

t

cðqsuÞds
� �

kxKyk;

for all x; y2Bqtu
and each t2R.

This idea led Flandoli & Langa (1999) to define the following.

Definition 5.1 (Random squeezing property). Either the high modes are
bounded by the low modes

kQðfð1; qtu; xÞKfð1; qtu; yÞÞk%kPðfð1; qtu; xÞKfð1; qtu; yÞÞk;

or there exists a squeezing on the difference of two trajectories

kfð1; qtu; xÞKfð1; qtu; yÞk%2d exp

ðtC1

t
cðqsuÞds

� �
kxKyk;

for all x; y2Bqtu
and c($) a random variable c(u) with finite expectation

satisfying EðcÞ! lnð1=dÞ.
The random squeezing property has been shown to be a sufficient condition for

a determining modes result (Flandoli & Langa 1999; Langa 2003) and the finite-
dimensionality of random attractors (Debussche 1997; Langa 2003).

It should be no surprise that pullback flattening is a weaker property than
the random squeezing property since, given eO0, the pullback flattening
property requires a T0ðB; e;uÞO0 and an abstract finite-dimensional subspace
XN(e, u) of X, which in general depend on e (as well as u), whereas in the
random squeezing property the finite-dimensional subspace and projector P are
fixed in advance and, in particular, do not depend on the value of eO0.
Indeed, counter examples can be constructed in which the pullback flattening
property holds, but random squeezing is impossible.

Theorem 5.2. Suppose that an RDS (q, f) in a Banach space X has a positively
invariant bounded random absorbing set BZfBu;u2Ug, with BuZBX(0, r (u)),
where r (u) is a tempered random variable.

If (q, f) satisfies the random squeezing property on B, then it is pullback limit-
set compact and hence the RDS has a random attractor.

In addition, if X is a uniformly convex Banach space, then the RDS (q, f) is
pullback flattening.
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Proof. For notational convenience, we will write f(1,u)Bu for f(1,u,Bu), etc.
Following the argument in theorem 3.1 of Debussche (1997), f(1,u)Bu can be

covered by k0 balls of radius eK1/2r (u), in other words

fð1;uÞBu3
[k0
iZ1

BX a1i ; e
K1=2rðuÞ

� �
:

On the other hand, by the co-cycle property,

fðn; qKnuÞBqKnu
Zfð1; qK1uÞ+fð1; qK2uÞ+/+fð1; qKnuÞBqKnu

:

Thus, fð1; qKnuÞBqKnu
can be covered by k0 balls of radius eK1/2r(qKnu) and,

similarly, each of the balls of this covering can be covered by k0 balls of radius
eK2/2r(qKn,u). Iterating this argument, we obtain

fðn; qKnuÞBqKnu
3
[k n

0

iZ1

BX ani ; e
Kn=2rðqKnuÞ

� �
:

Since r (u) is tempered, given eO0 there is an n0 with eKn/2r(qKnu)!e for
nRn 0, so that fðn; qKnuÞBqKnu

can be covered by a finite number of balls of
radius less than e.

But for tZnCs, sR0, by the positive invariance of Bu and the co-cycle property

fðt; qKtuÞBqKtu
Zfðn; qKnuÞ+fðs; qKtuÞBqKtu

3fðn; qKnuÞBqKnu
;

for all tRn 0. Thus

g
[
tRn0

fðt; qKtuÞBqKtu

 !
!e;

so the RDS is thus pullback limit-set compact.
Finally, if X is a uniformly convex Banach space, then theorem 4.5 implies

that the RDS is pullback flattening. &
(a ) A sufficient condition for pullback flattening

In our abstract theory, the flattening property is equivalent to a RDS to be
pullback limit-set compact, so that the last property could be used in order to
prove a system to be flattening. However, in many applications, the flattening can
be proved directly, and actually flattening and squeezing properties can often be
established by related arguments, in the sense that the same projectors can often
be used for both the random squeezing property and the pullback flattening, as
will be seen in §6.

Here, we give a general result in this direction, which is also useful for non-
autonomous deterministic PDEs and can be used directly for applications
involving stochastic PDEs.

Suppose that (q, f) on a Banach space X is an ergodic RDS with a positively
invariant random absorbing set BZfBu;u2Ug such that Bu3BX(0, r (u)),
P-a.s., where r (u) is a tempered random variable. Let P : X/PX be a finite-
dimensional orthogonal projector with QdIKP.

Definition 5.3 (Higher mode inequality). There exist a d2(0, 1), an orthogonal
projector Q and a random variable c(u) with finite expectation EðcÞ! lnð1=dÞ
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such that, P-a.s.

kQfðt;u; xÞk%eKt=dkQxkCd exp

ðt
0
cðqsuÞds

� �
;

for all x2Bu.

A deterministic version for this property, applied to the two-dimensional
Navier–Stokes equations, can be found in Constantin et al. (1985). The main
difference between the higher mode inequality (5.3) here and its (squeezing)
counterpart in the deterministic case is the presence of the factor exp

Ð t
0 cðqsuÞds

� �
for which, in general, there is no uniform bound in time. Hence, the pathwise
flattening in the random case is much weaker than that which holds in the
deterministic framework.

The higher mode inequality (5.3) is a sufficient condition for the flattening
property in random dynamical systems.

Theorem 5.4. Suppose that an ergodic RDS (q, f) on a Banach space X
satisfies the higher mode inequality (5.3). Then the RDS satisfies the pullback
flattening property, and hence has a random attractor.

Proof. To prove the pullback flattening, first from (5.3) we obtain the inequality

kQfð1;u; xÞk%eK1=dkQxkCd exp

ð1
0
cðqsuÞds

� �
; ð5:1Þ

and note that by the co-cycle property

fðn; qKnu; xÞZfð1; qK1u; $Þ+fð1; qK2u; $Þ+/+fð1; qKnu; xÞ;

for all x2BqKnu
.

Consider a point xn2BqKnu
for a given fixed nO2. Then there exists x12BqK1u

with x1Zfð1; qK2u; $Þ+/+fð1; qKnu; xnÞ, which satisfy

kQfðn; qKnu; xnÞkZ kQfð1; qK1u; x1Þk:

Then, using (5.1) iteratively, we obtain

kQfðn; qKnu; xnÞk%eK1=dkQx1kCd exp

ð0
K1

cðqsuÞds
� �

Z eK1=dkQfð1; qK2u; x2ÞkCd exp

ð0
K1

cðqsuÞds
� �

;

where x 22BqK2u
with x 2Zfð1; qK3u; $Þ+/+fð1; qKnu; xnÞ. Then,

eK1=dkQfð1; qK2u; x2ÞkCd exp

ð0
K1

cðqsuÞds
� �

%eK1=d eK1=dkQfð1; qK3u; x3kCd exp

ðK1

K2
cðqsuÞds

� �� �

Cd exp

ð0
K1

cðqsuÞds
� �

:
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Thus, in n steps we obtain

sQfðn; qKnu; xnÞs%eKn=dkQxnkCd
XnK1

jZ0

ðeKn=dÞjexp
ðKj

KjK1
cðqsuÞds

� �

%eKn=dkQxnkCd
XnK1

jZ0

ðeKn=dÞjexp
ð0
KjK1

cðqsuÞds
� �

;

ð5:2Þ

By the ergodicity of qt and the temperedness of r (u) for n large enough so that
we can also take jRj0 large enough, we obtain

exp

ð0
KjK1

cðqsuÞds
� �

%expðEðcÞCe1ÞðjC1Þ:

Thus, for the expression in (5.2) we have

kQfðn; qKnu; xnÞk%eKn=dkQxnkCd c1
XN

jZj0C1

ejðKn=dCEðcÞCe1Þ

 

C
Xj0
jZ0

ðeKn=dÞjexp
ð0
KjK1

cðqsuÞds
� �!

:

Observing that the infinite series here is convergent, we have proved for some
random constant c2(u) that

kQfðn; qKnu; xnÞk%eKn=dkQðxnKynÞkCc2ðuÞd:
Thus, given eO0, we can choose d sufficiently small enough and an n 0 such that

kQfðn; qKnu; xnÞk%e; ð5:3Þ
for all xn2BqKnu

and nRn0.
Now, if we take tRn 0C1 with tZnCs and s2[0,1) , for xt2BqKtu

we obtain

kfðt; qKtu; xtÞkZ kfðn; qKnu; xnÞk!e; ð5:4Þ
with xnZfðs; qKtu; xtÞ2BqsKtu

, so that pullback flattening holds. &
6. Two examples

We consider two well-known examples from the literature and indicate briefly
how the flattening property can be verified for them. Since both examples satisfy
the random squeezing property then the pullback flattening property also holds.
The first example just tries to illustrate an already known model where the
theory could be applied.

We think our second example is more interesting, as we will show how to
prove the existence of random attractors in space V for stochastic two-
dimensional Navier–Stokes equations without having to show the existence of an
absorbing ball in space D(A) (for a deterministic version of this result see Ma
et al. (2002)). Note that since the examples involve additive noise, the noise
terms disappear on substraction in setting the squeezing estimates. For the
flattening estimates we first have to substract an appropriate Ornstein–Uhlen-
beck process to convert the stochastic PDE into a random PDE, but we have to
do this in any case to prove the existence of an absorbing ball.
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(a ) A stochastic reaction–diffusion equation

The first known example where a random squeezing property is satisfied
appears in Debussche (1997), where the following stochastic reaction-difussion
equation is studied: let D3R

m, m%3, be an open bounded set with regular
boundary. We consider

du Z ðDuC f ðuÞÞdtC
XM
iZ1

ji dW
i
t ; ð6:1Þ

with u(x, t)Z0 for x2vD, where the ji2D(D), the Wi
t are independent two-sided

scalarWiener processes on the probability space ðU;F ;PÞ and f (u) is a polynomial
with negative higher order coefficient. From Debussche (1997; section 3.1) we
easily conclude the random squeezing property, so that theorem 5.2 holds, and
thus the flattening property is satisfied for this example.
(b ) Random attractor in V for stochastic two-dimensional
Navier–Stokes equations

We use the notation from Temam (1988), in particular the space H with norm
j$j and the space V with norm k$k, and consider the two-dimensional stochastic
(or random) Navier–Stokes equations (RNSE) with scalar additive noise

vu

vt
CuVuKnDuCgrad pZ f CjdWt; V$u Z 0; ð6:2Þ

in a two-dimensional torus O in R
2 with periodic boundary conditions, where W

is a two-sided scalar Wiener process and j2D(A) and, for simplicity, we assume
j is an eigenfunction of the Stokes operator. We write this as

du

dt
ZAuCBðu; uÞC f Cj dWt;

and assume that the forcing term f does not depend on time.
To set our problem in the usual abstract framework, we consider the

following spaces:

V Z u2 CN
0 ðOÞð Þ2; div u Z 0

	 

:

HZ the closure of V in ðL2ðOÞÞ2 with norm j$j, and inner product ($, $) where for
u; v2ðL2ðOÞÞ2,

ðu; vÞZ
X2
jZ1

ð
O
ujðxÞvjðxÞdx:

VZ the closure of V in ðH 1
0 ðOÞÞ2 with norm k$k, and associated scalar product

(($, $)), where for u; v2ðH 1
0 ðOÞÞ2,

ððu; vÞÞZ
X2
i;jZ1

ð
O

vuj
vxi

vvj
vxi

dx:

It follows that V3HhH 03V 0, where the injections are dense.
Let �zðtÞ denote the entire solution (i.e. Ornstein–Uhlenbeck process) of the

scalar linear SDE
d�zt ZKa�zt dtCdWt; ð6:3Þ
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for some aO0, in other words

�zt Z

ðt
KN

eKaðtKsÞdWs;

and write zðtÞZj�zt.
Let vZuKz. Then, v satisfies the random PDE

dv

dt
ZAvCBðu; uÞC f CazCAz: ð6:4Þ

Let Q be the projection onto the subspace spanned by eigenfunctions of A, fj,
with jRN for some N. Write qZQv. Multiplying by KAq and integrating over U,
we get

1

2

d

dt
kqk2CnjAqj2 ZKðBðu;uÞ;AqÞKðf ;AqÞCaðj;AqÞ�zKðAj;AqÞ�z

%C juj1=2kukjAuj1=2jAqjC2

n
j�zj2ðjf j2Cjjj2CjAjj2ÞC3n

8
jAqj2

%C1jujkuk2jAujC
2

n
j�zj2ðjf j2Cjjj2CjAjj2ÞC n

4
jAqj2:

Write RðtÞZC1jujkuk2jAujC 2
n
j�zj2ðjf j2C jjj2C jAjj2Þ. Then we have

d

dt
kqk2CnlNkqk2%RðtÞ;

which integrates to give

kqðtÞk2%kqðsÞk2eKnlN ðtKsÞCeKnlN t

ðt
s
enlNtRðtÞdt;

from which it follows that

kqðtÞk2%kqðsÞk2eKnlN ðtKsÞCeKnlN t

ðt
s
enlNtRðtÞdt

%kqðsÞk2eKnlN ðtKsÞCeKnlN t

ðt
s
enlNtdt

� �1=2 ðt
s
enlN tRðtÞ2dt

� �1=2

%kqðsÞk2eKnlN ðtKsÞC
1ffiffiffiffiffiffiffiffi
nlN

p eKnlN t

ðt
s
enlNtRðtÞ2dt

� �1=2

:

The higher modes inequality follows from this last inequality and the fact that
the random integral has finite expectation using the results in section 5.2 of
Flandoli & Langa (1999). Thus, the stochastic two-dimensional Navier–Stokes has
a random attractor inV, rather than just inH as shown elsewhere in the literature.
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