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EXACT CONTROLLABILITY TO TRAJECTORIES FOR SEMILINEAR HEAT
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Abstract. The results of this paper concern exact controllability to the trajectories for a coupled
system of semilinear heat equations. We have transmission conditions on the interface and Dirichlet
boundary conditions at the external part of the boundary so that the system can be viewed as a single
equation with discontinuous coefficients in the principal part. Exact controllability to the trajectories
is proved when we consider distributed controls supported in the part of the domain where the diffusion
coefficient is the smaller and if the nonlinear term f(y) grows slower than |y| log3/2(1 + |y|) at infinity.
In the proof we use null controllability results for the associate linear system and global Carleman
estimates with explicit bounds or combinations of several of these estimates. In order to treat the terms
appearing on the interface, we have to construct specific weight functions depending on geometry.
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1. Introduction and hypothesis

Let Ω ⊂ R
N , N ≥ 1 be a bounded connected open set with boundary Γ of class C2. Let ω ⊂ Ω be a

nonempty open subset and T > 0. We will use the following notation: Q = Ω× (0, T ), Σ = Γ× (0, T ). For any
p ∈ [1,+∞], we will denote by || · ||p the usual norm in Lp(Q).

There are two different situations that will be analyzed in this paper. More precisely, let Ω0 and Ω1 be a
partition of Ω in two non empty open sets such that

Case 1: Ω0 ⊂⊂ Ω, Ω1 = Ω\Ω0 (see Fig. 1, left); (1)

Case 2: Ω1 ⊂⊂ Ω, Ω0 = Ω\Ω1 (see Fig. 1, right). (2)
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Cedex, France; e-mail: dubova@numer.us.es, doubova@cmapx.polytechnique.fr

This work has been partially supported by D.G.E.S., Spain, Grants PB98–1134.
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Correo 3, Santiago, Chile and Centro de Modelamiento Matemático, UMR 2071 CNRS-Uchile; e-mail: axosses@dim.uchile.cl
This work has been partially supported by FONDECYT grants No. 1000955 and 7000955.
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Figure 1. Two geometrical cases covered in this paper depending on Ω0 ⊂⊂ Ω or Ω1 ⊂⊂ Ω.

We denote by S = Ω0 ∩Ω1 the interface, which will be supposed of class C2 and by n the outward unit normal
to Ω1 at the points of S and also the outward unit normal to Ω at the points of Γ. Let S+ (resp. S−) be the
part of S corresponding to the positive (resp. negative) direction of the normal n.

Remark 1.1. The two cases mentioned above are not exhaustive, we do not treat other possible geometrical
situations in this paper.

In both cases mentioned above, we will consider the following transmission problem for semilinear heat
equation 

∂ty − div(a0(x)∇y) + f(y) = v1ω + g0 in Ω0 × (0, T ),
∂ty − div(a1(x)∇y) + f(y) = v1ω + g1 in Ω1 × (0, T ),
y|S+×(0,T ) = y|S−×(0,T ),

a0(x) ∂ny|S+×(0,T ) = a1(x) ∂ny|S−×(0,T ) ,

y = 0, on Σ
y(x, 0) = y0 in Ω.

(3)

Here f : R → R is a locally Lipschitz-continuous function, ∂ny denotes the outward normal derivative to Ω1,
y0 ∈ L2(Ω) and v ∈ Lr(0, T ;Lr(ω)), gi ∈ Lr(0, T ;Lr(Ωi)), i = 0, 1 with r such that

1
r

+
N

2r
< 1 if N ≥ 2,

r = 2 if N = 1.
(4)

Remark 1.2. We could in fact consider v ∈ Lp(0, T ;Lq(ω)), gi ∈ Lp(0, T ;Lq(Ωi)), i = 0, 1 with 1/p+N/(2q)
< 1 in order to have L∞ solutions, but in the sake of simplicity we take p = q = r.

Remark 1.3. Without loss of generality we can assume y0 ∈ L∞(Ω). Otherwise, taking v = 0 for t ∈ (0, δ),
δ > 0 and thanks to the regularizing effect of parabolic equations, y(δ) ∈ L∞(Ω) for some δ > 0 [21, 22].

In (3), y = y(x, t) is the state and v = v(x, t) is the control which acts on the system through ω since 1ω is
the characteristic function of the set ω.

We will assume that the diffusion coefficient in (3) satisfies the following:

ai ∈ C2(Ωi) for i = 0, 1,
a0|S+ 6= a1|S− .

(5)

System (3) represents the coupling between two parabolic semilinear equations whose diffusion coefficient has
a jump. At the interface S, we impose the continuity of the solution y and also of the fluxes.
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Let us set

a(x) =
{
a0(x) if x ∈ Ω0,

a1(x) if x ∈ Ω1.
(6)

We also set

g(x) =
{
g0(x) if x ∈ Ω0,

g1(x) if x ∈ Ω1.
(7)

Taking into account notations (6) and (7), problem (3) can be written in the divergence form (with discontinuous
diffusion coefficients) as follows:

∂ty − div(a(x)∇y) + f(y) = v1ω + g in Q,

y = 0 on Σ,
y(x, 0) = y0 in Ω.

(8)

We will require a to satisfy

a(x) ≥ α > 0 a.e. in Ω (9)

and the following additional hypothesis:

a0|S+ ≤ a1|S− . (10)

We assume that for each η > 0, there exists Cη > 0 such that

∣∣∣∣f(s) − f(s′)
s− s′

∣∣∣∣2/3 ≤ Cη + η log(1 + |s− s′|) ∀ s, s′ ∈ R. (11)

Let us also consider an “ideal” trajectory y∗, solution of the problem (without control)
∂ty

∗ − div(a(x)∇y∗) + f(y∗) = g in Q,

y∗ = 0 on Σ,
y(x, 0)∗ = y∗0 in Ω

(12)

where y∗0 ∈ L2(Ω) and g ∈ Lr(0, T ;Lr(Ω)), with r as in (4). We know that under conditions (9) and (11),
problem (12) possesses exactly one local solution in time (cf. [21] and [22]). Moreover, we can say that there exists
a time T ∗ > 0, such that for T < T ∗, the solution y∗ of (12) satisfies y∗ ∈ C0([0, T ];L2(Ω)) ∩L∞(δ, T ;L∞(Ω)),
for every δ > 0.

The main goal of this paper is to analyze the controllability properties of (8).

Definition 1.1. We say that (8) is exactly controllable to the trajectories if, for any trajectory y∗ solution
of (12) and for any initial condition y0 ∈ L2(Ω), for every T < T ∗, there exists a control v ∈ Lr(0, T ;Lr(ω))
such that (8) has a solution y on (0, T ) satisfying

y(x, T ) = y∗(x, T ) in Ω. (13)
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Definition 1.2. System (8) is said null controllable at time T if, for each y0 ∈ L2(Ω), there exists v ∈
Lr(0, T ;Lr(ω)) such that the corresponding initial boundary problem (8) admits a solution y ∈ C0([0, T ];L2(Ω))
satisfying

y(x, T ) = 0 in Ω. (14)

For linear problems, it is easy to see that the notions of null controllability and exact controllability to the
trajectories are equivalent, but this is not true for nonlinear systems.

Definition 1.3. It will be said that (8) is approximately controllable in L2(Ω) at time T if, for any y0 ∈ L2(Ω),
any yd ∈ L2(Ω) and any ε > 0, there exists a control v ∈ Lr(0, T ;Lr(ω)) such that the corresponding initial
boundary problem (8) possesses a solution y ∈ C0([0, T ];L2(Ω)), with

‖y(·, T ) − yd‖L2(Ω) ≤ ε. (15)

In the case in which the diffusion coefficients are sufficiently regular, the controllability of linear and semilinear
parabolic systems has been analyzed in several recent papers. Among them, let us mention [1, 5, 11, 13, 15–17],
and [8] concerning null controllability [9,12,13,25] and [8] for approximate controllability [16] and [13] for exact
controllability to the trajectories.

2. Main result

2.1. Geometric hypothesis and main result

In order to state the main result of this work, we need the following geometrical conditions.

Condition 2.1 (corresponding to case (1)). We assume that there exists a vector field ζ : Ω1 7→ R
N , ζ ∈

C1(Ω1), such that

ζ(x) · n(x) < 0 ∀x ∈ Γ, (16)

ζ(x) · n(x) > 0 ∀x ∈ S, (17)

ζ(x) 6= 0 ∀x ∈ Ω1 (18)

and if we consider the characteristics associated to ζ
dx(t)

dt
= ζ(x(t)), t > 0,

x(0) = x0,
(19)

with x0 ∈ Γ, we also assume that for some time T1 > 0 and for every x0 ∈ Γ, there exists t1(x0) < T1 such that
the solution x(t) of (19) verifies

x(t) ∈ Ω1 for 0 < t < t1(x0) (20)

and

x(t1(x0)) ∈ S for x0 ∈ Γ. (21)

Remark 2.1. Condition 2.1 implies that Γ and S are isotopic, but it is not clear whether isotopy is sufficient
to ensure this condition.

Remark 2.2. Notice that Condition 2.1 is fulfilled for usual domains, see for example the cases of Figure 2.
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Figure 2. Condition 2.1 is fulfilled in situations (a, c, e) but not in (b) and (d). The boundary
Γ is represented by a solid line and the interface S by a dashed line, the dashed region represents
Ω0 and the black dot the location of the control zone.
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Figure 3. Condition 2.2 is fulfilled in situations (a–d) but not in (e) with the same notations
as in the previous figure.

Condition 2.2 (corresponding to case (2)). We assume that there exist two disjoint open sets O1 ,O2 ⊂⊂ Ω1

(with always a unit outward normal n) and vectors fields ξi : Ω1 7→ R
N , ξi ∈ C1(Ω1), i = 1, 2, such that

ξi(x) · n(x) > 0 ∀x ∈ S,

ξi(x) · n(x) > 0 ∀x ∈ ∂Oi , i = 1, 2,
ξi(x) 6= 0 ∀x ∈ Ω1\Oi

(22)

and for the characteristics associated to ξi
dxi(t)

dt
= −ξi(xi(t)), t > 0,

xi(0) = xi0,
(23)

with xi0 ∈ S, we assume also that for some time T i2 > 0, and for all xi0 ∈ S, there exists ti2(xi0) < T i2 such that
the solution xi(t) of (23) verifies

xi(t) ∈ Ω1\Oi for 0 < t < ti2(xi0)

and

xi(ti2(x
i
0)) ∈ ∂Oi for xi0 ∈ S, i = 1, 2.

Remark 2.3. Notice that this hypothesis is essentially Condition 2.1 written for the case (2). It is also fulfilled
in usual geometrical cases, see for example the cases in Figure 3.
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The aim of this paper is to prove the following theorem:

Theorem 2.1. Assume that in problem (8) the coefficient a satisfies (5, 6, 9, 10), f is a locally Lipschitz-
continuous function satisfying (11) or Condition 2.1 in case (1) or Condition 2.2 in case (2) are fulfilled. If
ω ∩ Ωi0 6= ∅, for each connected component Ωi0 of Ω0, then for each case (1) or (2, 8) is exactly controllable to
the trajectories.

The idea of the proof of Theorem 2.1 is the following. With a simple change of variables we reduce the
problem of exact controllability to the trajectories for (8) to null controllability for a still nonlinear similar
transmission problem. For this null controllability result we use approximate controllability to the zero state
for an associated linear transmission problem with controls in Lr(0, T ;Lr(ω)) for r as in (4) and then we apply
a fixed point method. For this we need explicit estimates on the cost of approximate controllability which
is obtained from observability inequalities (see Props. 4.1 and 4.2). These estimates are deduced from global
Carleman inequalities. In case (1), we use one single global Carleman inequality (see Th. 3.3) with a suitable
weight function, whose construction is presented in Lemma 3.1. Case (2) is more complicated and we have to
combine two different global Carleman inequalities (see Th. 3.4) with two appropriate weight functions whose
construction are given in Lemma 3.2. The growth condition of the non linear term f is analyzed using the
arguments of [13].

The idea of combining the controllability of a linearized system and a fixed point argument in the proof is
rather general. It was introduced in [23] in the context of the boundary controllability of the semilinear wave
equation. For other controllability results proved in a similar way, see for instance [9, 13, 15] and [8].

In the proofs we will suppose that Ω0 and Ω1 are connected sets and we assume the simpler hypothesis
ω ∩ Ω0 6= ∅. Otherwise the weight functions for Carleman inequalities are constructed analogously on each
connected component of Ω0 and Ω1.

The paper is organized as follows. In Section 3 we deduce global Carleman inequalities, that we use for
proving the main result. Section 4 is devoted to obtain some observability estimates. In Section 5, we prove
Theorem 2.1. Finally, in Section 6, we give an explicit construction of suitable weight functions, needed for the
global Carleman inequalities.

2.2. Some consequences and extensions

1. Observe that, the controllability result holds if the control acts in the part of the domain where the diffusion
coefficient is smaller. To our knowledge, this result is the first one in the literature related to exact controllability
to the trajectories when the diffusion coefficients are discontinuous.

2. In the case s′ = 0 and f(0) = 0, notice that assumption (11) can be simply read as follows:

lim
|s|→+∞

f(s)

|s| log3/2(1 + |s|) = 0. (24)

The proof of Theorem 2.1 also gives the result of null controllability for (8) with a suitable hypothesis on g
under the hypothesis and the same geometrical cases considered in Theorem 2.1 by taking condition (24) instead
of (11).

3. Notice that approximate controllability for a linear transmission problem is always true and it is independent
of the choice of the part of the domain where the control acts as a consequence of unique continuation property.
Nonlinear problem (8) with f growing as in (11) is still approximately controllable under the conditions of
Theorem 2.1. This is due to the fact that approximate controllability in this case can be proved as a consequence
of exact controllability to the trajectories. This idea is taken from [12], where approximate controllability for
semilinear heat equations is obtained in such a way.
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4. We can also consider in (8) the more general case in which the diffusion coefficients are represented by a real
symmetric uniformly elliptic matrix A, i.e. there exists a constant α > 0 such that

A(x, ξ, ξ) =
N∑

i,j=1

Aijξiξj ≥ α|ξ|2 ∀ ξ ∈ R
N , for a.e. x ∈ Ω (25)

and A is regular in each Ωi, i = 0, 1. In this case, condition (10) has to be replaced by[
detA
An · n

]
S

≥ 0, (26)

where [ ]S denotes the jump across S.
Until now, null controllability for semilinear parabolic systems (in the divergence form) has been analyzed

when the diffusion coefficients are sufficiently regular. More precisely, when A = (Aij), i, j = 1, . . . , N with
Aij ∈ C1,2(Q) (see [15]).

2.3. Open problems related to Theorem 2.1

1. If ω ⊂ Ω1 we do not know whether or not system (8) is exactly controllable to the trajectories. Is in this
case null controllability also an open problem.

2. In [13], it is proved that even in the case of regular diffusion coefficients, for each β > 2, there exist functions
f = f(s) with f(0) = 0 and

lim
|s|→∞

|f(s)|
|s| logβ (1 + |s|) = α with α > 0, (27)

such that the corresponding system (for the semilinear heat equation) is not null-controllable for any T > 0. In
view of point 2 in Section 2.2, we see that, when f satisfies (27) with 3/2 ≤ β ≤ 2, null-controllability of (8) is
an open question.

3. On the other hand, it is proved in [13], that also in the case of regular diffusion coefficients, for each β > 2,
there exist functions f satisfying (27) such that the corresponding system (for the semilinear heat equation) is
not approximately controllable for all T > 0. Then, approximate controllability for the transmission problem (8)
with 3/2 ≤ β ≤ 2, is also an open question.

4. An abstract result due to Russell [20] shows that boundary exact controllability for the wave equation implies
boundary exact null controllability for the heat equation with the same type of control and geometry. This
result is proved in the case of smooth coefficients. If we consider this principle still true in the case of non
smooth coefficients, the geometrical hypothesis that we consider here seems to be too restrictive in the case
N = 1 (cf. [7] for the controllability of the corresponding wave equation) but not for N ≥ 2.

5. In [14], it is proved null controllability result for the one-dimensional linear heat equation like ρ(x) −
(a(x)zx)x +m(x)z = 0 with only BV coefficients without any assumption on the control zone. However, the
proof is definitely strictly one dimensional relying on the corresponding one for the wave equation and null
controllability result is true if the potential m depends only on space variable, but not on time. Then, even in
the one-dimensional case it is not clear how to treat with this method a similar nonlinear problem.



628 A. DOUBOVA, A. OSSES AND J.-P. PUEL

3. Global Carleman inequalities

In this section we will deduce two global Carleman inequalities, that we need for the proof of Theorem 2.1.
For this purpose, we will introduce suitable weight functions. Let us first consider the situation of case (1) (see
Fig. 1, left). The first weight function is given by the following result:

Lemma 3.1. Assume that we have the geometrical situation of case (1) (see Fig. 1). Assume that the function
a defined in (5, 6) satisfies (9, 10) and that Condition 2.1 holds. If ω ∩ Ω0 6= ∅ then for every open set
ω0 ⊂⊂ ω ∩ Ω0 there exists a function β̃ ∈ C0(Ω), β̃i = β̃|Ωi ∈ C2(Ωi), i = 0, 1, β̃ > 0 in Ω, such that

β̃ = 0 on Γ, (28)

∂nβ̃ < 0 on Γ, (29)

β̃ = 1 on S, (30)

∂nβ̃0 > 0, ∂nβ̃1 > 0 on S, (31)

a0∂nβ̃0 = a1∂nβ̃1 on S (32)

and

|∇β̃| > 0 in Ω\ω0 . (33)

The proof of Lemma 3.1 will be given in Section 6.

Now, we consider the geometrical case (2) (see Fig. 1, right). For the second Carleman inequality, which we
will use to treat the situation 2, we need two suitable weight functions.

We have the following result:

Lemma 3.2. Assume that we have the geometrical situation of case (2) (see Fig. 1). Assume that the function
a defined in (5, 6) satisfies (9, 10) and that there exist two open disjoint sets O1 ,O2 ⊂⊂ Ω1 verifying Condi-
tion 2.2. Let Bi and B̃i, i = 1, 2 be balls such that B1 ⊂⊂ B̃1 ⊂⊂ O1 and B2 ⊂⊂ B̃2 ⊂⊂ O2. If ω ∩Ω0 6= ∅ then
for every open set ω0 ⊂⊂ ω ∩ Ω0 there exist two functions β̃1 and β̃2 such that

β̃1(x) =

{
β̃0(x) if x ∈ Ω0,

β̃1
1(x) if x ∈ Ω1,

β̃2(x) =

{
β̃0(x) if x ∈ Ω0,

β̃2
1(x) if x ∈ Ω1,

(34)

with the following properties: β̃0 ∈ C2(Ω0), β̃0 > 0 in Ω0,

β̃0 = 0 on Γ, ∂nβ̃0 < 0 on Γ, (35)

∂nβ̃0 > 0 on S, β̃0 = 2 on S, (36)

|∇β̃0| > 0 in Ω0\ω0. (37)

And for i = 1, 2, β̃i1 ∈ C2(Ω1), β̃i1 > 0 in Ω1,

β̃i1 = β̃0 = 2 on S, (38)

a0∂nβ̃0 = a1∂nβ̃
i
1 on S, i = 1, 2, (39)

β̃1
1 ≥ 2β̃2

1 in B̃2, (40)

β̃2
1 ≥ 2β̃1

1 in B̃1, (41)
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and

|∇β̃i1| > 0 in Ω1\Bi , i = 1, 2. (42)

The proof of Lemma 3.2 will also be given in Section 6.

Remark 3.1. Notice that in geometrical case (2) (Ω1 ⊂⊂ Ω) it is impossible to have a function β̃ which is
constant on S and such that ∇β̃ 6= 0 in Ω1.

Let us consider the functions

β = β̃ +K, β =
5
4

max
Ω

β, (43)

with K > 0 such that K ≥ 5 max
Ω

β̃, and β̃ is given by Lemma 3.1.

Let λ be a sufficiently large positive constant that only depends on Ω and ω. It will be fixed later on. For
t ∈ (0, T ) and following [16] and [12], we introduce the following functions:

ϕ(x, t) =
eλβ(x)

t(T − t)
, η(x, t) =

eλβ − eλβ

t(T − t)
· (44)

Notice that

∇η = −λϕ∇β, ∇ϕ = λϕ∇β. (45)

Let us set
Z0 = {q : q ∈ C2(Ωi × [0, T ]), i = 0, 1, q|S+×(0,T ) = q|S−×(0,T ) ,

a0∂nq|S+×(0,T ) = a1∂nq|S−×(0,T ) , q = 0 on Σ}·
We have the following Carleman estimate:

Theorem 3.3. Assume that ω∩Ω0 6= ∅, a satisfies (5, 6, 9) and (10) and Condition 2.1 in case (1) is fulfilled.
There exists λ1(Ω, ω, a) > 0 such that for each λ > λ1 there exists a positive constant C that only depends on Ω,
ω and a, and s1(λ) > 0 so that the following estimate holds

s3
∫∫

Q

e−2sηt−3(T − t)−3|q|2 dxdt+ s

∫∫
Q

e−2sηt−1(T − t)−1|∇q|2 dxdt

≤ C

(
s3
∫∫

ω×(0,T )

e−2sηt−3(T − t)−3|q|2 dxdt

+
∫∫

Q

e−2sη|∂tq + div(a(x)∇q)|2 dxdt
) (46)

for all q ∈ Z0 and s ≥ s1. Moreover, s1 is of the form s1 = σ1(Ω, ω, a, λ)(T 2 + T ), where σ1 is a positive
constant that only depends on Ω, ω, a and λ.

Proof of the Theorem 3.3. In the sequel, C will stand for a generic positive constant only depending on Ω, ω
and a, whose value can change from line to line. We will also use the usual convention of repeated indices.

Let us assume q ∈ Z0 and s > 0. We set

f = ∂tq + div(a(x)∇q)
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and

ψ = e−sηq. (47)

Notice that

ψ(0) = ψ(T ) = 0. (48)

We have the following equality:

e−sη(∂t(esηψ) + div(a(x)∇(esηψ)) = e−sηf. (49)

Using (45), we can write (49) in the form

M1ψ +M2ψ = e−sηf + sλϕdiv(a(x)∇β)ψ − sλ2ϕa(x)|∇β|2ψ, (50)

where

M1ψ = div(a(x)∇ψ) + s2λ2ϕ2|∇β|2a(x)ψ + s∂tηψ (51)

and

M2ψ = ∂tψ − 2sλϕa(x)∇β∇ψ − 2sλ2ϕa(x)|∇β|2ψ. (52)

Let set

fs = e−sηf + sλϕdiv(a(x)∇β)ψ − sλ2ϕa(x)|∇β|2ψ. (53)

From (50), we obtain

‖M1ψ‖2
2 + ‖M2ψ‖2

2 + 2(M1ψ,M2ψ) = ‖fs‖2
2 , (54)

where (·, ·) denotes the scalar product in L2(Q). Let us compute the scalar product in the left hand side of (54).
We can write

(M1ψ,M2ψ) = I11′ + I12′ + I13′ + I21′ + I22′ + I23′ + I31′ + I32′ + I33′ . (55)

In (55), all the integrals denote the respective scalar products for the terms of M1ψ and M2ψ. For simplicity,
in the sequel, we will write a instead of a(x). We have

I11′ =
∫∫

Q

div(a∇ψ)∂tψ dxdt = −
∫∫

Q

a∇ψ ∂t(∇ψ) dxdt

+
∫ T

0

∫
S

a1∇ψ · n ∂tψ dxdt−
∫ T

0

∫
S

a0∇ψ · n ∂tψ dxdt = −1
2

∫∫
Q

a∂t(|∇ψ|2) dxdt = 0.
(56)
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Here we have used (48) which says that ψ(0) = ψ(T ) = 0.

I12′ = −2sλ
1∑
l=0

∫ T

0

∫
Ωl

ϕdiv(al∇ψ)al∇β∇ψ dxdt = 2sλ
1∑
l=0

∫ T

0

∫
Ωl

al∂xiψ∂xi(ϕal∂xjβ∂xjψ) dxdt

−2sλ
∫ T

0

∫
S−

ϕa2
1(∇β1 · ∇ψ)(∇ψ · n) dσ dt+ 2sλ

∫ T

0

∫
S+
ϕa2

0(∇β0 · ∇ψ)(∇ψ · n) dσ dt

−2sλ
∫ T

0

∫
Γ

ϕa2
1(∇β · ∇ψ)(∇ψ · n) dσ dt.

(57)

Let us consider the first term of (57). Also for simplicity, we will make the computation only for the integrals
in Ω1. We set

I1
12′ = 2sλ

∫ T

0

∫
Ω1

a1∂xiψ ∂xi(ϕa1∂xjβ∂xjψ) dxdt.

We will use (45) and

∇β = (∇β · n)n+ ∇τβ, (58)

∇ψ = (∇ψ · n)n+ ∇τψ, (59)

where ∇τβ and ∇τψ denote the tangential gradients. Thanks to the choice of β we know from (30) and (43)
that β is a constant on S, then ∇τβ = 0 on S and we can write

I1
12′ = 2sλ2

∫ T

0

∫
Ω1

ϕ(a1∂xiψ∂xiβ)(a1∂xjβ∂xjψ) dxdt+ 2sλ
∫ T

0

∫
Ω1

ϕa1∂xiψ ∂xi(a1∂xjβ)∂xjψ dxdt

+sλ
∫ T

0

∫
Ω1

ϕa1(a1∂xjβ)∂xj (|∇ψ|2) dxdt.

(60)

Integrating now by parts in the third term of (60) we obtain

I1
12′ = 2sλ2

∫ T

0

∫
Ω1

ϕ(a1∂xiψ∂xiβ)(a1∂xjβ∂xjψ) dxdt+ 2sλ
∫ T

0

∫
Ω1

ϕa1∂xiψ ∂xi(a1∂xjβ)∂xjψ dxdt

−sλ2

∫ T

0

∫
Ω1

ϕ|a1∇β|2|∇ψ|2 dxdt− sλ

∫ T

0

∫
Ω1

ϕa1∂xj (a1∂xjβ)|∇ψ|2 dxdt

−sλ
∫ T

0

∫
Ω1

ϕ(∂xja1)(a1∂xjβ)|∇ψ|2 dxdt+ sλ

∫ T

0

∫
S−

ϕa2
1(∂nβ1)|∇ψ|2 dσ dt

+sλ
∫ T

0

∫
Γ

ϕa2
1(∂nβ)|∇ψ|2 dσ dt.

(61)

For the integrals in Ω0 it is sufficient to take into account that n is the outward unit normal to Ω1 and replace
in (61), n by −n, S− by S+ and Ω1 by Ω0.
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Consequently, from (57) and (61), using again (59) we deduce

I12′ = −sλ2

∫∫
Q

ϕ|a∇β|2|∇ψ|2 dxdt+ 2sλ2

∫∫
Q

ϕ(a∇ψ · ∇β)2 dxdt

− sλ

∫ T

0

∫
S−

ϕ(∂nβ1)|a1∂nψ|2 dσ dt+ sλ

∫ T

0

∫
S+
ϕ(∂nβ0)|a0∂nψ|2 dσ dt

+ sλ

∫ T

0

∫
S−

ϕa1(a1∂nβ1)|∇τψ|2 dσ dt− sλ

∫ T

0

∫
S+

ϕa0(a0∂nβ0)|∇τψ|2 dσ dt

− sλ

∫ T

0

∫
Γ

ϕa2
1(∂nβ)|∂nψ|2 dσ dt+X1

(62)

with

X1 = 2sλ
∫∫

Q

ϕa∂xiψ ∂xi(a∂xjβ)∂xjψ dxdt− sλ

∫∫
Q

ϕa∂xj (a∂xjβ)|∇ψ|2 dxdt

−sλ
∫∫

Q

ϕ(∂xja)(a∂xjβ)|∇ψ|2 dxdt.
(63)

Finally, we get

I12′ = −sλ2

∫∫
Q

ϕ|a∇β|2|∇ψ|2 dxdt+ 2sλ2

∫∫
Q

ϕ(a∇ψ · ∇β)2 dxdt

+ sλ

∫ T

0

∫
S

ϕ|a∂nψ|2 [∂nβ]S dσ dt− sλ

∫ T

0

∫
S

ϕ|∇τψ|2(a∂nβ)[a]S dσ dt

− sλ

∫ T

0

∫
Γ

ϕ|a∂nψ|2(∂nβ) dσ dt+X1,

(64)

where X1 is given by (63), and [ · ]S denote the jump on S. Notice that in (64), due to the choice of β̃ the
boundary integrals are nonnegative and this is essential. In fact, from (9) and (10) we have

[a]S = a0 − a1 ≤ 0 on S. (65)

On the other hand, from (10, 31, 32) and (43), we deduce that

[∂nβ]S = ∂nβ0 − ∂nβ1 ≥ 0 on S, (66)

since n is the outward unit normal to Ω1. Moreover, thanks to (29) and (43), we have ∂nβ ≤ 0 on Γ. This
justifies the above statement.
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Let us compute the scalar product of the first term of M1ψ and the third one of M2ψ.

I13′ = −2sλ2
1∑
l=0

∫ T

0

∫
Ωl

div(al∇ψ)ϕal|∇β|2ψ dxdt = 2sλ2

∫∫
Q

a∇ψ∇(ϕa|∇β|2ψ) dxdt

−2sλ2

∫ T

0

∫
S−

ϕa1(∂nψ)a1|∇β1|2ψ dσ dt+ 2sλ2

∫ T

0

∫
S+

ϕa0(∂nψ)a0|∇β0|2ψ dσ dt

= 2sλ2

∫∫
Q

ϕ|a∇β|2|∇ψ|2 dxdt+ 2sλ2
1∑
l=0

∫ T

0

∫
Ωl

ϕal∇(al|∇β|2)∇ψψ dxdt

+2sλ3

∫∫
Q

ϕa2∇β|∇β|2∇ψψ dxdt

−2sλ2

∫ T

0

∫
S−

ϕa1(∂nψ)a1|∂nβ1|2ψ dσ dt+ 2sλ2

∫ T

0

∫
S+

ϕa0(∂nψ)a0|∂nβ0|2ψ dσ dt.

(67)

In (67), again we have used (58) and the fact that ∇τβ = 0 on S. Finally, we have

I13′ = 2sλ2

∫∫
Q

ϕ|a∇β|2|∇ψ|2 dxdt+X2, (68)

where

X2 = 2sλ2

∫∫
Q

ϕa∇(a|∇β|2)∇ψψ dxdt+ 2sλ3

∫∫
Q

ϕa2∇β|∇β|2∇ψψ dxdt

+2sλ2

∫ T

0

∫
S

ϕ(a∂nψ)(a∂nβ) [∂nβ]S ψ dσ dt.
(69)

The scalar product of the second term of M1ψ with the first one of M2ψ gives

I21′ = s2λ2

∫∫
Q

ϕ2|∇β|2a∂tψψ dxdt = −s2λ2

∫∫
Q

ϕ∂tϕ|∇β|2a|ψ|2 dxdt. (70)

We now consider the scalar product between the second term ofM1ψ with the second one of M2ψ. The following
holds:

I22′ = −2s3λ3
1∑
l=0

∫ T

0

∫
Ωl

ϕ3a2
l |∇β|2(∇β)∇ψψ dxdt

= 3s3λ4

∫∫
Q

ϕ3a2|∇β|4|ψ|2 dxdt+ s3λ3
1∑
l=0

∫ T

0

∫
Ωl

ϕ3div(a2
l |∇β|2∇β)|ψ|2 dxdt

−s3λ3

∫ T

0

∫
S−

ϕ3|a1∂nβ1|2(∂nβ1)|ψ|2 dσ dt+ s3λ3

∫ T

0

∫
S+
ϕ3|a0∂nβ0|2(∂nβ0)|ψ|2 dσ dt

= 3s3λ4

∫∫
Q

ϕ3a2|∇β|4|ψ|2 dxdt+ s3λ3

∫ T

0

∫
S

ϕ3|a∂nβ|2 [∂nβ]S |ψ|2 dσ dt+X3,

(71)



634 A. DOUBOVA, A. OSSES AND J.-P. PUEL

where

X3 = s3λ3
1∑
l=0

∫ T

0

∫
Ωl

ϕ3div(a2
l |∇β|2∇β)|ψ|2 dxdt. (72)

Observe again that the last boundary integral in (71) is nonnegative because (66) holds.
Now we consider the third and the second terms of M1ψ and M2ψ, respectively. Using (45) we can write

I32′ = −2s2λ
1∑
l=0

∫ T

0

∫
Ωl

ϕ∂tηal∇β · ∇ψψ dxdt = s2λ

∫∫
Q

ϕ∂tη div(a∇β)|ψ|2 dxdt

+s2λ2

∫∫
Q

ϕ(∂tη)a|∇β|2|ψ|2 dxdt− s2λ2

∫∫
Q

ϕ(∂tϕ)a|∇β|2|ψ|2 dxdt

−s2λ
∫ T

0

∫
S−

ϕ∂tη(a1∂nβ1)|ψ|2 dσ dt+ s2λ

∫ T

0

∫
S+

ϕ∂tη(a0∂nβ0)|ψ|2 dσ.

(73)

Since (32) holds we know that a0∂nβ0|S+ − a1∂nβ1|S− = 0, then we get

I32′ = s2λ

∫∫
Q

ϕ∂tη div(a∇β)|ψ|2 dxdt+ s2λ2

∫∫
Q

ϕ(∂tη)a|∇β|2|ψ|2 dxdt− s2λ2

∫∫
Q

ϕ(∂tϕ)a|∇β|2|ψ|2 dxdt.

(74)

The last integrals give

I23′ = −2s3λ4

∫∫
Q

ϕ3a2|∇β|4|ψ|2 dxdt, (75)

I31′ = s

∫∫
Q

∂tηψ∂tψ dxdt = −1
2
s

∫∫
Q

∂2
t η|ψ|2 dxdt (76)

and

I33′ = −2s2λ2

∫∫
Q

ϕa∂tη|∇β|2|ψ|2 dxdt. (77)

Finally from (55), taking into account (56, 64, 67, 70, 71, 74–76) and (77) we deduce that

(M1ψ,M2ψ) = sλ2

∫∫
Q

ϕ|a∇β|2|∇ψ|2 dxdt+ 2sλ2

∫∫
Q

ϕ(a∇ψ · ∇β)2 dxdt

+s3λ4

∫∫
Q

ϕ3a2|∇β|4|ψ|2 dxdt+ s3λ3

∫ T

0

∫
S

ϕ3|a∂nβ|2 [∂nβ]S |ψ|2 dσ dt

+sλ
∫ T

0

∫
S

ϕ|a∂nψ|2 [∂nβ]S dσ dt− sλ

∫ T

0

∫
S

ϕ|∇τψ|2(a∂nβ)[a]S dσ dt

−sλ
∫ T

0

∫
Γ

ϕ|a∂nψ|2(∂nβ) dσ dt+X1 +X2 + I21′ +X3 + I31′ + I32′ + I33′ ,

(78)
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where X1, X2, I21′ , X3, I31′ , I32′ , and I33′ , are given by (63, 69, 70, 72, 74, 76) and (77) respectively. Thus, we
have from (54) the following identity:

‖M1ψ‖2
2 + ‖M2ψ‖2

2 + 2sλ2

∫∫
Q

ϕ|a∇β|2|∇ψ|2 dxdt+ 4sλ2

∫∫
Q

ϕ(a∇ψ · ∇β)2 dxdt

+2s3λ4

∫∫
Q

ϕ3a2|∇β|4|ψ|2 dxdt+ 2s3λ3

∫ T

0

∫
S

ϕ3|a∂nβ|2 [∂nβ]S |ψ|2 dσ dt

+2sλ
∫ T

0

∫
S

ϕ|a∂nψ|2 [∂nβ]S dσ dt− 2sλ
∫ T

0

∫
S

ϕ|∇τψ|2(a∂nβ)[a]S dσ dt

−2sλ
∫ T

0

∫
Γ

ϕ|a∂nψ|2(∂nβ) dσ dt = ‖fs‖2
2 − 2(X1 +X2 + I21′ +X3 + I31′ + I32′ + I33′).

(79)

As we mentioned above, since ∂nβ ≤ 0 on Γ and thanks to (66) and (65), all the boundary integrals in the left
hand side of (79) are nonnegative. Moreover, we know that (9) and (33) hold. Then, for some λ0(Ω, ω, a) ≥ 1
we have

λ2ϕ|a∇β|2 ≥ C(Ω, ω, a)λ2ϕ in (Ω\ω0) × (0, T ) ∀λ ≥ λ0(Ω, ω, a),

λ4ϕ3a2|∇β|4 ≥ C(Ω, ω, a)λ4ϕ3 in (Ω\ω0) × (0, T ) ∀λ ≥ λ0(Ω, ω, a).
(80)

On the other hand, we use that

|a∂xj(a∂xjβ)| ≤ C(Ω, ω, a), (81)

a|∇β|2 ≤ C(Ω, ω, a), (82)

|∇(al|∇β|2)| ≤ C(Ω, ω, a), l = 0, 1, (83)

div(a2
l |∇β|2∇β) ≤ C(Ω, ω, a), l = 0, 1, (84)

div(a∇β) ≤ C(Ω, ω, a). (85)

Then, it is not difficult to check that for every ε > 0, there exists Cε > 0 such that

|X1| ≤ C(Ω, ω, a)sλ
∫∫

Q

ϕ|∇ψ|2 dxdt, (86)

|X2| ≤ C(Ω, ω, a)
(
sλ

∫∫
Q

ϕ|∇ψ|2 dxdt+ sλ3T 4

∫∫
Q

ϕ3|ψ|2 dxdt
)

(87)

+ εsλ2

∫∫
Q

ϕ|∇ψ|2 dxdt+ Cεsλ
4T 4

∫∫
Q

ϕ3|ψ|2 dxdt

+ εsλ

∫ T

0

∫
S

ϕ|a∂nψ|2 [∂nβ]S dσ dt+ Cεsλ
3T 4

∫ T

0

∫
S

ϕ3|a∂nβ|2 [∂nβ]S |ψ|2 dσ dt,

|X3| ≤ C(Ω, ω, a)s3λ3

∫∫
Q

ϕ3|ψ|2 dxdt. (88)

In the estimate (87), we have used Young inequalities and the fact that

ϕ ≤ Cϕ3t2(T − t)2 ≤ CT 4ϕ3
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and we will chose ε > 0 sufficiently small. Moreover, we have

|∂tϕ| =
|T − 2t|
t2(T − t)2

eλβ ≤ C(Ω, ω)Tϕ2, (89)

|∂tη| =
|T − 2t|(eλβ − eλβ)

t2(T − t)2
≤ C(Ω, ω)

T eλβ

t2(T − t)2
≤ C(Ω, ω)

T e2λβ

t2(T − t)2
≤ C(Ω, ω)Tϕ2, (90)

|∂2
ttη| =

2|T 2 − 3T t+ 3t2|(eλβ − eλβ)
t3(T − t)3

≤ 14T 2eλβ

t3(T − t)3
≤ C(Ω, ω)

T 2e2λβ

t3(T − t)3
≤ C(Ω, ω)T 2ϕ3. (91)

In (90) and (91), we have used that eλβ ≤ e2λβ . This is implied by the fact that

β =
5
4

max
Ω

β ≤ 2 min
Ω
β, (92)

which is a consequence of the choice of K in (43). Taking into account, equations (82, 85, 89, 90) and (91) we
deduce

|I21′ | ≤ C(Ω, ω, a)Ts2λ2

∫∫
Q

ϕ3|ψ|2 dxdt, (93)

|I31′ | ≤ C(Ω, ω, a)T 2s

∫∫
Q

ϕ3|ψ|2 dxdt, (94)

|I32′ | ≤ C(Ω, ω, a)Ts2λ2

∫∫
Q

ϕ3|ψ|2 dxdt, (95)

|I33′ | ≤ C(Ω, ω, a)Ts2λ2

∫∫
Q

ϕ3|ψ|2 dxdt. (96)

On the other hand, from (53) we can write that

‖fs‖2
2 ≤ ‖e−sηf‖2

2 + C(Ω, ω, a)s2λ4

∫∫
Q

ϕ2|ψ|2 ≤ ‖e−sηf‖2
2 + C(Ω, ω, a)s2λ4T 2

∫∫
Q

ϕ3|ψ|2. (97)

Using (80, 86–88, 93–96) and (97) in (79), we obtain:

‖M1ψ‖2
2 + ‖M2ψ‖2

2 +Cs3λ4

∫ T

0

∫
Ω\ω0

ϕ3|ψ|2 dxdt+ Csλ2

∫ T

0

∫
Ω\ω0

ϕ|∇ψ|2 dxdt

+2s3λ3

∫ T

0

∫
S

ϕ3|a∂nβ|2 [∂nβ]S |ψ|2 dσ dt+ 2sλ
∫ T

0

∫
S

ϕ|a∂nψ|2 [∂nβ]S dσ dt

≤ ‖e−sηf‖2
2 + Csλ3T 4

∫ T

0

∫
S

ϕ3|a∂nβ|2 [∂nβ]S |ψ|2 dσ dt+ εsλ

∫ T

0

∫
S

ϕ|a∂nψ|2 [∂nβ]S dσ dt

+Csλ
∫∫

Q

ϕ|∇ψ|2 dxdt+ εsλ2

∫∫
Q

ϕ|∇ψ|2 dxdt+ Cs3λ3

∫∫
Q

ϕ3|ψ|2 dxdt

+Cs2(λ4T 2 + λ2T )
∫∫

Q

ϕ3|ψ|2 dxdt+ Cs(T 2 + λ4T 4)
∫∫

Q

ϕ3|ψ|2 dxdt.
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From this, for λ ≥ λ1(Ω, ω, a) ≥ λ0(Ω, ω, a), with λ1 not depending on T , and for ε small enough, we can write

‖M1ψ‖2
2 + ‖M2ψ‖2

2 + s3λ4

∫∫
Q

ϕ3|ψ|2 dxdt+ sλ2

∫∫
Q

ϕ|∇ψ|2 dxdt

+2s3λ3

∫ T

0

∫
S

ϕ3|a∂nβ|2 [∂nβ]S |ψ|2 dσ dt ≤ C
[‖e−sηf‖2

2

+s3λ4

∫ T

0

∫
ω0

ϕ3|ψ|2 dxdt+ sλ2

∫ T

0

∫
ω0

ϕ|∇ψ|2 dxdt+ s(T 2 + λ4T 4)
∫∫

Q

ϕ3|ψ|2 dxdt

+s2(λ4T 2 + λ2T )
∫∫

Q

ϕ3|ψ|2 dxdt+ sλ3T 4

∫ T

0

∫
S

ϕ3|a∂nβ|2 [∂nβ]S |ψ|2 dσ dt

]
.

We take now s ≥ σ0(Ω, ω, a, λ)(T 2 + T ), then we also have

‖M1ψ‖2
2 + ‖M2ψ‖2

2 + s3λ4

∫∫
Q

ϕ3|ψ|2 dxdt+ sλ2

∫∫
Q

ϕ|∇ψ|2 dxdt

≤ C

[
‖e−sηf‖2

2 + s3λ4

∫ T

0

∫
ω0

ϕ3|ψ|2 dxdt+ sλ2

∫ T

0

∫
ω0

ϕ|∇ψ|2 dxdt

]
. (98)

Let us deduce from (98) that (46) holds for all s ≥ s1 where s1 = σ1(Ω, ω, a, λ)(T 2 + T ).
Recall that ψ = e−sηq. Then,

∂xiψ = e−sη(∂xiq − s∂xiηq) = e−sη(∂xiq + sλϕ∂xiβ q).

So we can write that
e−sη∂xiq = ∂xiψ − sλe−sηϕ∂xiβ q.

Consequently, we find the following:

sλ2

∫∫
Q

e−2sηϕ|∇q|2 dxdt = sλ2

∫∫
Q

ϕ|∇ψ − e−sηsλϕ∇βq|2 dxdt

≤ Csλ2

∫∫
Q

ϕ|∇ψ|2 dxdt+ C(Ω, ω)s3λ4

∫∫
Q

e−2sηϕ3|q|2 dxdt.

Then, from (98) we have

s3λ4

∫∫
Q

e−2sηϕ3|q|2 dxdt+ sλ2

∫∫
Q

e−2sηϕ|∇q|2 dxdt

≤ C(Ω, ω, a)

[
‖e−sηf‖2

2 + s3λ4

∫ T

0

∫
ω

e−2sηϕ3|q|2 dxdt+ sλ2

∫ T

0

∫
ω0

e−2sηϕ|∇q|2 dxdt

]
.

(99)

In order to conclude the proof of the Carleman inequality (46) it is sufficient to prove that

sλ2

∫ T

0

∫
ω0

e−2sηϕ|∇q|2 dxdt ≤ C

[
‖e−sηf‖2

2 + s3λ4

∫ T

0

∫
ω

e−2sηϕ3|q|2 dxdt

+ s2(λ4T 2 + λ2T )
∫ T

0

∫
ω

e−2sηϕ3|q|2 dxdt+ s(λ3T 4 + λ3T 2 + λ2T 3)
∫ T

0

∫
ω

e−2sηϕ3|q|2 dxdt

]
.

(100)
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In fact, combining (99) and (100), we deduce that the global Carleman estimate (46) is true for s ≥ σ1(Ω, ω, a, λ)
(T 2 + T 3/2 + T ). Notice that it is possible to drop the term in T 3/2 since T 3/2 ≤ 1/2(T 2 + T ).

In order to obtain (100), we consider a function ρ ∈ C∞
0 (ω) such that ρ ≡ 1 in ω0 and ρ ≥ 0. We consider

ω ⊂ Ω0 and the estimates obtained below remain true for larger ω. Multiplying by sλe−2sηρϕq the equation

∂tq + div(a∇q) = f

and integrating in ω × (0, T ), we obtain

sλ2

2

∫ T

0

∫
ω

e−2sηρϕ∂t|q|2 + sλ2

∫ T

0

∫
ω

e−2sηρϕdiv(a∇q)q dxdt = sλ2

∫ T

0

∫
ω

e−2sηρϕfq dxdt. (101)

In (101), the second term, can be written after integration by parts as follows:

sλ2

∫ T

0

∫
ω

e−2sηρϕ∂xi(a∂xiq)q dxdt = −sλ2

∫ T

0

∫
ω

e−2sηρϕa|∇q|2 dxdt− sλ2

2

∫ T

0

∫
ω

∂xi(e
−2sηρϕ)a ∂xi |q|2 dxdt.

Then, from (101) we deduce

sλ2

∫ T

0

∫
ω0

e−2sηϕ|∇q|2 dxdt ≤ C(a)
sλ2

2

∣∣∣∣∣
∫ T

0

∫
ω

e−2sηρϕ∂t|q|2 dxdt

∣∣∣∣∣+ C(a)sλ2

∣∣∣∣∣
∫ T

0

∫
ω

e−2sηρϕfq dxdt

∣∣∣∣∣
+C(a)sλ2

∣∣∣∣∣
∫ T

0

∫
ω

e−2sη∂2
xixi

(e−2sηρϕ)|q|2 dxdt

∣∣∣∣∣ . (102)

Let us consider the first term of the right hand side of (102). We have

X4 =
sλ2

2

∫ T

0

∫
ω

e−2sηρϕ∂t|q|2 dxdt = −sλ
2

2

∫ T

0

∫
ω

∂t(e−2sηρϕ)|q|2 dxdt

= s2λ2

∫ T

0

∫
ω

e−2sηρϕ∂tη|q|2 dxdt− sλ2

2

∫ T

0

∫
ω

e−2sηρ∂tϕ|q|2 dxdt.

(103)

Using now (89) and (90) in (103) we obtain

|X4| ≤ Cs2λ2T

∫ T

0

∫
ω

e−2sηρϕ3|q|2 dxdt+ Csλ2T 3

∫ T

0

∫
ω

e−2sηρϕ3|q|2 dxdt. (104)

On the other hand, for the third term of the right hand side of (102), we can write

sλ2

∣∣∣∣∣
∫ T

0

∫
ω

∂2
xixi

(e−2sηρϕ)|q|2 dxdt

∣∣∣∣∣ ≤ Cs3λ4

∫ T

0

∫
ω

e−2sηϕ3ρ|q|2 dxdt

+C(s2λ4T 2 + sλ3T 4 + sλ3T 2)
∫ T

0

∫
ω

e−2sηϕ3ρ|q|2 dxdt. (105)
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This is a consequence of the particular form of η and ϕ. Indeed, after the following calculation

∂xi(e
−2sηρϕ) = e−2sη [∂xiρϕ+ ρ∂xiϕ− 2sρϕ∂xiη] ,

∂2
xixj

(e−2sηρϕ) = e−2sη
[−2sϕ∂xjη∂xiρ− 2sρ∂xjη∂xiϕ+ 4s2ϕρ∂xjη∂xiη

+ ϕ∂2
xixj

ρ+ ∂xiρ∂xjϕ+ ∂xjρ∂xiϕ+ ρ∂2
xixj

ϕ− 2sϕ∂xjρ∂xiη − 2sρ∂xjϕ∂xiη − 2sρϕ∂2
xixj

η
]

and using the following straightforward estimates

|ϕ∂xjη| ≤ λϕ2|∇β| ≤ Cλϕ2 ≤ CT 2λϕ3,

|∂xjη∂xiϕ| ≤ λ2ϕ2|∇β|2 ≤ Cλ2ϕ2 ≤ CT 2λ2ϕ3,

|ϕ∂xjη∂xiη| ≤ λ2ϕ3|∇β|2 ≤ Cλ2ϕ3,

|∂xjϕ| ≤ λϕ|∇β| ≤ Cλϕ ≤ CT 4λϕ3

|∂2
xixj

ϕ| ≤ λϕ|∆β| + λ2ϕ2|∇β|2 ≤ C(λϕ+ λ2ϕ2) ≤ C(T 4λ+ T 2λ2)ϕ3

|ϕ∂2
xixj

η| ≤ λϕ2|∆β| + λ2ϕ3|∇β|2 ≤ CT 2λϕ3 + Cλ2ϕ3

it is not difficult to see that (105) holds. On the other hand we have

sλ2

∣∣∣∣∣
∫ T

0

∫
ω

e−2sηρϕfq dxdt

∣∣∣∣∣ ≤ C‖e−sηf‖2
2 + Cs2λ4

∫ T

0

∫
ω

e−2sηϕ2ρ2|q|2 dxdt

≤ C‖e−sηf‖2
2 + Cs2λ4T 2

∫ T

0

∫
ω

e−2sηϕ3|q|2 dxdt.

(106)

Using (104, 105) and (106) in (102) we get (100). As we mentioned above, this ends the proof of Carleman
inequality (46) of Theorem 3.3.

The situation of Case 2 is quite different. Let us consider the functions

βi = β̃i +Ki, β
i
=

5
4

max
Ω

βi, for i = 1, 2, (107)

with Ki > 0 such that Ki ≥ 5 max
Ω

β̃i , and β̃i is given by the Lemma 3.2. We also introduce the following

weight functions:

ϕi(x, t) =
eλβ

i(x)

t(T − t)
, ηi(x, t) =

eλβ
i − eλβ

i

t(T − t)
, i = 1, 2. (108)

Our second Carleman estimate is the following:

Theorem 3.4. Assume that ω∩Ω0 6= ∅, a satisfies (5, 6, 9) and (10) and Condition 2.2 in case (2) is fulfilled.
There exists λ2(Ω, ω, a) > 0 so that for each λ > λ2 there exists a positive constant C that only depends on Ω,
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ω, O1, O2 and a, and s6(λ) > 0 so that the following estimate holds

s3
∫∫

Q

(e−2sη1
+ e−2sη2

)t−3(T − t)−3|q|2 dxdt+ s

∫∫
Q

(e−2sη1
+ e−2sη2

)t−1(T − t)−1|∇q|2 dxdt

≤ Cs3
∫∫

ω×(0,T )

(e−2sη1
+ e−2sη2

)t−3(T − t)−3|q|2 dxdt

+ C

∫∫
Q

(e−2sη1
+ e−2sη2

)|∂tq + div(a(x)∇q)|2 dxdt

(109)

for all q ∈ Z0 and s ≥ s6. Moreover, s6 is of the form s6 = σ6(Ω, ω,O1 ,O2 , a, λ)(T 2 + T ), where σ6 is a
positive constant that only depends on Ω, ω, O1, O2, a and λ.

Proof of Theorem 3.4. In order to obtain (109), we will apply the global Carleman inequality (46) from
Theorem 3.3 and the properties of weight functions (108).

We observe, that from Lemma 3.2, we know that ∇βi can vanish only in ω0 and Bi for i = 1, 2, where the
open subsets B1 and B2 are fixed balls defined in Lemma 3.2. Taking into account these statements, we can
use two weight functions given by (108) and write two Carleman estimates like (46). More precisely, there exist
a positive constant C and s1 that only depends on Ω ω and a, such that

s3
∫∫

Q

e−2sηi

t−3(T − t)−3|q|2 dxdt+ s

∫∫
Q

e−2sηi

t−1(T − t)−1|∇q|2 dxdt

≤ C

(
s3
∫∫

ω×(0,T )

e−2sηi

t−3(T − t)−3|q|2 dxdt+ s3
∫∫

eBi×(0,T )

e−2sηi

t−3(T − t)−3|q|2 dxdt

+
∫∫

Q

e−2sηi |∂tq + div(a(x)∇q)|2 dxdt
) (110)

for i = 1, 2, for all q ∈ Z0 and s ≥ s1. Moreover, s1 is of the form s1 = σ1(Ω, ω, a, λ)(T 2 + T ).
Let us show that from (110), using the properties of the functions β1 and β2, we can deduce the Carleman

estimate (109). For this, it will be sufficient to see that for each C > 0, there exists s4 such that

e−2sη2 ≥ 2Ce−2sη1
in B̃1 , (111)

e−2sη1 ≥ 2Ce−2sη2
in B̃2 (112)

for s ≥ s4 = σ4(Ω, ω,O1 ,O2, λ)T 2.
Indeed, adding the two Carleman inequality (110), we deduce

s3
∫∫

Q

(e−2sη1
+ e−2sη2

)t−3(T − t)−3|q|2 dxdt+ s

∫∫
Q

(e−2sη1
+ e−2sη2

)t−1(T − t)−1|∇q|2 dxdt

≤ Cs3
∫∫

ω×(0,T )

(e−2sη1
+ e−2sη2

)t−3(T − t)−3|q|2 dxdt

+ C

(
s3
∫∫

eB1×(0,T )

e−2sη1
t−3(T − t)−3|q|2 dxdt+ s3

∫∫
eB2×(0,T )

e−2sη2
t−3(T − t)−3|q|2 dxdt

)

+ C

∫∫
Q

(e−2sη1
+ e−2sη2

)|∂tq + div(a(x)∇q)|2 dxdt

(113)

for s ≥ s5 = max(s1 , s4).
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On the other hand, according to (111) and (112), we obtain that

Cs3
∫∫

eB1×(0,T )

e−2sη1
t−3(T − t)−3|q|2 dxdt+ Cs3

∫∫
eB2×(0,T )

e−2sη2
t−3(T − t)−3|q|2 dxdt

≤ s3

2

∫∫
eB1×(0,T )

e−2sη2
t−3(T − t)−3|q|2 dxdt+

s3

2

∫∫
eB2×(0,T )

e−2sη1
t−3(T − t)−3|q|2 dxdt

≤ s3

2

∫∫
Q

(e−2sη1
+ e−2sη2

)t−3(T − t)−3|q|2 dxdt

(114)

for s ≥ s6 = σ6(Ω, ω,O1 ,O2 , λ)T 2. Combining (113) and (114), we find (109).
To conclude the proof, let us justify (111) and (112). By construction, we have that

β2
1 ≥ 2β1

1 in B̃1 . (115)

Using (115), we can deduce that for all λ ≥ 1 there exists a positive constant α, which only depends on Ω, ω,
O1, O2 such that

η1 − η2 ≥ αη1 in B̃1 . (116)

Indeed, equation (116) is a consequence of the following:

η1 − η2 =
eλβ

2
1 − eλβ

1
1

t(T − t)
≥ e2λβ1

1 − eλβ
1
1

t(T − t)
≥ α

eλβ
1 − eλβ

1
1

t(T − t)
= αη1 in B̃1 .

Then, from (116) we obtain that, for each C > 0, there exists s2 such that

e−2sη2

e−2sη1 ≥ e2sαη1 ≥ e2sαmin η1 ≥ 2C in B̃1

for s ≥ s2 = σ2(Ω, ω,O1 ,O2)T 2. This is exactly the inequality (111) for s ≥ s2.
By similar arguments, using the fact that

β1
1 ≥ 2β2

1 in O2 , (117)

it is easy to see that, for each C > 0, there exists s3 such that

e−2sη1

e−2sη2 ≥ 2C in B̃2

for s ≥ s3 = σ3(Ω, ω,O1 ,O2)T 2. Then, equation (112) holds for s ≥ s3. Taking now s4 = max(s2, s3) we
get (111) and (112) for s ≥ s4. This ends the proof of Theorem 3.4.

4. Observability inequalities and technical results

In this section we will deduce some observability estimates as a consequence of appropriate global Carleman
inequalities and regularizing effect of the heat equation. This will be needed to prove the null controllability
result for a linear transmission problem with controls in Lr(0, T ;Lr(ω)) with r sufficiently large, such that (4)
holds.
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Let us consider the following linear (adjoint) transmission problem:
−∂tq − div(a(x)∇q) + bq = 0 in Q,

q = 0 on Σ,
q(x, T ) = qT in Ω,

(118)

where a satisfies (5, 6, 9) and (10), b ∈ L∞(Q), and qT ∈ L2(Ω). First of all, let us prove the observability
estimate with L2(0, T ;L2(ω))-norm in the right hand side. This can be used to deduce null controllability result
(and estimates) for linear transmition problem with bounded potential, with controls in L2(0, T ;L2(ω)). We
have the following:

Proposition 4.1. Assume that ω ∩ Ω0 6= ∅ and that Condition 2.1 (resp. Condition 2.2) in case (1) (resp. in
case (2)) are fulfilled. Then for any a satisfying (5, 6, 9, 10), b ∈ L∞(Q) and qT ∈ L2(Ω), there exists a positive
constant C that only depends on Ω, ω and a (resp. Ω, ω O1, O2 and a), such that

||q(·, 0)||2L2(Ω) ≤ exp
[
C

(
1 +

1
T

+ T ||b||∞ + ||b||2/3∞

)]∫∫
ω×(0,T )

|q|2 dxdt, (119)

where q is the solution to the corresponding system (118).

For simplicity, we only present the proof of Proposition 4.1 for the situation (1). We just note, that the proof
corresponding to the situation (2) is similar, it suffices to take into account the different estimates (in space) for
the weight functions that appear in the global Carleman inequality (109). Thus we also obtain the constants
depending on O1 and O2.

Proof of Proposition 4.1. We will use global Carleman inequality (46) from Theorem 3.3 and some estimates
for the weight functions. Let b and qT be given and let q be the solution to (118).

Step 1: We will first see that∫∫
Ω×(T/4,3T/4)

|q|2 dxdt ≤ exp
[
C

(
1 +

1
T

+ ||b||2/3∞

)]∫∫
ω×(0,T )

|q|2 dxdt. (120)

By density, we can write (46) for q being the solution of (118). This gives

s3
∫∫

Q

e−2sηt−3(T − t)−3|q|2 dxdt ≤ C

(
s3
∫∫

ω×(0,T )

e−2sηt−3(T − t)−3|q|2 dxdt

+
∫∫

Q

e−2sη|bq|2 dxdt
)

(121)

for all s ≥ s1. We can estimate the second term in the right as follows:∫∫
Q

e−2sη|bq|2 dxdt ≤ 2−6T 6||b||2∞
∫∫

Q

e−2sηt−3(T − t)−3|q|2 dxdt.

Thus, we deduce from (121) that∫∫
Q

e−2sηt−3(T − t)−3|q|2 dxdt ≤ C

∫∫
ω×(0,T )

e−2sηt−3(T − t)−3|q|2 dxdt (122)
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provided

s ≥ s7 = max
(
s1, CT

2||b||2/3∞
)
. (123)

On the other hand, it can be easily verified that

e−2sηt−3(t− T )−3 ≤ 26T−6 exp
(−CsT−2

) ∀(x, t) ∈ Q (124)

and

e−2sηt−3(t− T )−3 ≥
(

16
3

)3

T−6 exp
(−CsT−2

) ∀(x, t) ∈ Ω × [T/4, 3T/4], (125)

whenever

s ≥ s8 = max (s7, CT 2)

(constants C in (124) and (125) may be different). If we analyze the structure of the constants s7 and s8, we
see that s8 ≤ s9, where s9 is of the form

s9 = σ9(Ω, ω, a)
(
T + T 2 + T 2||b||2/3∞

)
. (126)

Let us fix the constant s = s9. We write (122) for s = s9 taking into account (124) and (125) and we deduce
that (120) is satisfied for any solution q of (118).

Step 2: Let us now prove that

||q(x, 0)||22 ≤ exp
[
C

(
1
T

+ T ||b||∞
)]∫∫

Ω×(T/4,3T/4)

|q|2 dxdt. (127)

The estimate (127) together with (120) leads to the desired observability inequality (119).

Let θ0 ∈ C1[0, 1] be a function such that, 0 ≤ θ0 ≤ 1, θ0 = 1 in [0, 1/4], θ0 = 0 in [3/4, 1]. Now, we consider
a function θ(t) = θ0(t/T ) and we write (118) for θ(t)q. We obtain

−∂t(θq) − div(a(x)∇(θq)) + b(θq) = −q∂tθ in Ω × (0, 3T/4),
θq = 0 on ∂Ω × (0, 3T/4),
θq(x, 3T/4) = 0 in Ω.

(128)

Multiplying (128) by θq and integrating in Ω, we have

−1
2

d
dt

∫
Ω

|θq|2 dx+
∫

Ω

a|∇(θq)|2 dx = −
∫

Ω

b|θq|2 dx−
∫

Ω

θ(∂tθ)|q|2 dx ∀ t ≥ 0.

Thus,

− d
dt

∫
Ω

|θq|2 dx+ 2
∫

Ω

a|∇(θq)|2 dx ≤ 2||b||∞
∫

Ω

|θq|2 dx+ 2
∫

Ω

θ|∂tθ||q|2 dx

and

− d
dt

(
exp (2||b||∞t)

∫
Ω

|θq|2 dx
)

≤ 2 exp (2||b||∞t)
∫

Ω

θ|∂tθ||q|2 dx (129)
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for all t ≥ 0. Integrating this inequality with respect to time in [0, t] with t ∈ [3T/4, T ], we obtain∫
Ω

|q(x, 0)|2 dx ≤
∫ t

0

exp (2||b||∞t) 2
∫

Ω

|q|2θ∂tθ dx

≤ 2C
T

exp
(

3T
2
||b||∞

)∫∫
Ω×(T/4 ,3T/4)

|q|2 dxdt.
(130)

In (130), we have used the fact that θ ≤ 1 and |∂tθ| = |∂tθ0(t/T )|/T ≤ C/T . This justifies the estimate (127)
and ends the proof of Proposition 4.1.

As we mentioned above, to analyze the controllability for nonlinear problem (8) we need the controls in
Lr(0, T ;Lr(ω)) for r sufficiently large (1/r + N/(2r) < 1). For this we are going to prove a refined version of
the observability inequality (119), i.e. with Lr

′
(0, T ;Lr

′
(ω))-norm in the right hand side, where r′ is the dual

exponent to r. We have:

Proposition 4.2. Assume that ω ∩ Ω0 6= ∅ and that Condition 2.1 (resp. Condition 2.2) in case (1) (resp. in
case (2)) are fulfilled. Then for any a satisfying (5, 6, 9) and (10), b ∈ L∞(Q), qT ∈ L2(Ω) and any r′

sufficiently small, there exist a positive constant C that only depends on Ω, ω, a, r′ and N (resp. Ω, ω O1, O2,
a, r′ and N) and a positive constant C̃ depending on Ω, ω, a (resp. Ω, ω O1, O2 and a) such that

||q(·, 0)||2L2(Ω) +
∫∫

Q

e−2s eCT−1/(T−t)(T − t)−3|q|2 dxdt ≤ exp [CH(T, ||b||∞)]

(∫∫
ω×(0,T )

|q|r′dxdt

)2/r′

(131)

for all s ≥ σ(Ω, ω, a)(T 2 + T + T 2‖b‖2/3
∞ ), where σ is a positive constant depending on Ω, ω and a (resp. Ω, ω,

a, O1, O2), H(T, ||b||∞) is given by

H(T, ||b||∞) = 1 +
1
T

+ T + (T + T 1/2)||b||∞ + ||b||2/3∞ (132)

and q is the solution to the corresponding system (118).

As before, for simplicity, we only present the proof corresponding to case (1). We take into account the
estimates for the weight functions in (109) for treatment of case (2). In the sequel, σ(Ω, ω, a) will stand for a
generic positive constant only depending on Ω, ω and a, whose value can change from line to line. Let us first
prove the following technical lemma:

Lemma 4.3. Let ω̃ be a nonempty open set such that ω̃ ⊂⊂ ω. Then, for any a satisfying (5, 6) and (9),
b ∈ L∞(Q), qT ∈ L2(Ω) and any r′ sufficiently small, there exists C = C(Ω, ω, a) > 0 such that

∫∫
eω×(0,T )

e−2sηt−3(T − t)−3|q|2 dxdt ≤ CT−3TαK(T, ‖b‖∞)γe−CsT
−2

(∫∫
ω×(0,T )

|q|r′ dxdt

)2/r′

(133)

for all s ≥ σ(Ω, ω, a)T 2, where σ is a positive constant depending on Ω, ω and a, α, γ are positive numbers only
depending of N , K(T, ‖b‖∞) is given by

K(T, ‖b‖∞) = 1 + T 1/2(1 + ‖b‖∞) + T−5/2(s+ T 2) (134)

and q is the solution to the corresponding system (118).
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Proof of Lemma 4.3. Let ω̃ be a nonempty open set such that ω̃ ⊂⊂ ω. Notice that without loss of generality
we can consider ω ⊂⊂ Ω0 or ω ⊂⊂ Ω1 with a smooth boundary and the estimates obtained below remain true
for a larger ω. Let us consider a function θ ∈ D(ω), such that θ = 1 in ω̃. We set

w(x, t) = θ(x)ϕ(x, t)q(x, t),

where q is the solution of (118) and ϕ is given by

ϕ(x, t) =
e−sη

t3/2(T − t)3/2
· (135)

Notice that w(T ) = w(0) = 0. Taking into account (118), we deduce that w satisfy the following problem:
−∂tw − div(a(x)∇w) = −bθqϕ− θq∂tϕ− 2a∇(θϕ) · ∇q − div(a∇(θϕ))q in Q,

w = 0 on Σ,
w(x, T ) = 0 in Ω.

(136)

For simplicity of the computations, we put w̃(x, t) = w̃(x, T − t) for (x, t) ∈ Q. In a similar way, we introduce
the functions ã, b̃, ϕ̃ and q̃. Then we have

∂tw̃ − div(ã(x)∇w̃) = −b̃θq̃ϕ̃+ θq̃∂tϕ̃− 2ã∇(θϕ̃) · ∇q̃ − div(ã∇(θϕ̃))q̃ in Q,
w̃ = 0 on Σ,
w̃(x, 0) = 0 in Ω.

(137)

On the other hand, let z be the solution of the problem
−∂τz − div(a(x)∇z) = 0 in ω × (0, t),
z = 0 on ∂ω × (0, t),
z(x, t) = ψ in ω,

(138)

where ψ ∈ L2(Ω) is given. Multiplying (137) by z and integrating in ω and in τ ∈ (0, t), we obtain the following
for t ∈ (0, T ):

(w̃(t), z(t)) =
∫ t

0

∫
ω

(−b̃θϕ̃+ θ∂tϕ̃− div(ã∇(θϕ̃)))q̃z dxdτ − 2
∫ t

0

∫
ω

ã∇(θϕ̃) · ∇q̃ z dxdτ

≤ C(1 + ‖b‖∞)
∫ t

0

|ϕ̃| ‖q̃‖Lr′(ω)‖z‖Lr(ω) dτ + C

∫ t

0

|ϕ̃| ‖q̃‖Lr′(ω)‖∇z‖Lr(ω) dτ

+
∫ t

0

|∂tϕ̃| ‖q̃‖Lr′(ω)‖z‖Lr(ω) dτ,

(139)

where C is a positive constant depending on ω, ω̃ (i.e. on ω) and a. In (139), we have used that |∇ϕ̃| ≤ C|ϕ̃|
and that |∆ϕ̃| ≤ C|ϕ̃|.

Notice that, since the diffusion coefficients are sufficiently regular in ω and thanks to the regularizing effect
of the heat equation (cf. [19] and [6]), we know that for all t > 0 and 1 ≤ p, q ≤ +∞ the following holds:

‖S(t)u‖Lp(ω) ≤ Ct−
N
2 ( 1

q− 1
p )‖u‖Lq(ω) ∀u ∈ Lq(ω), (140)

‖S(t)u‖W 1,p(ω) ≤ Ct−
N
2 ( 1

q − 1
p )− 1

2 ‖u‖Lq(ω) ∀u ∈ Lq(ω), (141)

where {S(t) : t ≥ 0} denotes the semigroup generated by the heat equation with Dirichlet boundary conditions.
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We apply to z (solution of (138)) the estimates (140) and (141) with q = 2 and p = r, so we can write
from (139) that

(w̃(t), z(t)) ≤ C(1 + ‖b‖∞)
∫ t

0

|ϕ̃| (t− τ)−
N
2 ( 1

2− 1
r )||q̃(·, τ)||Lr′ (ω)‖ψ‖L2(ω) dτ

+C
∫ t

0

|ϕ̃| (t− τ)−
N
2 ( 1

2− 1
r )− 1

2 ||q̃(·, τ)||Lr′ (ω)‖ψ‖L2(ω) dτ (142)

+C
∫ t

0

|∂tϕ̃| (t− τ)−
N
2 ( 1

2− 1
r )||q̃(·, τ)||Lr′ (ω)‖ψ‖L2(ω) dτ

for all t ∈ [0, T ]. Thus, from (142) we have

‖w̃(·, t)‖L2(eω) = sup
‖ψ‖L2(ω)=1

(w̃(·, t), ψ) ≤ C(1 + ‖b‖∞)
∫ t

0

|ϕ̃| (t− τ)−
N
2 ( 1

2− 1
r )||q̃(·, τ)||Lr′ (ω) dτ

+C
∫ t

0

|ϕ̃| (t− τ)−
N
2 ( 1

2− 1
r )− 1

2 ||q̃(·, τ)||Lr′ (ω) dτ + C

∫ t

0

|∂tϕ̃| (t− τ)−
N
2 ( 1

2− 1
r )||q̃(·, τ)||Lr′ (ω) dτ

for all t ∈ [0, T ]. This gives,

‖w̃(·, t)‖L2(eω) ≤ C(1 + T 1/2 + T 1/2‖b‖∞)
∫ t

0

|ϕ̃| (t− τ)−
N
2 ( 1

2− 1
r )− 1

2 ||q̃(·, τ)||Lr′ (ω) dτ

+CT 1/2

∫ t

0

|∂tϕ̃| (t− τ)−
N
2 ( 1

2− 1
r )− 1

2 ||q̃(·, τ)||Lr′ (ω) dτ.
(143)

Using the definition of η, it is not difficult to see that

|ϕ̃| ≤ CT−3e−CsT
−2 ∀ (x, t) ∈ Q (144)

and

e−sη

t7/2(T − t)7/2
≤ CT−7e−CsT

−2 ∀ (x, t) ∈ Q (145)

for s ≥ σ(Ω, ω, a)T 2. Moreover, using (135) and (145), we can write that

|∂tϕ̃| =
∣∣∣∣ e−sη(T − 2t)
t7/2(T − t)7/2

(
s+

3
2
tT − 3

2
T 2

)∣∣∣∣ ≤ CT−6(s+ T 2)e−CsT
−2

(146)

for s ≥ σ(Ω, ω, a)T 2. Thanks to (145) and (146), from (143) we have

‖w̃(·, t)‖L2(eω) ≤ CT−3(1 + T 1/2 + T 1/2‖b‖∞)e−CsT
−2
∫ t

0

(t− τ)−
N
2 ( 1

2− 1
r )− 1

2 ||q̃(·, τ)||Lr′ (ω) dτ

+CT 1/2T−6(s+ T 2)e−CsT
−2
∫ t

0

(t− τ)−
N
2 ( 1

2− 1
r )− 1

2 ||q̃(·, τ)||Lr′ (ω) dτ
(147)

for s ≥ σ(Ω, ω, a)T 2. If r′ is such that

N

2

(
1
2
− 1
r

)
+

1
2

+
1
r′
<

3
2
,
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that is to say

r′ >
2(N + 2)
N + 4

, (148)

then, we can apply Young’s inequality to (143) and estimate the L2(0, T ;L2(ω̃))-norm of w̃ as follows:

||w̃||L2(0,T ;L2(eω)) ≤ CT κT−3(1 + T 1/2 + T 1/2||b||∞)e−CsT
−2

(∫∫
ω×(0,T )

|q|r′ dxdt

)1/r′

+CT κT 1/2T−6(s+ T 2)e−CsT
−2

(∫∫
ω×(0,T )

|q|r′ dxdt

)1/r′

,

(149)

where C is a new positive constant depending on Ω, ω, ω̃ r′ and N , κ depends on N and r and s ≥ σ(Ω, ω, a)T 2.
Notice that for N < 4 and r′ as in (4) the condition (148) is satisfied. For N ≥ 4 we apply again this process in
order to obtain the inequality (133) for r′ sufficiently small, in such a way that (4) holds for s ≥ σ(Ω, ω, a)T 2

and with α and γ only depending on N (cf. [13]). This ends the proof of Lemma 4.3.

Proof of Proposition 4.2. We will use a global Carleman inequality (46) from Theorem 3.3, some estimates for
the weight functions, classical parabolic estimates and technical result of Lemma 4.3.

Step 1: Let b and qT be given and let q be the solution to (118). We will first see that∫∫
Ω×(T/4,3T/4)

|q|2 dxdt ≤ T 6 exp
[
C

(
1 +

1
T

+ ‖b‖2/3
∞

)]∫∫
ω×(0,T )

e−2sηt−3(T − t)−3|q|2 dxdt. (150)

Let us consider (122), that is true for s ≥ s7 with s7 given by (123). Then, using (125), we obtain that∫∫
Ω×(T/4 ,3T/4)

|q|2 dxdt ≤ CT 6 exp
(
CsT−2

) ∫∫
ω×(0,T )

e−2sηt−3(T − t)−3|q|2 dxdt (151)

for all s ≥ s8. Thanks to the structure of the constant s9, given by (126), the inequality (151) written for s = s9
implies that (150) is satisfied for any solution q of (118).

Step 2: Let us now prove the first part of desired observability estimate (131), i.e. the following inequality:

‖q(x, 0)‖2
L2(Ω) ≤ exp [CH(T, ‖b‖∞)]

(∫∫
ω×(0,T )

|q|r′ dxdt

)2/r′

(152)

with H(T, ‖b‖∞) given by (132). Let ω̃ be a nonempty open set such that ω̃ ⊂⊂ ω ∩ Ω0. We consider (130),
that is to say

‖q(x, 0)‖2
L2(Ω) ≤

2C
T

exp
(

3T
2
||b||∞

)∫∫
Ω×(T/4 ,3T/4)

|q|2 dxdt.

We apply to the right hand side of this inequality, the estimates (150) written for ω̃ and we obtain

‖q(x, 0)‖2
L2(Ω) ≤ CT 5 exp

(
1 +

1
T

+ T ||b||∞ + ‖b‖2/3
∞

)∫∫
eω×(0,T )

e−2sηt−3(T − t)−3|q|2 dxdt. (153)
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On the other hand, we notice that the constant σ(Ω, ω, a)T 2 appearing in Lemma 4.3 is less then the constant s9
given by (126). So, we can write technical estimate (133) for s = s9. This gives

∫∫
eω×(0,T )

e−2sηt−3(T − t)−3|q|2 dxdt ≤ CT−3K1(T, ‖b‖∞)

(∫∫
ω×(0,T )

|q|r′ dxdt

)2/r′

, (154)

where

K1(T, ‖b‖∞) = exp
(

1 +
1
T

+ T ||b||∞ + ‖b‖2/3
∞

)
Tα
[
1 + T 1/2

(
1 + ‖b‖∞ +

1
T 2

+
1
T
‖b‖2/3

∞

)]γ
. (155)

Combining (153) and (154), we deduce that

‖q(x, 0)‖2
L2(Ω) ≤ CT 2K1(T, ‖b‖∞)

(∫∫
ω×(0,T )

|q|r′ dxdt

)2/r′

. (156)

Consequently, we also have (152).

Step 3: Let us finally deduce that

∫∫
Ω×(0,T )

e−2s eCT−1/(T−t)(T − t)−3|q|2 dxdt ≤ exp [CH(T, ||b||∞)]

(∫∫
ω×(0,T )

|q|r′ dxdt

)2/r′

, (157)

where H(T, ||b||∞) is done by (132). Integrating (129) with respect to time and using that θ = 1 in [0, T/4], we
obtain for all t ∈ [0, 3T/4]

exp (2||b||∞t)
∫

Ω

|θq(x, t)|2 dx ≤
∫ 3T/4

T/4

2 exp (2||b||∞τ)
∫

Ω

θ|∂tθ||q|2 dxdτ. (158)

Since θ ≤ 1, |∂tθ| = |∂tθ0(t/T )/T | ≤ C/T , from (158) we obtain

∫
Ω

|q(x, t)|2 dx ≤ 2
T

exp
(

3T
2
||b||∞

)∫∫
Ω×(T/4 ,3T/4)

|q|2 dxdt (159)

for all t ∈ [0, T/4]. Then, we have

∫∫
Ω×(0,T/4)

|q(x, t)|2 dx ≤ exp
(

3T
2
||b||∞

)∫∫
Ω×(T/4 ,3T/4)

|q|2 dxdt. (160)

On the other hand, using the definition (44) of the function η, we can say that there exist a positive constants C
and C̃, depending on Ω, ω and a, such that

e−2sηt−3(T − t)−3 ≥ CT−3(T − t)−3e−2s eCT−1/(T−t) ∀x ∈ Ω, ∀ t ∈ [T/4, T ] (161)



CONTROLLABILITY FOR HEAT EQUATION WITH DISCONTINUOUS COEFFICIENTS 649

whenever s ≥ σ(Ω, ω, a)T 2. We can write∫∫
Ω×(0,T )

e−2s eCT−1/(T−t)(T − t)−3|q|2 dxdt

≤
∫∫

Ω×(0,T/4)

e−2s eCT−1/(T−t)(T − t)−3|q|2 dxdt+ CT 3

∫∫
Ω×(T/4,T )

e−2sηt−3(T − t)−3|q|2 dxdt

≤ T−3e−2CsT−2
∫∫

Ω×(0,T/4)

|q|2 dxdt+ CT 3

∫∫
Ω×(T/4,T )

e−2sηt−3(T − t)−3|q|2 dxdt

≤ T−3eC(−sT−2+T‖b‖∞)
∫∫

Ω×(T/4,3T/4)

|q|2 dxdt

+CT 3

∫∫
Ω×(0,T )

e−2sηt−3(T − t)−3|q|2 dxdt. (162)

Here, we have used (161) and (160). Applying (151), written for ω̃ to the first term of the right hand side
of (161) and Carleman inequatily (122) (written also for ω̃) to the second one, we deduce that for s = s9 the
following holds:∫∫

Q

e−2s eCT−1/(T−t)(T − t)−3|q|2 dxdt

≤ CT 3
(
1 + exp

[
C
(
sT−2 + T ‖b‖∞

)]) ∫∫
eω×(0,T )

e−2sηt−3(T − t)−3|q|2 dxdt

≤ CT 3 exp
[
C

(
1 +

1
T

+ T ‖b‖∞ + ‖b‖2/3
∞

)]∫∫
eω×(0,T )

e−2sηt−3(T − t)−3|q|2 dxdt.

(163)

Using (154) in (163), we get (157). This ends the proof of Proposition 4.2.

5. Proof of Theorem 2.1

We will first prove a null controllability result for a corresponding linear problem which is interesting for
itself. For this proof we use a result of approximate controllability to the zero state and then apply an observ-
ability inequality to obtain estimates which enable us to pass to the limit. We could then try to use this null
controllability result and apply the fixed point method to treat the nonlinear problem. For technical reasons,
we prefer here to apply the fixed point method to the approximate controllability problem to the zero state and
then use the observability inequality to obtain the desired result of exact controllability to the trajectories for
the nonlinear system.

5.1. A null controllability result for a linear problem

We will consider the linear system
∂ty − div(a(x)∇y) + by = v1ω + k in Q,

y = 0 on Σ,
y(x, 0) = y0 in Ω,

(164)
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where a satisfies (5, 6, 9), b ∈ L∞(Q), k ∈ Lr(0, T ;Lr(Ω)), and y0 ∈ L2(Ω) are given. The following holds:

Theorem 5.1. Let T > 0. Assume that ω ∩ Ω0 6= ∅, Condition 2.1 (resp. Condition 2.2) in case (1) (resp. in
case (2)) are fulfilled and a satisfies (5, 6, 9) and (10). We take data b ∈ L∞(Q), y0 ∈ L2(Ω), k ∈ L2(Q) and
such that ∫∫

Q

e2s eCT−1/(T−t)(T − t)3|k|2 dxdt < +∞ (165)

for s ≥ σ(Ω, ω, a)(T + T 2 + T 2‖b‖2/3
∞ ). Then for each case (1) or (2), there exists a control v̂ ∈ Lr(O × (0, T ))

such that the corresponding solution ŷ of (164) verifies

ŷ(x, T ) = 0 in Ω. (166)

Moreover, v̂ can be chosen satisfying the estimate

||v̂||Lr(ω×(0,T )) ≤ Ĥ(Ω, ω, a, T, ||b||∞)
(
||y0||L2(Ω) + ||es eCT−1/(T−t)(T − t)3/2k||L2(Q)

)
, (167)

with

Ĥ(Ω, ω, a, T, ||b||∞) = exp
[
C

(
1 +

1
T

+ T + (T + T 1/2)||b||∞ + ||b||2/3∞

)]
. (168)

Remark 5.1. Notice that if k ∈ Lr(0, T ;Lr(Ω)) such that (165) holds, then k vanishes exponentially at t = T .
If k = 0 in a neighbourhood of t = T and k ∈ Lr(0, T ;Lr(Ω)) then (165) is satisfied.

Proof of Theorem 5.1. Let us fix T > 0, b ∈ L∞(Q), y0 ∈ L2(Ω), k ∈ Lr(0, T ;Lr(Ω)), with r verifying (4) and
such that (165) holds. For every ε > 0, let us consider the functional Jε definite by

Jε(qT ) =
1
2

(∫∫
ω×(0,T )

|q|r′ dxdt

)2/r′

+ ε||qT ||L2(Ω) +
∫

Ω

q(x, 0) y0(x) dx +
∫∫

Q

kqdxdt ∀qT ∈ L2(Ω), (169)

where q is the solution of (118) associated to qT ∈ L2(Ω) and r′ is the dual exponent of r. It is easy to see
that Jε is a continuous and strictly convex functional. Furthermore, from (122), it is immediate to deduce the
following unique continuation property for the adjoint problem (118):

If q = 0 in ω × (0, T ), then q ≡ 0.

Then, arguing as in [9] and [10], we see that

lim inf
‖qT ‖L2→∞

Jε(qT )
‖qT ‖L2

≥ ε

and, therefore, Jε achieves its minimum at a unique point q̂T,ε ∈ L2(Ω). Let q̂ε be the solution of (118) associated
to q̂T,ε. Arguing again as in [9], we take in (164) v = v̂ε, where

v̂ε = sgn(q̂ε)|q̂ε|r′−1‖q̂ε‖Lr′(ω×(0,T ))1ω , (170)

then, we find a solution ŷε satisfying

||ŷε(·, T )||L2(Ω) ≤ ε. (171)
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Moreover, we can obtain the estimates of the Lr(ω × (0, T ))-norm of the control independent of ε. We claim
that for a suitable C = C(Ω, ω, a) > 0 we have:

||v̂ε||Lr(ω×(0,T )) ≤ Ĥ(Ω, ω, T, a, ‖b‖∞)
(
||y0||L2(Ω) + ||es eCT−1/(T−t)(T − t)3/2k||L2(Q)

)
(172)

for all ε > 0 and with Ĥ given by (168). Indeed, from (170) we can write that

||v̂ε||Lr(ω×(0,T )) =

(∫∫
ω×(0,T )

|q̂ε|r′ dxdt

)1/r′

. (173)

On the other hand, at the minimum q̂T,ε, we have

Jε(q̂T,ε) ≤ Jε(0) = 0.

Taking (169) into account, we see that

1
2

(∫∫
ω×(0,T )

|q̂ε|r′ dxdt

)2/r′

≤ −
∫

Ω

q̂ε(x, 0)y0(x) dx −
∫∫

Q

kq dxdt ≤ ‖q̂ε(·, 0)‖L2(Ω)‖y0(x)‖L2(Ω)

+
(∫∫

Q

e2s eCT−1/(T−t)(T − t)3|k|2 dxdt
)1/2(∫∫

Q

e−2s eCT−1/(T−t)(T − t)−3|q|2 dxdt
)1/2

. (174)

In view of (131) and (165), the estimate (172) holds.
Since v̂ε is uniformly bounded in Lr(ω × (0, T )), for an appropriate subsequence, we deduce that

v̂ε → v̂ weakly in Lr(ω × (0, T )), (175)

where v̂ ∈ Lr(ω × (0, T )) and satisfies (167). Accordingly,

ŷε(T ) → ŷ(T ) in L2(Ω),

where ŷ is the solution of (164) associated to v̂. Since we have (171) for all ε > 0, we also have (166). This ends
the proof of Theorem 5.1.

Remark 5.2. Notice that, using the argument of [13] and [9], it is also possible to obtain the controls
in L∞(0, T ;L∞(ω)).

5.2. The fixed point method. Conclusion

We are now ready to complete the proof of Theorem 2.1. We will apply a fixed point method to obtain
ε-approximate controllability to the zero state for the nonlinear transmission problem, using the ideas of [9]
and [10]. Then the main ingredients of our proof are the explicit estimates of the controls needed for control-
lability of a linear transmission problem, which have been obtained in the previous section and the choice of
the control time depending on the size of the potential. This will allow us to pass to the limit in the nonlinear
problem when ε tends to zero and obtain the complete results of Theorem 2.1.
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Step 1: Let us consider a trajectory y∗, solution of the problem (12) without control. We introduce the change
of variable p = y − y∗, where y is a solution of (8). Then, we obtain that

∂tp− div(a(x)∇p) + f(y∗ + p) − f(y∗) = v1ω in Q,

p = 0 on Σ,
p(x, 0) = p0 in Ω,

(176)

where p0 = y0 − y∗0 . Theorem 2.1 will be proved if we show that, for each p0 ∈ L2(Ω), there exists v ∈
Lr(ω × (0, T )) such that

p(x, T ) = 0 in Ω. (177)

We will first consider the case in which p0 ∈ L∞ and f ∈ C1 in R. We denote by h the following function:

h(a, s) =


f(a+ s) − f(a)

s
if s 6= 0,

f ′(a) if s = 0.

Then h is continuous. Thanks to hypothesis (11) we know that for each η > 0, there exists Cη > 0 (depending
only of η and the function f) such that

|h(y∗(x, t), s)|2/3 ≤ Cη + η log(1 + |s|) ∀ s ∈ R, ∀ (x, t) ∈ Q. (178)

Step 2: Let η > 0 and R > 0 be given positive constants whose values will be fixed later on.
Let us fix a time

TR = min
{
T, ||h||−2/3

L∞(−R,R), ||h||−1/3
L∞(−R,R)

}
· (179)

For simplicity, in the sequel, we will refer only to the case (1), but we also take into account the dependence of
the constants corresponding to the case (2).

Step 3: (a) We consider the truncation function TR : R 7→ R, which is given as follows:

TR(s) =
{

s if |s| ≤ R,

R sgn (s) otherwise.

For each z ∈ L2(Q), we consider the linear system
∂tp− div(a(x)∇p) + h(y∗(x, t),TR(z))p = v1ω in Ω × (0, TR),
p = 0 on Γ × (0, TR),
p(x, 0) = p0 in Ω.

(180)

Notice that (180) is of the form (164), with b = h(y∗,TR(z)) ∈ L∞(Q). Then we can apply the arguments of
the proof of Theorem 5.1 to (180). In fact, we will apply this result in a time interval (0, TR), where TR is given
by (179). This is a key point in this proof that will drive to appropriate estimates (the idea is taken from [13]
and it has been applied later in [8]).

(b) More precisely, for every ε > 0, let us consider the functional Jε of the form (169). Arguing as in the proof
of Theorem 5.1, we obtain the existence of a control vεz ∈ Lr(ω × (0, TR)), minimizing the Lr(ω × (0, TR))-
norm of the form vεz = sgn(qεz)|qεz |r

′−1‖qεz‖Lr′(ω×(0,T ))1ω, (r′ > 1) with qεz the solution of the corresponding
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problem (118), such that the solution pεz of (180) with v = vεz satisfies

‖pεz(·, TR)‖L2(Ω) ≤ ε. (181)

Then, from (172) we have

||vεz ||Lr(ω×(0,TR)) ≤ C1(Ω, ω, a, TR, ||h||L∞(−R,R))||p0||L2(Ω) (182)

where

C1

(
Ω, ω, a, TR, ||h||L∞(−R,R)

)
= eC(Ω,ω,a)

�
1+ 1

TR +TR+(TR+TR1/2
)||h||L∞(−R,R)+||h||2/3

L∞(−R,R)

�
. (183)

Using now the definition of TR, we deduce

||vεz ||Lr(ω×(0,TR)) ≤ eC2(Ω,ω,a,T )
�
1+||h||2/3

L∞(−R,R)

�
||p0||L2(Ω). (184)

Moreover, thanks to (178), from (184) for each z ∈ L2(Q) we obtain the following:

||vεz ||Lr(ω×(0,TR)) ≤ eC2(Ω,ω,a,T )(1+Cη+η log(1+R))||p0||L2(Ω)

= C3(Ω, ω, a, T, η, p0)(1 +R)ηC2(Ω,ω,a,T ). (185)

Here we have used the fact that from (178) we can easily write that

‖h‖2/3
L∞(−R,R) ≤ Cη + η log(1 + |R|). (186)

(c) For each ε > 0 and z ∈ L2(Q) we introduce the mapping Λ : L2(Q) 7→ L2(Q) defined as follows: for each
z ∈ L2(Q), Λ(z) = pεz, where pεz is the the solution of (180) satisfying (181) with v = vεz constructed in the point
(b) of this step. In fact, Λ is of the following form

z ∈ L2(Q) 7→ TR(z) ∈ L∞(Q) 7→ h(y∗,TR(z)) ∈ L∞(Q) 7→ vεz ∈ Lr(ω × (0, TR)) 7→ pεz ∈ L2(Q).

Arguing as in [9], we apply Schauder’s theorem and we deduce for each ε > 0 the existence of a fixed point pε

(associated to vε) of Λ which verifies

‖pz(·, TR)‖L2(Ω) ≤ ε. (187)

Notice that we have used that the solution pεz of (180) is bounded (uniformly in z) in L2(0, TR;H1
0 (Ω)) and its

time derivative ∂tpεz is bounded in L2(0, TR;H−1(Ω)).

(d) Let pε be a fixed point of Λ associated to the control vε constructed as above. Since (185) holds for vε,
then vε is bounded in Lr(ω × (0, TR)) uniformly in ε, pε is bounded in L2(0, TR;H1

0 (Ω)) and ∂tp
ε
z is bounded

in L2(0, TR;H−1(Ω)). For an appropriate subsequence, we deduce that as ε→ 0

vε → v̄R weakly in Lr(ω × (0, TR)), (188)

where v̄R ∈ Lr(ω × (0, TR)) also satisfies (185), and

pε → p̄R weakly in L2(0, TR;H1
0 (Ω)),

∂tp
ε → ∂tp̄

R weakly in L2(0, TR;H−1(Ω)),
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where p̄R is the solution of the following problem:
∂tp̄

R − div(a(x)∇p̄R) + h(y∗(x, t),TR(p̄R))p̄R = v̄R1ω in Ω × (0, TR),
p̄R = 0 on Γ × (0, TR),
p̄R(x, 0) = p0 in Ω.

(189)

Then

pε(TR) → p̄R(TR) in L2(Ω)

and since we have (187) for all ε > 0, we also have

p̄R(TR) = 0. (190)

On the other hand, since v̄R ∈ Lr(0, TR;Lr(ω)), with r as in (4), we can write (cf. for example [2] and [3]) that

||p̄R||∞ ≤ eT
R||h(y∗,TR(p̄R))||∞ ||p0||∞ + TReT

R||h(y∗,TR(p̄R))||∞ ‖v̄R‖Lr(0,TR;Lr(ω)) . (191)

Using again the definition of TR and also taking into account (185) and (186), we deduce from (191) that p̄R

verifies

||p̄R||∞ ≤ eC4(Ω,ω,a,T )
�
1+||h||2/3

L∞(−R,R)

� (||p0||∞ + ‖v̄R‖Lr(0,TR;Lr(ω))

)
≤ C5(Ω, ω, a, T, η, p0)(1 +R)ηC6(Ω,ω,a,T ). (192)

Notice that in (192) the constant C5 is independent of R and the constant C6 is independent of η and R. Let us
extend by zero p̄R and v̄R to the whole cylinder Q = Ω× (0, T ) and for simplicity, we still call them p̄R and v̄R.
It is clear that (192) holds and that v̄R is such that

p̄R(T ) = 0.

(e) In order to conclude the proof of this theorem, it is sufficient to check that for η and R suitably chosen, p̄R

(defined on Ω × (0, T )) satisfies

‖p̄R‖∞ ≤ R. (193)

Then we can say that TR(p̄R) = p̄R. Of course, this implies the existence of a control v ∈ Lr(0, T ;Lr(ω)) such
that the solution of (176) satisfies (177). Indeed, from (192) we can choose η = 1/(2C6) and R > 0 such that

C5(Ω, ω, a, T, p0)(1 +R)ηC6(Ω,ω,a,T ) < R.

Then we obtain (193). This proves Theorem 2.1 when p0 ∈ L∞(Ω) and f ∈ C1(R). We just mention that we
treat the case in which f is only locally Lipschitz continuous as for example in [9] and [13] using approximations
of f by C1 functions. Then, in this case we deduce the existence of a control v ∈ Lr(0, T ;Lr(ω)) such that the
corresponding solution to (176) verifies (177).

Finally, if p0 ∈ L2(Ω), for δ > 0 sufficiently small we set v ≡ 0 for t ∈ (0, δ). Using the regularizing
effect of the heat equation (see, for example [21] and [22]), we deduce that the corresponding (local) solution p
of (176) satisfies p(·, δ) ∈ L∞(Ω). Then, we argue as above for p in the interval [δ, T ] and we obtain a control
v ∈ Lr(0, T ;Lr(ω)) such that (177) holds. This ends the proof of Theorem 2.1.
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6. Proofs of Lemma 3.1 and Lemma 3.2

In this section we will present the construction of the weight functions we used for our global Carleman
inequalities.

Proof of the Lemma 3.1. We will proceed in several steps.

Step 1: Let ζ and x be vector fields verifying Condition 2.1. First, we will construct a function β̃1 ∈ C1(Ω1),
such that

β̃1 > 0 in Ω1, (194)

β̃1 = 0 on Γ, (195)

∂nβ̃1 < 0 on Γ, (196)

β̃1 = 1 on S, (197)

∂nβ̃1 > 0 on S, (198)

∇β̃1 6= 0 in Ω1. (199)

For t ∈ [0, t1(x0)], let us introduce the following change of variables:

τ =
t

t1(x0)
, τ ∈ [0, 1], x̃(τ) = x(t).

Observe that, if we take x ∈ Ω1, then there exists x0 ∈ Γ such that x = x(t, x0) for t ∈ [0, t1(x0)] or, in other
words, there exists τ ∈ [0, 1] such that x̃(0) = x0 ∈ Γ, x̃(τ) = x(t) and x̃(1) = x(t1(x0)) ∈ S. Moreover

dx̃
dτ

=
dx
dt
t1(x0) = ζ(x(t))t1(x0). (200)

Let us set

β̃1(x(t)) = β̃1(x̃(τ)) = τ, τ ∈ [0, 1]. (201)

This function verifies the following properties:

dβ̃1

dτ
(x) = 1 for all x ∈ Ω1, (202)

0 < β̃1(x) < 1 for all x ∈ Ω1, (203)

β̃1(x) = 0 for all x ∈ Γ, (204)

and

β̃1(x) = β̃1(x̃(1)) = 1 for all x ∈ S. (205)

On the other hand, from (200) and (202), for all x ∈ Ω1, we have

dβ̃1

dτ
(x(τ)) = ∇β̃1(x̃(τ))

dx̃
dτ

(τ) = ∇β̃1(x)ζ(x(t))t1(x0) = 1, (206)

therefore
∇β̃1(x) 6= 0 for all x ∈ Ω1 .
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Moreover, using (200, 205) and (206), we can write that

∇β̃1(x)
dx̃
dτ

=
(
∇β̃1(x) · n

)(dx̃
dτ

· n
)

=
(
∇β̃1(x) · n

)
(ζ(x) · n)t1(x0) = 1 for all x ∈ S.

Then, taking into account (17), we deduce that

∇β̃1(x) · n > 0 for all x ∈ S.

This means (198). By the similar way, it is easy to check (196). Thus we also have (199).
In order to obtain β̃1 ∈ C2(Ω1), we just notice that we can approximate the function of class C1, which we

have constructed above by an other function of class C2 (that we keep calling β̃1), such that it still satisfies the
properties (194–199).

Let us now consider the diffusion coefficients ai, i = 0, 1 such that (5) holds and let ω0 ⊂⊂ ω ∩ Ω0.

Step 2: For ε > 0 small enough, we set

Uε(S) = {x : x ∈ Ω0 , dist(x, S) < ε}·

We can construct a function α0 in Uε(S), such that α0 ∈ C2(Uε(S)) and

α0 = 1 on S, ∂nα0 > 0 on S,
α0 > 0 in Uε(S), ∇α0 6= 0 in Uε(S)

(207)

and

a0∂nα0 = a1∂nβ̃1 on S. (208)

Now, we extend this function in Ω0 to a function that we call again α0, with α0 ∈ C2(Ω0) and α0 > 0 in Ω0.

Step 3: Thanks to the Morse theorem, we deduce that there exists a sequence of Morse functions θk, k ≥ 1
(functions with isolated critical points i.e. their gradient vanishes only in a finite number of points), such that

θk → α0 in C2(Ω0) if k → +∞. (209)

If θk is close enough to α0, the points where ∇θk vanishes can not be in Uε(S). Moreover, we can assume that
for some δ > 0 we have

|∇α0| ≥ δ > 0 in Uε(S). (210)

Let us construct a Morse function µ ∈ C2(Ω0), such that

µ = 1 on S, ∂nµ > 0 on S (211)

a0∂nµ = a1∂nβ̃1 on S (212)

and

∇µ 6= 0 in Uε(S). (213)

For this, we consider ϕ ∈ D(Uε(S)) and ϕ = 1 in Uε0(S), with 0 < ε0 < ε. We set

µk(x) = θk(x) + ϕ(x)(α0(x) − θk(x)).
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It is clear that

µk = α0 in Uε0(S). (214)

Then, the function µk satisfies (211) and (212). Moreover, we have

∇µk = ∇θk in Ω0\Uε(S)

and

∇µk = ∇θk + ϕ(∇α0 −∇θk) + ∇ϕ(α0 − θk) in Uε(S). (215)

Then, using (209) and (210) in (215), we deduce that there exist a positive number k0 = k0(δ) such that, if
k ≥ k0 we have

|∇µk| ≥ |∇θk| − 2‖ϕ‖C1‖α0 − θk‖C1 ≥ δ

2
in Ω0 ∩ Uε(S).

We choose k ≥ k0 and we set µ(x) = µk(x). Then, µ is a Morse function whose gradient vanishes only in the
set of points where the gradient of θk vanishes. This, together with (214), implies that (211) and (213) hold.

Step 4: On the other hand, arguing as in [15], we can deduce that there exists a mapping g : Ω0 7→ Ω0 which
is a diffeomorphism on Ω0, which leaves invariant Uε(S) and transports the points where the gradient of µ
vanishes in ω0. We set

β̃0(x) = µ(g(x)).
Then, equation (33) holds. Thanks to the properties (211) of the function µ, we also have (30, 31) and (32).

This ends the proof of Lemma 3.1.

Proof of the Lemma 3.2. Assume that we are in the situation of Case (2). Let ω0 ⊂⊂ ω ∩ Ω0 be an arbitrary
fixed open subset of Ω0.

Step 1: We assume that there exist O1 ,O2 ⊂⊂ Ω1 two open disjoint subsets, such that Condition 2.2 holds
between Ω1 and each one of two sets O1 and O2. Then, as in the first part of the proof of Lemma 3.1, we
construct two functions βi1 ∈ C1(Ω1\Oi ), βi1 > 0 in Ω1\Oi, i = 1, 2, such that

βi1 = 2 on S, i = 1, 2,
∂nβ

i
1 > 0 on S, i = 1, 2,

∂nβ
i
1 > 0 on ∂Oi , i = 1, 2,

βi1 = 1 on ∂Oi , i = 1, 2,
∇βi1 6= 0 in Ω1\Oi , i = 1, 2,

(216)

where n stands for the unit exterior normal to Ω1 and Oi, i = 1, 2.

Step 2: Let B̃i and Bi, i = 1, 2 be balls such that B1 ⊂⊂ B̃1 ⊂⊂ O1 and B2 ⊂⊂ B̃2 ⊂⊂ O2. We will present
only the construction of β̃1

1 . The second function will be obtained by the same arguments. Let us set

Wε = {x : x ∈ O1 , dist(x, ∂O1) < ε}·

First, we observe that since ∂nβ1
1 > 0 on ∂O1 and β1

1 = 1 on ∂O1, we construct a function β1
1 ∈ C1(Wε), such

that there exists δ > 0 such that

β1
1 ≤ 1 in Wε , 0 < β1

1 ≤ 1 − 4δ on ∂Wε\∂O1 and ∇β1
1 6= 0 in Wε .
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Then, we can extend this function by a function still called β1
1 ∈ C1(O1), such that

0 < β1
1 ≤ 1 − 3δ in O1\Wε and ∇β1

1 6= 0 in Wε .

Now, we approximate β1
1 by Morse functions in such a way that

0 < β1
1 ≤ 1 − 2δ in O1\Wε, (217)

where we keep the name β1
1 for this approximation. The gradient of this function vanishes only in a finite

number of points. As we already mentioned in the Step 3 of this proof, we can deduce the existence of a
diffeomorphism on O1, which keeps invariant Wε and transports the points where the gradient of β1

1 vanishes
in B1. We obtain then a new function (that we keep on calling β1

1) such that β1
1 ∈ C1(Ω1), β1

1 > 0 in Ω1 and

∇β1
1 6= 0 in Ω1\B1. (218)

Moreover, from (217) we obtain that for δ > 0 we have

β1
1 ≤ 1 − δ in B1. (219)

Analogously, we construct a function β2
1 ∈ C1(Ω1), β2

1 > 0 in Ω1, which verifies

∇β2
1 6= 0 in Ω1\B2 (220)

and

β2
1 ≤ 1 − δ in B2. (221)

Step 3: Let us finally prove that the properties (40) and (41) are satisfied. For this, we will see that it is
possible to modify β1

1 (resp. β2
1) in B1 (resp. B2) in order to obtain the conditions (40) and (40). We will be

able to do this without changing the values of these functions in O1\B1 and O2\B2. For simplicity, we will
present the details of the construction of only one of such a function, because the same arguments will be valid
for the other one.

Let us define a new function β̃1
1 as follows:

β̃1
1(x) =

{
β1

1(x) if x ∈ Ω1\O1 ,(
β1

1(x)
)n(x) if x ∈ O1 ,

(222)

with

n(x) =
(

1
β1

1(x)

)p
, (223)

where p ∈ N will be fixed later on. We can write that

β̃1
1 =

(
β1

1

)n
= en log β1

1 in O1. (224)

Since β1
1 = 1 on ∂O1, we have that n = 1 on ∂O1 and then, from (224) we deduce that

β̃1
1 = β1

1 = 1 on ∂O1. (225)
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Moreover, we have that

∇β̃1
1 = ∇β1

1 on ∂O1 (226)

and that the gradient of β̃1
1 vanishes only in B1, where the gradient of β1

1 is zero, i.e.

∇β̃1
1 6= 0 in Ω1\B1. (227)

Indeed, using (224) and (223), we have

∇β̃1
1 =

(
β1

1

)n(∇n log β1
1 +

n∇β1
1

β1
1

)
=
(
β1

1

)n∇β1
1

[
−p logβ1

1

(β1
1)p+1 +

1

(β1
1)p+1

]
· (228)

Taking into account (217), it is easy to deduce from (228), that (226) and (227) hold.
In order to modify the values of β̃1

1 in B1, we first use (219) and we obtain that

n ≥
(

1
1 − δ

)p
·

Next, from (224) we deduce that

β̃1
1 ≤ (1 − δ)(1/(1−δ))

p

. (229)

On the other hand, we know that the second function that we constructed in the Step 5 of this proof satisfies

0 < β2
1 ≤ β̄2

1 = max
B1

β2
1 > 0 in B1.

Choosing now p large enough, we can deduce from the estimate (229) the following:

β̃1
1 ≤ 1

2
β̄2

1 in B1.

This gives (41). The same arguments applied to the function β2
1 lead to the existence of a new function

β̃2
1 ∈ C1(Ω1), β̃2

1 > 0 in Ω1, such that satisfies (38, 40) and (42) for i = 2.
To conclude this step, we observe that we can approximate the functions of class C1 already constructed by

functions of class C2, preserving the properties of the functions β̃1
1 and β̃2

1 .

Step 4: For ε, ε′ > 0 small enough, we set

Vε(Γ) = {x : x ∈ Ω0 , dist(x,Γ) < ε}

and

Vε′(S) = {x : x ∈ Ω0 , dist(x, S) < ε′}·

We can locally construct a function α0 in Vε(Γ), such that α0 ∈ C2(Vε(Γ)) and

α0 = 0 on Γ, ∂nα0 > 0 on Γ,
α0 > 0 in Vε(Γ), ∇α 6= 0 in Vε(Γ).

(230)
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On the other hand, in Vε′(S) we construct another function, which for simplicity, we also will denote by α0,
such that α0 ∈ C2(Vε′ (S)) and

α0 = 2 on S, ∂nα0 > 0 on S,
α0 > 0 in Vε′(S), ∇α0 6= 0 in Vε′ (S)

(231)

and

a0∂nα0 = a1∂nβ
i
1 on S, i = 1, 2. (232)

Now, we extend both functions in Ω0, to a function which we keep on calling α0, with the following properties:

α0 ∈ C2(Ω0), α0 > 0 in Ω0,

α0 = 0 on Γ, ∂nα0 > 0 on Γ,
α0 = 2 on S, ∂nα0 > 0 on S.

(233)

Step 5: In the sequel, we will use same arguments as for the proof of Lemma 3.1.
Thanks to the Morse theorem, we deduce that there exists a sequence of Morse functions θk, k ≥ 1 (functions

with isolated critical points i.e. their gradient vanishes only in a finite number of points), such that

θk → α0 in C2(Ω0) if k → +∞. (234)

If θk is close enough to α0, the points where ∇θk vanishes can not be in Vε(Γ) ∪ Vε′ (S). Moreover, we can
assume that for some δ > 0 we have

|∇α0| ≥ δ > 0 in Vε(Γ) ∪ Vε′(S). (235)

We can construct a Morse function µ ∈ C2(Ω0), such that

µ = 0 on Γ, ∂nµ < 0 on Γ, (236)

µ = 2 on S, ∂nµ > 0 on S (237)

and

∇µ 6= 0 in Vε(Γ) ∪ Vε′ (S). (238)

Indeed, it suffices to consider ϕ ∈ D(Vε(Γ) ∪ Vε′(S)) and ϕ = 1 in a neighborhood of Γ ∪ S and to define

µk(x) = θk(x) + ϕ(x)(α0(x) − θk(x)).

Arguing as in the proof of Lemma 3.1, we can choose k ≥ k0 and µ(x) = µk(x) in such a way that µ is a
Morse function with gradient vanishing only in the points contained in the set of points where the gradient of θk
vanishes and satisfying the previous properties.

Step 6: Finally, we can deduce that there exists a mapping g : Ω 7→ Ω which is a diffeomorphism on Ω, which
leaves invariant Vε(Γ) ∪ Vε′(S) and transports the points where the gradient of µ vanishes in ω0. We set

β̃0(x) = µ(g(x)).

This ends the proof of Lemma 3.2.
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[14] E. Fernández–Cara and E. Zuazua, On the null controllability of the one-dimensional heat equation with BV coefficients

(to appear).
[15] A. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations. Seoul National University, Korea, Lecture Notes

34 (1996).
[16] O.Yu. Imanuvilov, Controllability of parabolic equations. Mat. Sb. 186 (1995) 102-132.
[17] O.Yu. Imanuvilov and M. Yamamoto, Carleman estimate for a parabolic equation in a Sobolev space of negative order and

its applications. Lecture Notes in Pure Appl. Math. 218 (2001) 113-137.
[18] O.A. Ladyzenskaya, V.A. Solonnikov and N.N. Uraltzeva, Linear and Quasilinear Equations of Parabolic Type. Nauka,

Moskow (1967).
[19] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York (1983).
[20] D.L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Stud.

Appl. Math. 52 (1973) 189-211.
[21] F.B. Weissler, Local existence and nonexistence for semilinear parabolic equations in Lp. Indiana Univ. Math. J. 29 (1980)

79-102.

[22] F.B. Weissler, Semilinear evolution equations in Banach spaces. J. Funct. Anal. 32 (1979) 277-296.
[23] E. Zuazua, Exact boundary controllability for the semilinear wave equation, in Nonlinear Partial Differential Equations

and their Applications, Vol. X, edited by H. Brezis and J.-L. Lions. Pitman (1991) 357-391.
[24] E. Zuazua, Finite dimensional controllability for the semilinear heat equations. J. Math. Pures 76 (1997) 570-594.
[25] E. Zuazua, Approximate controllability for semilinear heat equations with globally Lipschitz nonlinearities. Control and

Cybernetics 28 (1999) 665-683.


