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Chapter 1            

Introduction and Objectives of the Thesis 

1.1 Context and problem statement 

Nowadays health care organizations experience an increasing pressure in order to 

provide their services at the lowest possible costs as a response to the combination of 

restrictive budgets, increasing waiting lists, and the aging of the population. In general, 

hospital resources are expensive and scarce, being the operating theatre the most critical 

and expensive resource. In most hospitals, the operating theatre is a complex system 

composed of operating rooms (ORs) together with their specialized equipment, 

preoperative and postoperative facilities and, finally, a diversity of human resources, 

including surgeons, anesthetists, nurses, etc. To handle such complexity, decisions 

related to operating theatre management are usually decomposed into three hierarchical 

decision levels, i.e.: strategic, tactical and operational.  

At the strategic level, hospital managers set the volume and the mix of surgeries that 

will be performed over a long-term horizon (typically, a year) to keep up acceptable size 

of waiting lists while achieving cost targets, thus making long-term decisions related to 

the dimensioning of surgical facilities (e.g. build new ORs, adding new recovery beds, 

etc.), the hiring of surgical staff (e.g. surgeons, nurses, etc.), the purchase of novel 

surgical devices, and the amount of operating theatre resources required by surgical 

specialties to perform their surgeries (OR time, number of beds, etc.).  

Once decisions at strategic level have been made, the operating theatre resources are 

allocated over a medium-term planning horizon (ranging from few weeks to 6 months) 

in the tactical level. Since the OR is both a bottleneck and the most expensive facility 

for most hospitals, surgical specialties are first assigned to OR days (i.e. a pair of an OR 

and a day) over the planning horizon, until the OR time allocated to each surgical 

specialty in the strategic level is reached. Then, the above assignment defines aggregate 

resource requirements for specialties, such as the demand of nurses, drugs, diagnostic 
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procedures, laboratory tests, etc. Finally, the working shifts of human resources and 

their workload (e.g. the number of surgeries allocated to each surgeon) are defined over 

the medium-term planning horizon in order to achieve the volume of surgeries set by 

hospital managers. 

Finally, the surgical schedule is determined over a short-term planning horizon (ranging 

from few days to few weeks) at the operational level. The operational level is usually 

solved into two steps. The first step involves the determination of the date and the OR 

for a set of surgeries in the waiting list; while in the second step, a sequence of surgeries 

for each OR within each day in the planning horizon is obtained. Note that only a set of 

surgeries will be performed during the planning horizon due to capacity constraints 

(both facilities and human resources). The decomposition of the operational level into 

the two aforementioned steps intends to reduce the complexity of the resulting problem, 

although the quality of the so-obtained surgery schedule may be reduced due to the high 

interdependence among these two steps, being the integrated approach a popular topic 

of research. At the operational level, a feature greatly influencing the performance is the 

uncertainty in the surgical activities, as frequently large discrepancies between the 

scheduled duration and the real duration of the surgeries appear, together with the 

availability of the resources reserved for emergency arrivals.  

Despite the importance and the complexity of these hierarchical levels, decisions in 

practice are usually made according to the decision makers’ experience without 

considering the underlying optimization problems. Furthermore, the lack of usage of 

decision models and solution procedures causes the decision makers to consume long 

times on performing management tasks (e.g. determine the surgical schedule, react to 

unforeseen events, carry out what-if analyses, etc.), instead of healthcare tasks.  

The context discussed above stresses the need to provide healthcare decision makers 

with advanced operations research techniques (i.e. models and solution procedures) in 

order to improve the efficiency of the operating theatre resources and the quality of the 

healthcare services at the operational level. This Thesis is aimed at this goal. 
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1.2 Research Objectives and Outline of the thesis 

This Thesis has been carried out in the framework of several research projects in the 

healthcare operations management area (see full list of projects in Section 8.2). The 

outcomes of these projects have been validated and implemented in the University 

Hospital “Virgen del Rocio” in Seville (Spain). This Hospital is one of the largest 

hospitals in Spain, with over 1,400 beds and 50 ORs, currently executing more than 

60,000 surgeries per year. Several private companies (such as INGENIA, SIEMENS 

and EVERIS), two research groups (such as the Industrial Management Group (TEP-

134) of the School of Engineering of Seville –where the author of this Thesis has been 

integrated since 2007-- and the Technological Innovation Group of the University 

Hospital “Virgen del Rocio”), and a number of surgical specialties (such as Plastic 

Surgery and Major Burns, Urology and Pediatrics) are among the participants in some 

of these projects.  

Due to the heavy implication of the University Hospital “Virgen del Rocio” in the 

aforementioned projects, the research issues tackled in this Thesis have been motivated 

by the analysis of the operational decision level in the surgical specialties of this 

specific hospital. In this sense, the Thesis is project- (or customer-) driven, although the 

problems addressed here are rather general and can be easily extrapolated to other 

hospitals.   

As mentioned in the previous section, the goal of this Thesis is to provide healthcare 

professionals with operations research techniques in order to improve the efficiency of 

the operating theatre resources and the quality of the healthcare services at the 

operational level. In order to fulfill this general goal, the following research objectives 

were established: 

i. To carry out a literature review on the operational level of the operating theatre 

management problem.  

ii. To propose a testbed generator based on the literature review to analyze the operating 

theatre problems identified in i). This objective was set after detecting in the 

literature review the lack of a suitable experimental testbed for the problems to be 

addressed in iii and iv. 
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iii. To address the OR planning problem by proposing mathematical decision models 

and solution procedures under deterministic and stochastic surgery durations, 

emergency arrivals and resources capacity. 

iv. To address a deterministic integrated OR planning and scheduling problem, taking 

into account the case where there is a surgical team composed by surgeons with 

different surgical experience. Although the stochastic version of this integrated 

problem is not addressed in this Thesis, a simulation approach has been carried out to 

analyze the robustness of the surgical schedules caused by stochastic surgery 

durations.  

v. To demonstrate the validity of the decision models and the solution procedures 

developed in iii) and iv) for a real-life setting, by developing and deploying a 

decision support system (DSS) for OR planning and scheduling in the University 

Hospital “Virgen del Rocio”.   

This Thesis is organized in four parts: 

 Part I is composed of three chapters. In Chapter 1 we have discussed the context, 

problem statement and the research objectives of the Thesis. Then, Chapter 2 first 

provides a background of the operating theatre management problem and, in the 

remaining of the chapter, a literature review presenting the research topics identified 

in the University Hospital “Virgen del Rocio” (see iii), iv) and v) is discussed. 

Finally, Chapter 3 presents a testbed procedure for experimentally generate scenarios 

to analyze the decision problems and the solution procedures to be proposed in iii), 

iv) and v).  

 Part II covers the research objectives iii) and iv) of the Thesis. Chapter 4 analyzes the 

deterministic version of the OR planning problem, presenting a decision model that 

incorporates the main constraints identified in Chapter 2, and the objective function 

commonly used in all surgical specialties of the University Hospital “Virgen del 

Rocio”. A set of solution procedures are proposed to solve the problem, including an 

exhaustive computational comparison with existing procedures identified in Chapter 

2 by using the testbed procedure described in Chapter 3. Chapter 5 presents the 

stochastic OR planning problem in order to study the uncertainty in surgery 

durations, in the arrivals of emergency surgeries, and in the surgeons’ capacity to 
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perform elective surgeries. A stochastic decision model and a Monte Carlo 

optimization method based on the Sample Average Approximation (SAA) method 

are presented. Finally, Chapter 6 analyzes the integrated OR planning and scheduling 

problem considering surgical teams composed by surgeons with different surgical 

experience, analyzing how the composition of a surgical team influences the length 

of the surgery duration. An iterative constructive method is presented to solve the 

problem, studying the robustness of the so-obtained surgical schedules by means of 

simulation. 

 Part III presents the validation (both theoretical and practical) of the proposed 

solutions procedures to address the OR planning and scheduling problem in the 

University Hospital “Virgen del Rocio” (Chapter 7). Besides, the chapter includes 

the description of a DSS developed for the University Hospital “Virgen del Rocio”, 

where the decision models and solution procedures presented in Part II are 

embedded. 

 Part IV summarizes the main results and conclusions of the Thesis, and presents 

future research lines (Chapter 8). 





 

9 

 

Chapter 2            

The Operating Room Planning and Scheduling 

Problem 

2.1 Introduction 

As described in Chapter 1, in this chapter we focus on the operational decision level of 

the operating theatre management problem. We introduce an overview of the general 

operating theatre management problem in Section 2.2, in which strategic, tactical and 

operational decision levels are described in detail. Section 2.3 and Section 2.4 present 

the OR planning problem under deterministic and stochastic considerations, and the 

integrated OR planning and scheduling problem considering surgical teams composed 

by surgeons with different surgical experience respectively. Finally, the conclusions 

gained from the literature review are discussed in Section 2.5.    

2.2 An overview of the operating theatre management 

problem  

The operating theatre consists of ORs as well as of preoperative and postoperative 

facilities such as the preoperative holding unit, the post anesthesia care unit (PACU) 

and, finally, the intensive care unit (ICU); as well as human resources (surgeons, 

anesthetists, nurses…). The operating theatre is among the most critical and expensive 

resource in the hospital (Guerriero and Guido, 2011), representing around 70% of 

revenues (Jackson, 2002) and 40% of costs (Macario et al., 1995), being the operating 

theatre management problem widely analyzed by the literature. 

Decisions related to operating theatre management are usually decomposed into three 

hierarchical decision levels (Cardoen et al., 2010): strategic, tactical and operational. 

The main settings and assumptions for each decision level are described in several 

recent reviews on the topic (Cardoen et al., 2010; Guerriero and Guido, 2011; May et 

al., 2011). At the tactical level, decision makers determine the volume and the mix of 
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surgeries to keep up acceptable size of waiting lists achieving cost targets (see e.g.  

Adan and Vissers, 2002; Blake and Carter, 2002; Testi et al., 2007). Among other 

factors, the case mix depends on the disease processes effecting the population in the 

catchment area and the capacity of resources of the hospital (Blake and Carter, 2002). 

Once the case mix is set, operating theatre resources are allocated to surgical specialties 

of the hospital, determining how much amount of resource each specialty obtains (i.e. 

the OR time, the number of beds…). Once the strategic level has been decided, the 

operating theatre resources are allocated over a planning horizon of several weeks in the 

tactical level (Blake et al., 2002; Wachtel and Dexter, 2008). As the OR represents a 

bottleneck in most hospitals and, in addition, it is the most budget-consuming facility in 

the hospital (Jebali et al., 2006), most papers only consider the OR allocation problem at 

the tactical level (see e.g. Testi et al., 2007). The purpose is to define the so-called 

master surgical schedule that specifies which surgical specialties (at most two 

specialties due to large set-up times and costs, Beliën and Demeulemeester, 2007) are 

assigned to each OR during a day (in the following OR-day) over the planning horizon. 

The master surgical schedule also defines aggregate resource requirements, such as the 

demand of nurses, drugs, diagnostic procedures, laboratory tests, etc. (Blake et al., 

2002). However, few approaches have considered beds (Beliën and Demeulemeester, 

2007) and nurses (Beliën and Demeulemeester, 2008) in the construction of the master 

surgical schedule in order to reduce staffing costs.  

Finally, at the operational level, the surgical schedule is obtained over a week or two 

week planning horizon (see e.g. Fei et al., 2009; Lamiri et al., 2009; Marques et al., 

2012; Ozkarahan, 2000). At this level, the number, type and opening hours for each 

resource have been already set, as well as the relevant data from the patients in the 

waiting list (such as expected surgery duration, patient priority, deadline to be operated, 

etc.). Several decisions have to be into account by decision makers before the surgical 

schedule is determined. First, the assignment of the surgeon who is the responsible of a 

patient during his/her stay in the hospital, that is made at the first consultation in order 

to guarantee the continuity of care. This assignment is commonly made by the decision 

maker based on the surgeon’s specialty (i.e. types of surgery which could be performed 

by the surgeon), his/her skills and workload. After surgeons are assigned to patients in 

the waiting list, the OR time assigned by the master surgical schedule to the specialty is 

allocated to individual surgeon or surgical groups. The assignment is made according to 
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surgeon preferences and/or the type of surgeries that they have to perform (i.e. they are 

assigned to well-equipped ORs where they can perform the assigned surgeries). One of 

the three management strategies proposed by Patterson (1996) can be used. The first one 

is the so-called block scheduling strategy, where each surgeon has been assigned to a 

number of OR time windows in which he/she will perform his/her surgeries. A surgeon 

cannot carry out one surgery outside his/her time windows. The second one is the so-

called open scheduling in which the decision maker allocates ORs to surgeons 

according to their requests for planning their surgeries. According to Fei et al. (2009), 

the block scheduling policy is a special case of the open scheduling policy being the 

latter more flexible than the former (all solutions of the block scheduling policy are 

feasible for the open scheduling policy). Finally, the block scheduling strategy can be 

modified in order to increase its flexibility, yielding the so-called modified block 

scheduling. The flexibility is reached by two ways: some OR time windows are booked 

and others are left open, or unused windows are released at some time before surgery. 

The operational decision level consists of the offline and the online levels (Hans et al., 

2012). The offline operational level is traditionally solved into two steps (Magerlein and 

Martin, 1978): the first step (called advance scheduling), involves the determination of 

the OR-day (i.e. the date and the OR), while in the second step (called allocation 

scheduling), a sequence of surgeries for each OR within each day in the planning 

horizon is obtained. In the following, according to the definition proposed by Cardoen 

et al. (2010), the offline operational level is called the OR planning (advance 

scheduling) and scheduling (allocation scheduling) problem. Note that the 

decomposition of the operational level into the two aforementioned steps intends to 

reduce the complexity of the resulting problem (Riise and Burke, 2010). Nevertheless, 

the quality of the so-obtained surgery schedule is reduced due to the high 

interdependence among these two steps (Cardoen et al., 2009a), being the integrated 

approach a popular topic of research (see e.g. Marques et al., 2012; Riise and Burke, 

2010; Van Huele and Vanhoucke, 2014; Vijayakumar et al., 2013). The online 

operational level involves control mechanisms that deal with monitoring the process and 

reacting to unforeseen or unanticipated events (Hans et al., 2012), such as the large 

discrepancies between the scheduled duration and the real duration of the surgeries (Min 

and Yih, 2010), and/or the availability of the resources reserved for uncertain arrivals 

(see e.g. Lamiri et al., 2009). 



Operating Theatre Planning & Scheduling in Real-Life Settings Chapter 2 

12 

 

2.3 The operating room planning problem 

The OR planning of surgeries (Cardoen et al., 2010) on the offline operational decision 

level (Hans et al., 2012) is a popular topic of research (see the literature reviews by 

Cardoen et al., 2010; Guerriero and Guido, 2011; May et al., 2011). In Table 2.1 we 

have categorized the literature contributions on OR planning, and have indicated for all 

these contributions what surgical resources are taken into account, the management 

strategy (open and block), as well as the modeling approach (deterministic and 

stochastic), decision types, objective functions, and solution approaches. 

The OR planning problem is a heavily constrained problem, with constraints related to 

the following aspects:  

 Capacity of the resources, since both surgical facilities and surgical personnel are not 

fully available during the planning horizon,  

 Time periods, as each patient must be intervened within a release date and a 

deadline. The release date and the deadline represent the earliest and the latest date 

when a patient can be operated in the planning horizon,  

 Limits on the number of ORs where surgeons can be assigned to perform surgeries 

on a given day, in order to reduce the surgeon idle time and to avoid the overlapping 

of consecutive surgeries performed by the same surgeon, 

 OR eligibility, as for example to book OR-days for planning a certain type of surgery 

or to impose that some surgeries take place only in certain ORs, 

 Patient priority, as patients are planned according to a certain priority indicator (for 

example, arrival date and urgency of the patient proposed by Ogulata and Erol, 

2003), and 

 Uncertainty, in order to consider the large discrepancies between the scheduled 

duration and the real duration in the use of resources (e.g. OR and ICU), and/or the 

availability of the resources reserved for uncertain arrivals.  
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Decision 

variables 

Patient Day  ▪    ▪       ▪   ▪    
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Constraints 
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 Uncertainty Emergency arrivals ▪       ▪    ▪ ▪  ▪  ▪  

 Surgery duration ▪     ▪  ▪   ▪        

 Length of stay in ICU                 ▪  

Objective 

Function 

Utilization OR Under-utiliz.  ▪ ▪  ▪    ▪ ▪ ▪   ▪  ▪  ▪ 

Over-utiliz. ▪  ▪ ▪ ▪  ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ 

ICU Over-utiliz.   ▪                

Costs Patient Surgery    ▪   ▪ ▪    ▪ ▪  ▪    

Leveling Surg. Time     ▪              

Patient Day     ▪              

Type     ▪              

Eligibility Patient OR   ▪                

Cancellation Patient  ▪     ▪             

Priority Patient    ▪              ▪  

Solution 

Approach 

Exact   ▪  ▪ ▪ ▪            

Heuristics based on exact methods    ▪    ▪ ▪ ▪   ▪ ▪  ▪   

Constructive heuristics  ▪         ▪    ▪ ▪  ▪ 

Improvement heuristics        ▪   ▪  ▪  ▪    

Meta-heuristics           ▪    ▪    

Stochastic heuristics ▪           ▪   ▪  ▪  

 Simulation      ▪             

Table 2.1. An overview of the OR planning problem 
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Regarding the objective function, usual goals considered in the literature include: 

 Resource utilization, which includes the minimization of the OR under-utilization, 

the minimization of the OR over-utilization, and the ICU over-utilization,    

 Costs, such as the minimization of the fixed costs of the patients, i.e. minimizing 

costs not related to the number of surgeries that have to be carried out, 

 Leveling, in order to balance the distribution of total surgery time among surgeons,  

to evenly distribute planned surgeries across the days in the planning horizon, or to 

evenly distribute planned surgeries across the days in the planning horizon, 

 Eligibility, in order to consider the preferences of the surgeons to perform their 

surgeries,  

 Cancellations, such as the minimization of the risk of no realization of a surgery in 

its planned date, and 

 Priority, as the minimization of the patient access time, i.e. the period time between 

the surgery is diagnosed and the execution date of the surgery. 

Among exact methods proposed for solving OR planning problems in the literature, 

several Integer Linear Programming (ILP) models have been presented, but they are 

able to provide optimal solutions only for instances sizes substantially smaller than 

those found in practice. Besides, given the context of the decision problem, priority 

goes to finding good (although possibly not optimal) schedules in reasonable time rather 

than optimal schedules procured too late (Roland et al., 2010), due to the high number 

of unforeseen events, like emergencies (Roland et al., 2010) or the absence of the 

patient in the planned day (Weinbroum et al., 2003), that may lead to re-scheduling the 

planned interventions, and as a way for decision makers to quickly perform a what-if 

analysis over several possible scenarios. Therefore, several heuristics have been 

proposed for solving the OR planning problem in the literature, as are: 

 Heuristics based on exact methods, as an extended version of the Hungarian method 

proposed by Guinet and Chaabane (2003), and the column-generation approaches 

(see e.g. Fei et al., 2009; Fei, Meskens and Chu, 2010; Lamiri et al., 2007; Lamiri, 

Xie and Zhang, 2008). 
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 Constructive heuristics, as bin packing methods (see e.g. Dexter, Macario and Traub, 

1999; Hans et al., 2008), and a dynamic programming approach proposed by Liu et 

al. (2011). 

 Improvement heuristics, as local search methods (see e.g. Hans et al., 2008; Lamiri et 

al., 2009), in which the solution improvement consists of swapping different patients 

between OR-days. 

 Meta-heuristics, as a taboo search method (Lamiri et al., 2009), and a simulated 

annealing method (Lamiri et al., 2009). 

 Stochastic heuristics, as a SAA method, which combines Monte Carlo simulation and 

mixed integer programming (see e.g. Lamiri, Xie, Dolgui et al., 2008; Min and Yih, 

2010). Several authors propose approximate methods to try reduce the CPU time 

required by the integer linear programming, as a column generation approach 

(Lamiri, Xie and Zhang, 2008), improvement heuristics and meta-heuristics (Lamiri 

et al., 2009).    

2.4 The integrated operating room planning and scheduling 

problem 

In this section, we focus on the integrated OR planning and scheduling problem. The 

interest of an integrated approach is currently growing due to the interdependence 

among the OR planning and scheduling problems (Augusto et al., 2010; Ghazalbash et 

al., 2012; Hashemi Doulabi et al., 2014; M’Hallah and Al-Roomi, 2014; Marques et al., 

2012, 2014; Meskens et al., 2013; Pham and Klinkert, 2008; Riise and Burke, 2010; 

Roland et al., 2010; Van Huele and Vanhoucke, 2014; Vijayakumar et al., 2013; Zhao 

and Li, 2014).  In Table 2.2 we have categorized the contributions on the integrated OR 

planning and scheduling problem, and have indicated for all these contributions what 

surgical resources are taken into account, the management strategy (open and block), as 

well as the decision types, constraints, and objective functions. 

Most constraints considered in the integrated OR planning and scheduling problem have 

been previously described in the OR planning problem (see Section 2.3). In addition, 

material capacity constraints are considered as are the sterilization of medical trays or 

the availability of mobile equipment required for performing surgeries. Finally, new  
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Management 

strategy 

Open ▪ ▪ ▪ ▪ ▪ ▪  ▪ ▪ ▪ ▪ ▪ 

Block       ▪      

Decision 

variables 
Patient 

OR     ▪  ▪     ▪ 

OR-day ▪  ▪ ▪  ▪  ▪ ▪ ▪ ▪  

Surgeon     ▪   ▪   ▪  

Start-time    ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪  

End-time  ▪      ▪     

Sequence order ▪ ▪          ▪ 

Constraints 

Time period Release date    ▪  ▪ ▪  ▪ ▪ ▪  

Deadline    ▪  ▪ ▪  ▪ ▪ ▪  

Facilities capacity OR ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ 

ICU ▪ ▪     ▪    ▪  

Personnel capacity Surgeon ▪   ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪  

Porters  ▪           

Nurse ▪   ▪   ▪ ▪     

Anesthetist ▪   ▪   ▪      

Material capacity Medical trays       ▪      

Equipment    ▪ ▪   ▪     

OR eligibility Patient ▪   ▪ ▪    ▪  ▪ ▪ 

Personnel preferences        ▪      

Personnel affinities        ▪      

Surgical team 
Single  ▪ ▪ ▪ ▪  ▪ ▪ ▪ ▪ ▪ ▪ ▪ 

Multiple      ▪        

Objective 

function 

Time  Makespan ▪ ▪   ▪        

  Tardiness   ▪          

Throughput No. scheduled surgeries   ▪     ▪  ▪   

Utilization Surgeon Over-utiliz.   ▪          

OR Under-utiliz.     ▪ ▪ ▪  ▪ ▪   

 Over-utiliz.    ▪   ▪    ▪ ▪ 

Costs  OR    ▪        ▪ 

Priority  Patient   ▪          

Affinities Personnel       ▪      

Table 2.2. An overview of the integrated OR planning and scheduling problem 
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personnel constraints have been considered by Meskens et al. (2013), as are  the surgical 

teams’ preferences in the assignment of the OR time windows and their affinities to 

work together or not. 

Regarding the objective function, OR utilization and priority goals have been previously 

described in the OR planning problem (see Section 2.3). Other goals considered in the 

literature for the integrated problem are: 

 Time, such as the minimization of makespan (i.e. minimizing the completion time of 

the last scheduled surgery in the planning horizon) and the minimization of tardiness 

(i.e. minimizing the difference between the schedule date and the deadline of a 

surgery), 

 Throughput, such as the maximization of the number of scheduled surgeries in the 

planning horizon, 

 Resource utilization, which includes the minimization of the surgeon over-utilization, 

 Costs, such as the minimization of the number of opened ORs, and finally 

 Affinities, such as the maximization of collaborations according to staff preferences.  

As shown in Table 2.2, most papers address the integrated OR planning and scheduling 

problem assuming a surgical team composed by a single surgeon, i.e. the responsible 

surgeon. However, studies related to general surgery procedures (Zheng et al., 2012) as 

well as to laparoscopic procedures (Cassera et al., 2009) show that around 90% of 

surgeries are performed by a surgical team composed by more than one surgeon, being 

the two-surgeons team (i.e. a responsible surgeon and an assistant surgeon) the most 

extended case (see e.g. Cassera et al., 2009; Chitwood Jr. et al., 2001; Giulianotti et al., 

2003; Powers et al., 2008; Zheng et al., 2012). However, to the best of our knowledge, 

the integrated problem considering surgical teams composed by more than one surgeon 

has been studied only by Ghazalbash et al. (2012).  

In surgical teams composed of several surgeons, the literature stresses that surgery 

duration depends on the experience of the assistant surgeon (see e.g. Cassera et al., 

2009; Parker et al., 2012; Zheng et al., 2011). On the one hand, Bridges and Diamond 

(1999) study the financial impact of teaching surgical residents in the OR, showing that 
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the presence of a resident usually causes an increase in the surgery duration, although 

there are some situations (e.g. when a resident has a similar experience or skill than the 

teaching surgeon in some type of surgeries) in which he/she may cause a decrease of the 

surgery duration. On the other hand, a faculty surgeon acting as assistant decreases the 

surgery duration (around 30% time reduction in some urology procedures, see Ludwig 

et al., 2005). Hence, the literature attests that the assistant surgeon’s experience clearly 

influences the surgery duration. However, to the best of our knowledge, this variability 

has not been previously addressed. For different decision problems in other research 

topics, resource dependent processing times are receiving growing attention (Akturk 

and Ilhan, 2011). In these problems, processing times are considered as a function both 

of the amount of resources assigned (see e.g. Demeulemeester et al., 2000; Tseng et al., 

2009) and of the experience of the resources assigned to the task (see e.g. Dodin and 

Elimam, 1997; Drexl, 1991; Valls et al., 2009). As a particular case of experience, 

Heimerl and Kolisch (2010) consider a learning curve of the resources assigned. In this 

case, the processing time of a task decreases if the resource assigned has previously 

performed the same task, a phenomenon denoted as learning effect. The reference where 

the assumptions of processing times are most related to our problem is (Kara et al., 

2011), as processing times depend on whether the task is performed with or without an 

assistant employee. However, these processing times do not depend of the specific 

assistant employee assigned to the task. 

2.5 Conclusions 

In this chapter, an overview of the operating theatre management problem is presented 

(see Section 2.2), focusing on the operational decision level. This decision level consists 

of the offline and the online levels. The offline operational level is traditionally solved 

into two steps (Magerlein and Martin, 1978): the first step (called advance scheduling), 

involves the determination of the OR-day (i.e. the date and the OR), while in the second 

step (called allocation scheduling), a sequence of surgeries for each OR within each day 

in the planning horizon is obtained. The online operational level involves control 

mechanisms that deal with monitoring the process and reacting to unforeseen or 

unanticipated events (Hans et al., 2012), such as the large discrepancies between the 

scheduled duration and the real duration of the surgeries (Min and Yih, 2010), and/or 
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the availability of the resources reserved for uncertain arrivals (see e.g. Lamiri et al., 

2009).  

The OR planning problem under deterministic and stochastic considerations, and the 

integrated OR planning and scheduling problem have been analyzed in Section 2.2 and 

2.3 respectively. Summarizing the literature review, we conclude that: 

 To the best of our knowledge, there are not benchmarks to analyze and evaluate the 

performance of solution approaches against the existing methods in the literature to 

solve a given decision problem, being a common practice in other research topics 

(see e.g. Taillard, 1993; Vallada et al., 2015). Therefore, in Chapter 3, we propose 

the procedure to create testbeds used in this Thesis, including necessary data to solve 

any OR planning and scheduling problem. The procedure integrates real-life data and 

parameters in the surgical specialties of the University Hospital “Virgen del Rocio”, 

as well as data and parameters from the literature (both in real-life applications as in 

papers where problems are randomly generated). 

 The deterministic OR planning problem has been extensively analyzed in the 

literature. The objective of the Thesis (see Chapter 4) is to propose a generic decision 

model to solve the deterministic version of the problem in surgical specialties of the 

Hospital, including the aspects identified by meetings with heads of surgical 

specialties and in the literature review. In addition, we propose several approximate 

methods to solve the problem, which have been compared against the adaptions of 

the existing methods in the literature, providing a benchmark. 

 There are several interesting approaches to solve the stochastic OR planning 

problem. However, in our opinion, the following important aspects have been 

ignored: 

  The block scheduling strategy is the only management strategy used in the 

stochastic OR planning problem for managing surgical resources (see Table 

2.1). However, as described in Chapter 1, the block scheduling strategy is a 

special case of the open scheduling policy (Fei et al., 2009), where the latter 

is more flexible than the former (all solutions of the block scheduling strategy 

are feasible for the open scheduling strategy). Therefore, the open scheduling 

strategy should be analyzed for the stochastic OR planning problem. 
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 Responsible surgeons and their availabilities are not included in existing 

stochastic decision models. As described in Section 2.1, it is a common 

practice that the decision maker assigns a set of surgeries to be performed 

during the planning horizon by each surgeon based on surgeon’s skills, 

surgeons’ availabilities, etc. For this reason, responsible surgeons and their 

availabilities should be included in the problem under consideration, as in 

existing decision models for solving the deterministic version of the OR 

planning problem (see Fei, Meskens and Chu, 2010; Jebali et al., 2006). 

 In these approaches, time period constraints are not considered for patients. 

However, in general, every patient in a waiting list must be operated before 

his/her maximum time before treatment (expressed in days). It depends on the 

patient’s urgency-related group which is defined by National Healthcare 

Services based on a set of explicit clinical and social criteria (Valente et al., 

2009).  

Therefore, the objective of the Thesis for the stochastic OR planning problem is to 

propose a decision model that includes the above important aspects. In addition, we 

propose a stochastic mathematical model and a Monte Carlo optimization method 

based on the SAA method, which combines an iterative greedy local search method 

and Monte Carlo simulation. These aspects will be addressed in Chapter 5. 

 The integrated OR planning and scheduling problem has been properly analyzed in 

the literature. However, the aforementioned approaches ignore the following 

important aspects of the problem: 

 Only surgical teams composed by a single surgeon are considered in the 

integrated OR planning and scheduling approach. However, 90% of surgeries 

are performed by a surgical team composed by more than one surgeon, being 

the two-surgeon team the most extended case. Therefore, surgical teams 

composed by two surgeons should be analyzed for the integrated approach. 

 The influence of the assistant surgeon’s experience in the surgery duration is 

not considered in the existing literature. However, studies show how the 

duration of a surgery can increase or decrease depending on the experience 
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(see e.g. Bridges and Diamond, 1999). Hence, it should be included in the 

integrated approach. 

 Most references assume surgery durations as a discrete variable, dividing it 

into time units: 10, 15 or 30 minutes (see e.g. Augusto et al., 2010; 

Ghazalbash et al., 2012; Marques et al., 2012). This approach greatly 

increases the number of binary decision variables. In addition, surgery 

durations do not necessarily have to be multiple of these time units. In order 

to avoid these issues, we propose continuous time units (see e.g. Pham and 

Klinkert, 2008; Zhao and Li, 2014). 

Therefore, the objective of the Thesis for the integrated OR planning and scheduling 

problem is to propose an ILP model to optimally solve the problem with surgical teams 

composed by one or two surgeons where surgery durations depend on their experience 

and skills. Given the high computation requirements of our decision model, we also 

propose an iterative constructive method.  These aspects will be addressed in Chapter 6. 
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Chapter 3           

Testbed Design 

3.1 Introduction 

In the literature review carried out in the previous chapter, it became clear the need of 

standard procedures to generate ample testbeds for the problems under consideration in 

this Thesis. In this chapter, we provide a testbed generator for building test instances to 

generate OR planning and scheduling problems in order to test the efficiency of the 

solution procedures for these problems. The generator integrates real-life data and 

parameters in the surgical specialties of the University Hospital “Virgen del Rocio”, as 

well as data and parameters from the literature (both in real-life applications as in papers 

where problems are randomly generated) for generating the data involved on the 

decision problems. Section 3.2 discusses the data required to solve an OR planning and 

scheduling problem and how they are generated in the literature and in surgical 

specialties of the University Hospital “Virgen del Rocio”. We distinguish between 

patients’ data (Section 3.2.1) and resources data (Section 3.2.2). Section 3.4 describes 

the factors that define the size and the characteristics of an instance, and how they are 

determined. Finally, Section 3.5 provides a summarize of factors and parameters used to 

solve the problems considered in the Thesis.  

3.2 Data generation 

In this section, we carry out a literature review of the parameters required for solving 

the OR planning and scheduling problems proposed in the Thesis (see Table 3.1), and 

how they are generated. In addition, we also consider the parameters and the procedures 

identified in the surgical specialties of the University Hospital “Virgen del Rocio”. We 

distinguish between patient data (Section 3.2.1) and resource data (Section 3.2.2). 
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3.2.1 Patient data 

Table 3.2 gives an overview of patient data required to solve the proposed decision 

problems, and how they are generated in the literature. The following patient data are 

considered in the testbed: 

 Category Acronym Description Unit 

Set and indices h ∈ H Index of time period within the working planning horizon  - 

 i ∈ I Index of patient (surgery) in the waiting list - 

 j ∈ J Index of ORs - 

 k ∈ K Index of surgeons - 

 l ∈ L Index of level experience  - 

Patient til Surgery duration of surgery i performed by an assistant 

surgeon belonging to level of experience l 

minute 

 µ Expected time of surgery duration minute 

 σ Standard deviation of surgery duration minute 

 mpi Medical priority of surgery i - 

 MTBTi Maximum Time Before Treatment of surgery i day 

 dwli Days on waiting list of surgery i day 

 rdi Release date of surgery i day 

 di Deadline of surgery i day 

 wi Clinical priority of surgery i - 

 τi Surgeon in charge of surgery i - 

 γil 1 if surgery i can be performed by an assistant surgeon 

belonging to surgeon type l; 0 otherwise  

- 

 δijh 1 if surgery i can be performed in OR-day (j,h); 0 

otherwise 

- 

Resources rjh Regular capacity of OR j on day h  minute/day 

 ojh Overtime capacity of OR j on day h minute/day 

 akh Regular capacity of surgeon k on day h minute/day 

 mdsk Maximum number of available days to perform surgeries 

in a weekly planning horizon 

day 

Table 3.1. Set and parameters of the operational level 

 ti, surgery duration of surgery i (in minutes). We consider that ti follows a 2-

parameter log-normal distribution (see e.g. Guinet and Chaabane, 2003; Lamiri et 

al., 2007; Min and Yih, 2010). The expected duration (µi) is randomly selected 

taking one of the values in the set {60, 120, 180, 240} as in Marcon et al. (2003) or 

setting to a constant value (e.g. 120 minutes). The standard deviation (σi) is 

determined by using the coefficient of variation (CV) which is defined as the ratio 

of σ to µ. Note that ti includes not only the time needed to perform the surgery, but 

also the set-up time, the clean-up time, and the preparation time for the next 

surgery. 

 til, surgery duration of a surgery i depends on the assistant surgeon level experience 

l (in minutes). With loss of generality, the following levels of experience have been 
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      Reference t 
rd d w τ δ a r o 

Dist. µ σ 

(Dexter, Macario and Traub, 1999) LN 124.2 55.1 - Real - Real Real Real 59±74,76

±96 

- 

(Fei et al., 2007) PIII [30,150] 80 10 - U [1, 20] - - - - - - 

(Fei et al., 2008) U[15,480] 248 134 - U [1, 20] - - - - U[0, 480] U[0, 360] 

(Fei et al., 2009) PIII [40,150] 90 15 - U [1, 20] - U[1, |S|] - 180-720 240-480 0-180 

(Fei, Meskens and Chu, 2010) - Real - - Real - Real  -    

(Guinet and Chaabane, 2003) LN 120 60 LN [2,1] LN [4,1] - NC NC Relax. 480 240 

(Hans et al., 2008) Multinomial  Real Real - - - - - - 450 - 

(Jebali et al., 2006) LN [30,420] 180 60 - - - - - 480-720 480 240 

(Lamiri et al., 2007) LN U[60,180] R[0.1µ…0.5µ] R[-1…|T|] - - - Specialty - 480 - 

(Lamiri, Xie and Zhang, 2008) U[30,180] 120 43 R[-1…|T|] - - - Specialty - 480 180 

(Lamiri, Xie, Dolgui et al., 2008) U[30,180] 120 43 R[-1…|T|] - - - - - 480 - 

(Lamiri et al., 2009) U[30,180] 120 43 R[-1…|T|] - - - - - 480 - 

(Liu et al., 2011) PIII [40,150] 90 15 - U [1, 20] - U[1, |S|] - 180-720 240-480 0-180 

(Marcon et al., 2003) N, LN R[60,70,80,…,180] R[0.1µ…0.5µ] - - - NS - 480 480 - 

(Min and Yih, 2010) LN Real Real - - - - Specialty - 480 - 

(Ogulata and Erol, 2003) - Real - - - f(dwl, mp) - - - 360 - 

(Ozkarahan, 2000) - Real - - - - Real Real NS 480 - 

(Pham and Klinkert, 2008) - Real - - - - Real Real 480 480 - 

(Augusto et al., 2010) U 130, 210 52, 17 - - - - - - NS - 

(Riise and Burke, 2010) - Real Real - - - Real - 420 720 - 

(Roland et al., 2010) - 167 93 Real Real - Real Real Real 720 180 

(Marques et al., 2012) - Real Real Real Real - - - 480 690 - 

(Marques et al., 2014) - Real Real Real Real - - - 480 690 - 

(Meskens et al., 2013) - Real - Real Real - Real - Real 480 - 

(Vijayakumar et al., 2013) U[30,360] 195 95 - - Real Real - Real 480 - 

(Zhao and Li, 2014) LN 60,120,180 10,30,60 - - - - Be[0.5] - 480 240 

(Hashemi Doulabi et al., 2014) U[120,240] 180 34 - - - - - - 480 - 

(Van Huele and Vanhoucke, 2014) LN Real Real - - - Real Real Real 600 - 

 

Table 3.2. Parameters considered in the design of the testbed 
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considered: 0 (for no consider assistant surgeon), 1 (for junior residents), 2 (for 

senior residents), and 3 (for faculty surgeons). For surgery i, the value til  (l = 1, 2, 

3) is assumed to be related to ti (i.e. the length of the surgery when performed only 

by the responsible surgeon). Therefore, for each value of l, a variation interval 

affecting ti is defined as follows: (1) junior residents’ surgeries are commonly  

trained surgeries, whereby the involvement of them always causes an increase of 

the surgery duration; (2) however, for senior residents, there are situations in which 

the resident has a similar level of experience that the faculty surgeon, causing a 

decrease of the surgery duration; (3) finally, the involvement of a faculty surgeon as 

assistant surgeon always produces a decrease of the surgery duration.  According to 

Bridges and Diamond (1999) and Ludwig et al. (2005), the variation intervals for 

determining the values of til from ti for each surgery are: [20%, 50%], [-10%, 20%] 

and [-30%, -10%] for level 1, level 2, and level 3, respectively. We assume that the 

coefficient of variation is randomly selected within these intervals. An example of 

the calculation of til is shown in Table 3.3. 

 γil, binary parameter yielding 1 if surgery of patient i can be operated by an assistant 

surgeon with a level of experience l, 0 otherwise. We assume that γil follows a 

Bernoulli distribution. Note that each surgery must be assigned to at least one level 

of experience.  

 MTBTi, maximum time before treatment of patient i (in days). MTBTi depends on 

the patient`s Urgency-Related Group which are defined by National Healthcare 

Services based on a set of explicit clinical and social criteria (Valente et al., 2009). 

In this work, MTBTi is randomly generated from the set {45, 180, 360} as in the 

University Hospital “Virgen del Rocio”. 

 dwli, number of days on the waiting list of surgery i at the beginning of the planning 

horizon. dwli is drawn from a uniform distribution [-|H|, MTBT–1]. Note that -|H| is 

selected to consider admissions in the waiting list during the planning horizon. 

 rdi, release date for performing the surgery of patient i (in days). rdi represents the 

earliest date in which surgery i can be planned in the planning horizon. Note that if 

dwl ≤ 0, the release date of surgery i (rdi) takes the value –dwl (and dwl = 0), while 

if dwl > 0, rd is equal to 0. 



Testbed Design  Chapter 3 

 

27 
 

Level of 

experience, l 

Variation Intervals 

(Lower bound (%), Upper bound (%))  

Variation coefficient 

(%) 

Surgery duration, til 

(minutes) 

0 - - 120 

1 (20, 50) 35 120·(1+0.35) = 162 

2 (-10, 20) 10 120·(1+0.1) = 132 

3 (-30, -10) -20 120·(1-0.2) = 96 

Table 3.3. An example of the calculation of til 

 rdi, release date for performing the surgery of patient i (in days). rdi represents the 

earliest date in which surgery i can be planned in the planning horizon. Note that if 

dwl ≤ 0, the release date of surgery i (rdi) takes the value –dwl (and dwl = 0), while 

if dwl > 0, rd is equal to 0. 

 di, deadline for performing a surgery i (in days). di represents the latest date in 

which surgery i can be planned in the planning horizon, being determined as the 

difference between MTBTi and dwli.  

  τi, surgeon in charge of performing the surgery of patient i. According to Bridges 

and Diamond (1999), τi must be a faculty surgeon. Therefore, we consider that τi is 

randomly selected from the available faculty surgeons (i.e. surgeons belong to level 

of experience 3). The procedure used to assign the responsible surgeon is the 

following: faculty surgeons are randomly sorted, assigning one surgery to each 

faculty surgeon at random. The procedure finishes when all surgeries in the waiting 

list have been assigned to any faculty surgeon. 

  δijh, binary parameter yielding 1 if surgery i can be performed in OR day (j, h), 0 

otherwise. δijh is used to book OR-days for planning a certain type of surgery or to 

impose that some surgeries take place only in certain ORs. This parameter is taken 

into account by some authors (see e.g. Jebali et al., 2006; Pham and Klinkert, 2008; 

Roland et al., 2010), although the procedure employed in their works is not 

described. In this work, we use the data available from surgical specialties in 

University Hospital “Virgen del Rocio”, in which there is a kind of surgeries (that 

make around 10% of the waiting list) that can be only performed in certain 

specialized ORs (that make 30% of the total ORs in the specialty). Therefore, 90% 

of the surgeries in the waiting list can be assigned to any OR (multifunctional or 

specialized), while 10% have to be performed in specialized ORs. 
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 wi, clinical weight of surgery i. wi is calculated as a linear combination of the 

normalized values of the medical priority of the patient (mpi) and the number of 

days of the patient on the waiting list, i.e. 𝑤𝑖 = 𝑎 ∙ 𝑚𝑝
∗
𝑖
+ (1 − 𝑎) ∙ 𝑑𝑤𝑙∗𝑖. mpi is 

generated from a discrete uniform distribution [1, 5], being 5 the highest priority. In 

order to normalize both measures, 𝑚𝑝∗
𝑖
= 𝑚𝑝𝑖/5 and 𝑑𝑤𝑙∗𝑖 = 𝑑𝑤𝑙𝑖/𝑀𝑇𝐵𝑇𝑖. 

3.2.2 Resource data 

According to the literature review carried out in Chapter 2 and to the surgical specialties 

analyzed in the University Hospital “Virgen del Rocio”, the main resources required to 

solve the OR planning and scheduling problem (since in most hospitals represent a 

bottleneck) are surgeons and ORs. 

Regarding surgeons data, the following surgeon parameters are considered in the 

testbed: 

 mdsk, maximum number of available days of surgeon k to perform surgeries in a 

weekly planning horizon. According to the literature, surgeons usually perform 

surgeries between 3 and 5 days per week (see e.g. Fei et al., 2009). In this work, mdsk 

can be drawn from a uniform distribution [3, 5] or setting to a constant value (e.g. 3 

or 4 days). If the planning horizon is lesser than a week, then surgeons are assumed 

to be fully available. 

 akh, maximum available surgery time of surgeon k to perform surgeries on day h. We 

assume that, for each surgeon, akh can be randomly and uniformly taken from the set 

{240, 360, 480} (see e.g. Fei et al., 2009; Marques et al., 2012; Pham and Klinkert, 

2008) or setting to a constant value (e.g. 480 minutes, see Hans et al., 2008; Lamiri et 

al., 2009).  

It is a common practice at the surgical specialties of the University Hospital “Virgen del 

Rocio” constructs a weekly schedule that specifies who surgeons are available for 

performing surgeries on each day. In addition, for each surgeon, the surgery time 

available for performing surgeries is specified. The reason of constructing a weekly 

schedule is that facilitates the integration with other tasks performed by surgeons in the 

specialty (as are doing consultations or looking after patients operated). The following 

three-step procedure is used to generate this schedule:  
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 In the first step, for each day, the number of surgeons equals to the number of ORs is 

randomly allocated, avoiding that an OR-day is idle.  

 In the second step, a set of days are randomly assigned to each surgeon without 

exceeding mdsk.  

 Finally, in the third step, if the planning horizon is longer than a week, we consider 

the weekly schedule as a cycle schedule for each week in the planning horizon. 

Regarding OR data, the following parameters are considered: 

 rjh, regular capacity of OR-day (j, h) (in minutes). We consider a regular capacity of 

8 hours for any OR-day (see e.g. Lamiri, Xie, Dolgui et al., 2008; Lamiri, Xie and 

Zhang, 2008). 

 ojh, overtime capacity of OR-day (j, h). We consider an overcapacity of 4 hours for 

any OR-day (see e.g. Guinet and Chaabane, 2003). 

3.3 Factors and levels 

The main factors and the levels taken into account to build a testbed for solving the OR 

planning and scheduling problems are (see Table 3.4):  

 |H|: number of days in the planning horizon. Depending on the OR planning and 

scheduling problem, |H| can vary from a few days to a few weeks (May et al., 2011). 

1 and 2-days planning horizons are normally considered for the OR scheduling 

problem (see e.g. Cardoen et al., 2009a, 2009b; Jebali et al., 2006), while 1 and 2-

weeks planning horizons are considered for the OR planning problem (see e.g. Fei, 

Meskens and El-Darzi, 2010; Min and Yih, 2010; Ogulata and Erol, 2003). Finally, a 

working week planning horizon is also considered for the integrated OR planning 

and scheduling problem solved in an integrated way (see e.g. Roland et al., 2010).   

 |J|: number of ORs.  

 β: control factor to generate |I|. Some papers propose to generate surgeries one by 

one until the sum of expected surgery durations for the generated surgeries exceeds a 

proportion β of the total OR time available in the whole planning horizon (see e.g.   
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Reference |H| |J| β α CV 

(Dexter, Macario and Traub, 1999) 1 6, 22 1.00 - - 

(Fei et al., 2007) 5 NS - - 0.13 

(Fei et al., 2008) 5 4 - - 0.54 

(Fei et al., 2009) 5 6 - 1.0,1.3 0.17 

(Fei, Meskens and Chu, 2010) 5 6 - - - 

(Guinet and Chaabane, 2003) 5 1,2,3 - 1 0.5 

(Hans et al., 2008) 1, 5 16 - - - 

(Jebali et al., 2006) 1 3 - 1.1,1.7 0.3 

(Lamiri et al., 2007) 5 3,6 0.75 - 0.1…0.5 

(Lamiri, Xie and Zhang, 2008) 5 3,6,9,12 0.75, 1.00 - 0.4 

(Lamiri, Xie, Dolgui et al., 2008) 5 2 1.00 - 0.4 

(Lamiri et al., 2009) 5 4,8,12 0.85, 1.00 - 0.4 

(Liu et al., 2011) 5 6 - 1,1.3 0.2 

(Marcon et al., 2003) 1 8 - - 0.1…0.5 

(Min and Yih, 2010) 5 10 - - 0.4,0.5,0.8 

(Ogulata and Erol, 2003) 5 2 - - - 

(Ozkarahan, 2000) 10 7 - - - 

(Pham and Klinkert, 2008) 2 2 0.71 - - 

(Augusto et al., 2010) 1,2 2,4,6 - - 0.1,0.4 

(Riise and Burke, 2010) 1 5 3.5, 4.3,…,6.4, 7.2 - - 

(Roland et al., 2010) 1, 5 7 0.70, 0.80 - 0.6 

(Marques et al., 2012) 5 1,5,6 1.1, 1.4,…,2.0, 2.2 - 0.5…0.8 

(Marques et al., 2014) 4,5  6 0.9, 1.1,…,7.2, 7.4 - 0.5…0.8 

(Meskens et al., 2013) 1 4 - - - 

(Vijayakumar et al., 2013) 2,5 2,5 0.5, 0.9 - 0.5 

(Zhao and Li, 2014) 1 3,4,5 0.5, 0.6,…,1.3, 1.5 - 0.1…0.3 

(Hashemi Doulabi et al., 2014) 5 6 0.5, 1.0, 1.5 - 0.2 

(Van Huele and Vanhoucke, 2014) 5 3 3.7 - - 

Table 3.4. Factors and levels for designing a testbed 

Dexter, Macario and Traub, 1999; Lamiri et al., 2009). β values, shown in Table 3.4, 

have been calculated using the expression 𝛽 =
∑ 𝑡𝑖0𝑖∈𝐼

∑ ∑ 𝑟𝑗ℎ𝑗∈𝐽ℎ∈𝐻
 and data provided by 

authors. 

 α: control factor to generate |K|. In this work, we determine the number of surgeons 

available for performing surgeries during a weekly planning horizon. A common 

procedure employed in the literature is used to determine the number of surgeons 

(Beliën and Demeulemeester, 2007). For each level of experience, the total surgeon 

time required to perform all assigned surgeries in the waiting list (Sl) is first 

determined. More specifically, the surgeon time required to perform surgery i when 

surgeon type l is involved can be calculated as the quotient between the surgery 

duration required by level experience l (til) and the number of levels that can perform 

the surgery (in order to avoid surgeon overcapacity). Therefore, Sl is calculated by 

the following expression: 
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𝑆𝑙 = 𝛼∑(
𝛾𝑖𝑙 ∙ 𝑡𝑖𝑙
∑ 𝛾𝑖𝑙𝑙∈𝐿

)

𝑖∈𝐼

 

Then, the number of surgeons is generated one by one until the total availability 

generated exceeds Sl. For each surgeon, mdsk and akh is generated as described in 

Section 3.2.2. α values, shown in Table 3.4, have been calculated using the 

expression of Sl and data provided by authors. 

 CV: the coefficient of variation of surgery duration. CV is defined as the ratio of the 

standard deviation (σ) to the mean (µ). By using CV, we are able to analyze the 

effects of homogeneous (low values) and heterogeneous (high values) waiting lists 

with respect to surgery duration on the OR planning problem. The coefficient of 

variation is randomly generated from an interval [0.1…0.5] (see e.g. Lamiri et al., 

2007) or setting to a constant value (e.g. 0.5). 

3.4 Conclusions 

The contribution of this Chapter is to propose a testbed generator to create instances for 

analyzing OR planning and scheduling problems. The procedure is based on the 

literature and on surgical specialties of the University Hospital “Virgen del Rocio”. We 

distinguish between parameters (i.e. the data involved in the decision models) and 

factors (that define the size and the characteristics of an instance). The testbed generator 

has been coded in the C programming language, and it has been used to generate the 

testbeds employed in the Thesis. Table 3.5 shows the levels of the factors used in every 

Chapter to generate the testbed. The size of the problem (in terms of the waiting list 

size) and the number of instances generated are presented. The testbed is available at 

http://taylor.us.es/componentes/jmmp.  
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Factor/Parameter Deterministic OR 

planning 

(Chapter 4) 

Stochastic OR 

planning 

(Chapter 5) 

Integrated OR 

planning/scheduling 

(Chapter 6) 

Real Surgical 

Specialty OR  

planning 

(Chapter 7) 

|H| 5 5 1,2,5 5,10,20,40,60 

|J| 3,9 4,8 3,6,9 4,8 

β 1.00,1.25 1.00,1.25 0.75,1.00,1.25 1.00,1.25 

α 1.5, 2.0 1.5, 2.0 1.5, 2.0 1.5, 2.0 

CV Ran [0.1…0.5] 0.1,0.5 Ran [0.1…0.5] 0.1 

u 1, |J|  |J| |J| |J| 

|I| 50,61,146,182 80, 102,161,202 10,20,…,222, 294 81,100,…,1925,2400 

|K| 6,8,…,23,30 8,10,15,20 10,20,30,…,62,75 8, 16 

μ Ran [60,120,180,240] 120 Ran [60,120,180,240] 120 

mds 3,4 Ran [3,4,5] Ran [3,4,5] Ran [3,4,5] 

a 480 480 Ran [240,360,480] 480 

Instances 320,960 160 1080 120 

Table 3.5. Factors and levels for the proposed OR planning and scheduling problems
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Chapter 4            

New Heuristics for the Operating Room Planning 

Problem 

4.1 Introduction 

In this chapter, we tackle a OR planning problem in which an intervention date and an 

OR are assigned to a set of surgeries on the waiting list, minimizing access time for 

patients with diverse clinical priority values. The clinical priority depends on the 

surgery priority and the number of days spent on the waiting list. Section 4.2 presents 

the problem formulation. We propose a set of 83 heuristics (81 constructive heuristics, a 

composite heuristic and a meta-heuristic) based on a new encoding of the solution 

(Section 4.3), and we compare these against existing heuristics from the literature for 

solving OR planning problems (Section 4.4). The heuristics are adapted to the problem 

under consideration (i.e. considering all constraints and the new objective function), 

being re-implemented using the information provided by the authors. In total, after a 

calibration procedure, we compare 17 heuristics. The computational experiments show 

that our proposed meta-heuristic is the best for the problem under consideration.  

Finally, conclusions are presented in Section 4.5. 

4.2 Problem formulation 

In the OR planning problem we consider a set H of planning days (h = 1…|H|) where 

there is a set J of parallel ORs (j = 1…|J|) available on each day h in the planning 

horizon. The regular capacity of the j-th OR during day h is denoted by rjh. In the 

following, a pair (j, h) is denoted as OR-day. Recovery facilities are also assumed to be 

always available during the planning horizon. There is a set K of surgeons (k = 1…|K|) 

and, on each day h, each surgeon k has a maximum available time (skh) to perform 

surgeries. The remaining human and material resources are assumed to be available 

whenever needed. In this setting, a set I of elective surgeries (i.e. patients) are in the 

waiting list (i = 1…|I|).  
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Indices and Sets 

h ∈ H Set of time periods within the planning horizon for perioperative resources 

i ∈ I Set of patients (surgeries) on the waiting list 

j ∈ J Set of ORs 

k ∈ K Set of surgeons 

 

Parameters 

rjh Regular capacity of OR j on day h (in minutes) 

akh Regular capacity of surgeon k on day h (in minutes) 

uk Non-negative integer number of ORs in which surgeon k can perform surgeries within 

the same day  

τi Surgeon in charge of patient i  

rdi Release date for performing the surgery on patient i 

di Deadline for performing the surgery on patient i 

δijh Binary parameter yielding 1 if surgery of patient i can be performed in OR j on day h; 

0 otherwise 

ti Expected time of surgery i (in minutes) 

wi Clinical weight of surgery i 

 

Variables 

Xijh  1 if patient i is to be operated in OR j on day h; 0 otherwise 

Zkjh 1 if surgeon k is allocated to OR j on day h; 0 otherwise 

Table 4.1. Sets, data and variables used in the ILP decision model 

Each surgery i should be performed before a given deadline (di) according to the 

disease’s characteristics and the waiting time in the waiting list. The binary parameter 

δij yields 1 if surgery i can be performed in OR j, 0 otherwise. Many realistic situations 

can be modeled with this parameter such as, for example, to book OR-days in order to 

plan a certain type of surgery or to forbid the assignment of a surgery to an OR that 

does not have the equipment required to perform this specific surgery.  

Below, we present the ILP model to solve the OR planning problem of the Plastic 

Surgery and Major Burns Specialty. Table 4.1 summarizes sets, data and variables used 

in the decision model. 

The objective function is  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑
1

ℎ
(∑∑𝑤𝑖𝑋𝑖𝑗ℎ

𝑗∈𝐽𝑖∈𝐼

)

ℎ∈𝐻

                                                                                                                (4.1) 
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And the constraints are:  

∑∑𝑋𝑖𝑗ℎ ≤ 1     (∀𝑖 ∈ 𝐼)                                                                                                                                   (4.2) 

ℎ∈𝐻𝑗∈𝐽

 

∑ ∑ 𝑋𝑖𝑗ℎ = 0     (∀𝑖 ∈ 𝐼)                                                                                                                               (4.3𝑎)

𝑟𝑑𝑖−1

ℎ=1𝑗∈𝐽

 

∑∑ 𝑋𝑖𝑗ℎ = 1     (∀𝑖 ∈ 𝐼|𝑑𝑖 ≤ |𝐻|)                                                                                                               (4.3𝑏)
ℎ∈𝐻
ℎ≤𝑑𝑖

𝑗∈𝐽

 

∑𝑡𝑖𝑋𝑖𝑗ℎ ≤ 𝑟𝑗ℎ      (∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻)                                                                                                                      (4.4)

𝑖∈𝐼

 

∑∑ 𝑡𝑖𝑋𝑖𝑗ℎ ≤ 𝑎𝑘ℎ      (∀𝑘 ∈ 𝐾, ∀ℎ ∈ 𝐻)                                                                                                          (4.5)

𝑖∈𝐼
𝜏𝑖=𝑘

𝑗∈𝐽

 

∑𝑍𝑘𝑗ℎ ≤ 𝑢𝑘     (∀𝑘 ∈ 𝐾, ∀ℎ ∈ 𝐻)                                                                                                                      (4.6)

𝑗∈𝐽

 

∑ 𝑡𝑖𝑋𝑖𝑗ℎ ≤ 𝑟𝑗ℎ𝑍𝑘𝑗ℎ      (∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻)                                                                                          (4.7𝑎)

𝑖∈𝐼
𝜏𝑖=𝑘

 

∑ 𝑡𝑖𝑋𝑖𝑗ℎ ≥ 𝑍𝑘𝑗ℎ      (∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐽, ∀ℎ ∈ ℎ)                                                                                                (4.7𝑏)

𝑖∈𝐼
𝜏𝑖=𝑘

 

𝑋𝑖𝑗ℎ = 0     (∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻|𝛿𝑖𝑗 = 0)                                                                                                    (4.8) 

𝑋𝑖𝑗ℎ ∈ {0,1}     (∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻)                                                                                                               (4.9) 

𝑍𝑘𝑗ℎ ∈ {0,1}     (∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻)                                                                                                         (4.10) 

The objective function (4.1) maximizes the service level of a surgical specialty 

prioritizing patients with higher values of w. The service level of a planned surgery is 

defined as the quotient between the clinical weight and the planned date. Note that, if a 

surgery is not planned within the planning horizon (therefore its planned date is equal to 

0), then the value of the service level is unbounded. In order to avoid such unbounded 

solutions, we introduce the parameter h in the objective function to capture the planned 

date. h represents the planned date for a scheduled surgery (at least one Xijh = 1), 

excluding unscheduled surgeries (all Xijh = 0). Constraints (4.2) enforce that each 

surgery is scheduled at most once during the planning horizon. The set of constraints 

(4.3a) and (4.3b) define the earliest and the latest date where a patient can be scheduled. 
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Constraints (4.3a) prohibit that the patient is scheduled before the release date, while 

constraints (4.3b) ensure that the surgery of a patient with a deadline within the 

planning horizon must take place before his/her latest date. Constraints (4.4) prohibit 

that the total amount of OR time assigned to surgeons in an OR-day is higher than its 

regular capacity. Constraints (4.5) prohibit that the total amount of time allocated to a 

surgeon is higher than his/her capacity in any day. Constraints (4.6) limit the number of 

OR-days that can be assigned to a surgeon in a day. The set of constraints (4.7a) and 

(4.7b) define whether a surgeon is allocated to an OR-day. Constraints (4.8) ensure that 

each surgery is carried out in a suitable OR-day. Finally, constraints (4.9)-(4.10) are 

binary constraints for decision variables. 

4.3 Heuristics 

In view of the NP-hard nature of the procedures employed for solving the ILP model, it 

is foreseeable that optimal solutions can only be obtained for relatively small problems 

(see the computational experience carried out in Section 4.4.2). Therefore, a novel 

encoding is proposed for solving the advance OR scheduling problem. A surgical 

schedule is encoded into a permutation vector π and a bin packing (BP) operator, where 

π represents a certain order of the surgeries in the waiting list, and it is determined 

considering the prioritization of surgeries with dude dates within the planning horizon. 

The BP operator is the algorithm used to allocate surgeries to OR-days, integrating the 

constraints (4.2)-(4.8) of the decision model. The following BP operators can be 

considered (see e.g. Dexter, Macario, Traub et al., 1999; Dexter, Macario and Traub, 

1999):  

 Next Fit (NF): the surgery is planned in the last OR-day occupied, if possible. 

Otherwise, the surgery is planned into the next available OR-day.  

 First Fit (FF): the surgery is planned in the first OR-day where it fits.  

 Best Fit (BF): the surgery is planned in the OR-day that has the least amount of 

available time and it fits.  

 Level Fit (LF): the surgery is planned on the OR-day that has the most amount 

available time and it fits. 
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The following sections present a set of constructive heuristics, a composite heuristic and 

a meta-heuristic for solving the proposed OR planning problem. 

4.3.1 Constructive heuristics 

In the constructive heuristics, a permutation sequence π composed of an order of the 

patients in the waiting list is constructed in two stages which simultaneously take into 

account the fulfillment of time period constraints (i.e. constrains 4.1 and 4.2) and the 

objective function. 

 In stage I, a partial sequence is determined by only sorting patients whose 

deadline falls within the planning horizon in increasing order of deadlines, in 

order to fulfill time period constraints.  

 In stage II, the remaining patients in the waiting list are added at the end of this 

partial vector according to (SI, SC). SI is the sorting indicator, which is the 

parameter used to sort patients (surgery duration, clinical priority…), while SC is 

the sorting criterion which indicates how surgeries are sorted according to SI 

(descending, ascending…). 

The following two types of constructive heuristics are considered: (1) Single-Tuple (ST) 

method in which one permutation sequence is considered applying a sorting tuple (SI, 

SC), and (2) Multiple-Tuple (MT) method in which a set of sorting tuples (n
SI 

indicators 

and n
SC

 criteria) are simultaneously considered, resulting n
SI 

∙ n
SC 

permutation 

sequences. 

Regarding the sorting indicator (SI), the options usually considered are: 

 t: surgery duration (see e.g. Dexter, Macario and Traub, 1999; Hans et al., 

2008). 

 d: deadline (see e.g. Fei et al., 2009). 

 w: clinical weight (Ogulata and Erol, 2003; Ozkarahan, 2000). 

 ran: random sorting. This is equivalent to not sorting the surgeries with 

deadlines outside the planning horizon.  
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Figure 4.1. An example of a constructive heuristic 

The sorting criteria (SC) that can be considered (see e.g. Framinan et al., 2003; Marcon 

and Dexter, 2006) are the following:  

 INC: sorts the surgeries according to increasing values of indicator SI. 

 DEC: sorts the surgeries according to decreasing values of indicator SI. 

 HILL: sorts the surgeries as a “hill”: i.e. high values of indicator SI in the middle 

of the waiting list and low figures in the beginning and in the end. 

 VALLEY: sorts the surgeries as a “valley”, i.e. low values of indicator SI in the 

middle of the waiting list and high figures in the beginning and in the end. 

 LOHI: sorts the surgeries by choosing one surgery with a low value of indicator 

SI and one with a high value alternately.  

 HILO: sorts the surgeries by choosing one surgery with a high value of indicator 

SI and one with a low value alternately. 

OF Value = 349.4 OF Value = 363.6 OF Value = 369.4 OF Value = 351.8 

Initial Waiting list 

 Applying (SI, SC) = (w, DEC) 

π 
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Figure 4.1 shows an example of a ST method that applies the sorting tuple (w, DEC). 

Note that each box represents a surgery, specifying the surgery duration and the clinical 

weight (ti, wi). 

4.3.2 Composite heuristics 

In the composite heuristic (Cm), π is constructed based on the well-known heuristic 

proposed by Nawaz et al. (1983) and on the idea of re-inserting scheduled jobs (Rad et 

al., 2009) for the permutation flowshop scheduling problem. Starting from the best 

surgical schedule obtained using a constructive heuristic (see previous section), an 

initial permutation sequence (πini) is determined by sorting patients in ascending order 

of planned date, being the unplanned patients added at the end of the vector. π is 

constructed according to the following two steps (see Figure 4.2):  

 Constructive step. For a surgery in position l in πini, this step consists of 

obtaining the best position p to insert the surgery in the partial sequence 

composed by the previous l-1 surgeries, keeping the relative order of the last 

ones. Among these partial sequences, sequence πl yielding the best value of the 

objective function is selected. 

 Bounded local search step. Considering one by one the surgeries placed in the m 

positions around position p in πl (i.e. the positions from max(1, p - m) to min (l, 

p + m)), this step consists of inserting the surgery in all possible positions 

keeping the relative order of the l-1 surgeries, selecting the position yielding the 

best value of the objective function. 

4.3.3 Random extraction-insertion meta-heuristic 

The Random Extraction-Insertion algorithm (REI) is an iterated greedy local search 

based on the algorithm proposed by Ruiz and Stützle (2007) for the permutation 

flowshop scheduling problem. πini is constructed following the procedure used in Cm. 

The general procedure for determining π from an incumbent permutation vector (πinc) is 

composed by the following two steps (see Figure 4.3): 

 Destruction step. It consists of randomly removing n surgeries (πdes) from πinc, 

obtained a permutation vector π|I| - n composed by |I| - n surgeries.  
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Figure 4.2. An example of the composite heuristic C2 starting form the best solution obtained by the 

constructive heuristic, ST(w, DEC, BF) 

πini 

Iteration l = 6 

π 

π5 

OF Value = 363.8 

OF Value = 363.8 

OF Value = 330.4 

OF Value = 330.4 

OF Value = 336.7 

OF Value = 336.7 

Constructive Step 

Bounded local search step (m = 2) 

π6 

m = 1, P5 

No improvement found 

m = 2, P1 

No improvement found 

… 

OF Value = 413.8 

… 
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Figure 4.3. An example of the REI meta-heuristic starting form the best solution obtained by the 

constructive heuristic ST(w, DEC, BF) 

 

 

πini 

Destruction Step (n = 2) 

πdes 

π|I|-n 

Construction Step 

P8, best position 6 

P2, best position 1 

P3, best position 5 

π 

OF Value = 413.8 
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 Construction step. For a surgery in position k in πdes, it consists of determining 

the best position to insert the surgery in π|I| + k -1, keeping the relative order of the 

|I| + k -1 surgeries. The permutation vector π|I| + k -1 that yields the best value of 

the objective function is selected. 

The resulting sequence π is considered as the new πinc, and therefore the best 

permutation vector, if the objective function value improves the best value obtained so 

far. A simulated annealing-like acceptance criterion with a constant temperature is 

implemented to avoid the stagnation in the search procedure. The constant temperature 

is set so that moves that deteriorate the solution more than a percentage θ of the 

maximal deterioration are accepted with a probability smaller than φ (Lamiri et al., 

2009). The termination criterion of REI is determined based on the size of the problem 

(the length of the planning horizon, the number of ORs and the number of surgeries on 

the waiting list). 

4.4 Computational evaluation 

An extensive computational experiments of the ILP decision model, the proposed 

heuristics and the adapted ones for solving the proposed advance OR scheduling 

problem is presented. Section 3.3.1 presents a Design of Experiments (DOE) approach 

carried for the calibration of ST, MT, Cm and REI algorithms. Then, in Section 3.3.2, 

the effectiveness (in terms of the proportion of feasible solutions and the quality of the 

solution) of the proposed heuristics and of the adaptation of the existing heuristics is 

evaluated. 

4.4.1 Calibration procedure 

We have generated a 320-instances calibration testbed using the procedure given in 

Chapter 3. We have considered 32 different combinations of factors (see Table 4.2) and, 

for each combination, we have generated 10 instances. 
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Factor Level 

|H| 5 

|J| 3, 9 

β 1.00,1.25 

α 1.5, 2.0 

CV Ran [0.1…0.5] 

μ Ran [60,120,180,240] 

mds 3, 4 

a 480 

u 1, |J| 

Table 4.2. Factors and levels considered in the OR planning problem 

In order to select the best among each type of algorithm, we have considered two 

response variables: feasibility of the constructed solution, and Relative Percentage 

Deviation (RPD), according to the expression   𝑅𝑃𝐷 = (𝐵𝑒𝑠𝑡𝑠𝑜𝑙 − 𝐻𝑒𝑢𝑠𝑜𝑙)/𝐵𝑒𝑠𝑡𝑠𝑜𝑙 ∙

100, where Heusol is the solution given by any of the tested constructive heuristics and 

Bestsol is the best solution found so far (either the optimum, or the best (highest) lower 

bound for a given generated instance). In our case, Bestsol has been obtained for each 

instance by solving the related ILP model using the commercial software Gurobi 

version 4.5.1 with a CPU time limit of 900 seconds. The experiment was analyzed by 

means of a multi-factor Analysis of Variance (ANOVA) technique with a 95% 

confidence level. 

The procedure employed for the calibration of the different algorithms is the following: 

I. We select the level(s) of the most significant factor yielding statistically significant 

differences with respect to feasibility, i.e. we select the sorting tuple(s) or BP 

algorithm(s) that obtain a higher number of feasible solutions over the instances in 

the testbed.  

II. Among the instances for which the selected factors in Stage I yield feasible solutions, 

we select the remaining level/s by taking those that obtain the best (statistically 

significant) RPD. 

Regarding constructive heuristics, ST algorithms are characterized by a permutation 

vector ordered by a tuple (SI, SC) and a BP operator. In the following, we denote an ST 

algorithm as ST(SI, SC, BP). Note that 19 sorting tuples are considered for each BP 

algorithm: (i) indicators t, d and w are combined for each sorting criterion (18 sorting 

tuples) and (ii) the random sorting. Therefore a total of 76 different ST algorithms are 
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tested. As a result from the experimental analysis, we can conclude that the ST(w, DEC, FF) 

is the best. Regarding MT algorithms, the factor is the BP algorithm employed in the 

construction procedure, so the levels are: MTNF, MTFF, MTBF and MTWF. Note that we 

have considered the 19 different combinations of SI and SC for each MT algorithm. 

Finally, we will also consider the MTALL algorithm in which all BP algorithms and all 

sorting tuples are applied to the instance, selecting the combination of BP and (SI, SC) 

yielding the best results for the instance. The analysis shows that MTALL is statistically 

the best algorithm.  

Regarding local search method and meta-heuristic, we select MTALL and FF as the 

constructive heuristic (employed to determine the initial waiting list) and the BP 

algorithm (employed to evaluate waiting lists) respectively based on the results obtained 

for constructive heuristics. As described above, the Cm algorithm is characterized by the 

number of re-inserted surgeries (m). m is used with levels 0, 6, 12 and 18; yielding C6 

the best results in terms of RPD and CPU time. Finally, as described above, REI is 

characterized by the number of extracted surgeries (n), the percentage of the maximal 

deterioration (θ) and the probability of accepts a solution which deteriorates a solution 

(φ). REI is tested with the following levels: n is set to 1, 3 and 5; θ is set to 10% and 

20%} and; φ is set to 1%, 5%, and 10%. The best setting was n = 3, θ = 10% and φ = 

1%. 

4.4.2 Computational experience 

In this section we generate a testbed according to the procedure described in Chapter 3, 

considering the 32 different combinations of factors shown in Table 4.2. For each 

combination, we have generated 30 instances, resulting in a total of 960 instances. The 

size of the waiting list depends on the tuple (|J|, β), being 50, 61, 146 and 182 the 

average number of surgeries for (3, 1.00), (3, 1.25), (9, 1.00) and (9, 1.25) respectively. 

The experiments were carried out on a PC with 2.80 GHz Intel Core i7-930 processor 

and 16 GBytes of RAM memory. The 960 instances are solved by the best proposed 

heuristics obtained in the calibration (ST(w, DEC, FF), MTALL, C6 and REI) and the 

following adapted approximate heuristics existing in the literature: 
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 Constructive heuristics 

 An adaptation of the primal-dual method which is an extension of the Hungarian 

method proposed by Guinet and Chaabane (2003), referred to as HM. The order 

of surgeries on the waiting list has an important influence in the performance of 

HM. Therefore, we select the best sorting tuple (SI, SC) using the sorting 

procedure employed in the proposed constructive heuristics, being a HM 

algorithm denoted by HM(SI, SC). The analysis shows that HM(w, DEC) is the best HM 

algorithm.   

 An adaptation of the method based on dynamic programming proposed by Liu et 

al. (2011), referred to as DPH. Note that the column generation heuristics 

proposed by Fei et al. are not included in the comparison, since they are 

outperformed by DPH proposed by Liu et al. (2011).    

 The off-line method of Dexter, Macario and Traub (1999), referred to as OFF. As 

ST algorithms, an OFF method is characterized by a sorting tuple (SI, SC) and a 

BP algorithm, being denoted as OFF(SI, SC, BP). We consider the 19 sorting tuples 

and BP algorithms proposed in this paper, being OFF(d, INC, FF) the best method. 

  Improvement heuristics 

 An adaptation of the pair-wise swapping method of Lamiri et al. (2009), referred 

to as PS. Starting from the surgical schedule obtained by the best constructive 

heuristic (i.e. MTALL), the solution improvement consists of swapping two 

different patients between OR-days. For each iteration patients are considered one 

by one, determining and performing the exchange which yields the largest 

improvement and satisfies the constraints. The process stops when the solution 

cannot improve any more. We include the pair-wise swapping global method, 

referred to as PSG, based on the local optimization method proposed by Lamiri et 

al. (2009). For each iteration the largest improvement is selected among all 

patients’ largest improvements, stopping when the solution cannot improve 

anymore.  

 A triplet-wise swapping method, referred to as TS. The main difference between 

PS and TS is that the solution improvement consists of swapping a pair of patients 
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scheduled in the same OR-day with a patient scheduled in a different OR-day. As 

occurred with PS, we include the triplet-wise swapping global method (TSG).  

 A hybrid swapping method, referred to as HS. For each iteration PS and TS 

methods are considered for determining the largest improvement for each patient 

or pair of patients respectively. A hybrid swapping global method (HSG) is also 

considered in the comparison. 

 Meta-heuristics 

 An adaption of the taboo search proposed by Lamiri et al. (2009), referred to as 

TABOO. The procedure used to select moves is an iteration of the best 

improvement heuristic. A calibration procedure is carried out to determine the 

best swapping heuristic, being HS and HSG algorithms the best ones. We select 

the HS method due to its lower CPU time required. The taboo list size is set to |H| 

and the stopping criterion is based on a computation time limit that depends on the 

size of the problem (the length of the planning horizon, the number of ORs and 

the number of surgeries on the waiting list). 

 An adaptation of the Multi-start method proposed by Lamiri et al. (2009), referred 

to as MS. This method tries to avoid the problem of getting stuck in a local 

optimum (Lamiri et al., 2009). Let S be the initial solution at a given iteration, and 

R the solution provided by HS (the best improvement heuristic) starting from S. 

At the next iteration, a new initial solution S’ is determined from R by randomly 

modifying the planned time blocks of some patients. Each patient is selected with 

probability 1% according to Lamiri et al. (2009). If a patient is selected, a 

randomly feasible exchange with another patient is carried out (swapping OR-

days). In order to compare among the other heuristics, the stopping criterion is 

modified by defining a computation time limit depending on the size of the 

instance. 

 An adaptation of the simulated annealing method of Lamiri et al. (2009), referred 

to as SA. The procedure to build a new solution at any iteration is applied a 

random exchange to the solution obtained at the previous iteration. The patient 

(pair-wise) or the pair of patients (triplet-wise) is randomly chosen, selecting the 

exchange which yields the largest improvement in any case. The cooling factor is 
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set to 0.95 and the temperature is reduced after |I| iterations. These values result 

after a calibration procedure using the values proposed by Lamiri et al. (2009). As 

in MS, the stopping criterion is based on a computation time limit depending on 

the size of the instance. 

 A simulated annealing method in which the temperature is considered as a 

constant parameter, referred to as SAC. The temperature is determined as in REI. 

θ and φ are set to {10%, 20%} and {1%, 5%, 10%} respectively, yielding 10% 

and 1% the best results. As in SA, the stopping criterion is based on a 

computation time limit. 

The results of the experiments for the advance scheduling (us = |J|) and for the 

integrated approach (us = 1) are shown in Figure 4.4. The mean RPD and computation 

time values are obtained by averaging these results only for feasible solutions obtained 

by the heuristics. The computation time limit for meta-heuristics is fixed to |I| ∙ |J| ∙ |H| ∙ 

η seconds for meta-heuristics. η is a time factor, which is set to 0.0125 and 0.025. The 

value leading to the best results for every meta-heuristic is η = 0.025, not being the 

difference big enough to consider a double computation time. Therefore, we only 

include the results for η = 0.0125. Note that the solutions obtained by the heuristics are 

compared to the solution obtained for each instance by solving the related ILP model 

using the commercial software Gurobi version 4.5.1. 

For each level of factor |J| (the most influential on the performance of the methods), 

Table 4.3 shows the minimum, the maximum and the average GAP (i.e. (𝐵𝑒𝑠𝑡𝑏𝑜𝑢𝑛𝑑 −

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛)/𝐵𝑒𝑠𝑡𝑏𝑜𝑢𝑛𝑑 ∙ 100) for the advance scheduling problem and the integrated 

approach. In addition, the percentage of optimal solutions and the average CPU time 

values are presented. The analysis shows that DPH and MTALL are statistically the best 

constructive heuristics for the advance scheduling problem and the integrated approach 

respectively. However, we can conclude that the MTALL heuristic as the best 

constructive heuristic, because of the reduction on the feasible solutions obtained by 

DPH (only 79% of feasible solutions) and the larger computation time required. 

Regarding improvement heuristics, C6 is statistically the best algorithm for both 

planning problems (3.9% and 8.7% respectively), with not much more computation 

time required (16.15 and 22.89 seconds respectively). It is important to point out that C6 

outperforms the adaptations of the existing meta-heuristics for the integrated approach. 



Operating Theatre Planning & Scheduling in Real-Life Settings Chapter 4 

50 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Feasibility, CPU time and RPD results for algorithms 
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Problem |J| Min. 

GAP (%) 

Max. 

GAP (%) 

Average  

GAP (%) 

Optimal 

solutions (%) 

CPU time 

(seconds) 

Advance 

Scheduling 

3 0.00 1.18 0.17 57.0 473 

9 0.23 0.72 0.72 0.0 900 

Average 0.45 28.5 686.2 

Integrated 

approach 

3 0.00 1.52 0.17 65.7 437 

9 1.22 4.87 3.10 0.0 900 

Average 1.64 32.9 668.5 

Table 4.3. ILP approach performance for solving the off-line decision level 

 

Problem |J| Heuristic Min. 

RPD (%) 

Max. 

RPD (%) 

Average  

RPD (%) 

Solutions 

RPD <1% 

 (%) 

CPU time 

(seconds) 

Advance 

Scheduling 

3 MTALL 2.59 17.54 9.75 0 0.02 

 C6 0.20 12.00 3.60 1.7 0.51 

 REI 0.00 4.65 0.82 70 10.31 

9 MTALL 5.34 16.67 10.35 0 0.30 

C6 1.19 9.97 4.22 0 31.8 

REI 0.47 6.63 2.55 2.9 92.12 

Integrated 

approach 

3 MTALL 9.40 27.54 17.80 0 0.02 

C6 1.13 16.34 7.15 0 0.58 

REI 0.00 7.28 2.64 14.6 10.27 

9 MTALL 17.86 30.04 24.14 0 0.35 

C6 5.28 23.76 10.35 0 45.21 

REI 4.93 24.96 13.00 0 92.21 

Table 4.4. Heuristic performance for solving the off-line decision level 

Regarding meta-heuristics, the results show that there are statistically significant 

differences between the REI algorithm and the remaining meta-heuristics for the 

advance scheduling problem and the integrated approach, yielding 1.7% and 7.8% of 

RPD values respectively. Finally, as described above, the number of ORs is the most 

influential factor on the performance of heuristics for off-line decision problems, 

especially for the integrated approach.  

Table 4.4 shows the minimum, the maximum, and the average RPD for the best 

heuristics in the manuscript (constructive, improvement and meta-heuristic), along with 

the percentage of solutions with RPD values less than 1% and the average CPU times. 

Finally, Figure 4.5 shows the average RPD values of the proposed heuristics to solve 

the off-line decision problems for each level of |J|. 
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Figure 4.5. Influence of the number of ORs on the off-line decision problems 

4.5 Conclusions 

In this chapter, we have analyzed the advance OR scheduling problem on the off-line 

operational decision level. The problem consists of assigning an intervention date and 

OR to surgeries on the waiting list over a given planning horizon, taking into account 

the following constraints: resources availability (OR and surgeon), time period (a 

surgery must be performed between a release date and a deadline), eligibility (surgeries 

must be performed on a suitable OR) and resources assignment (surgeons has limited 

the number of ORs in where the can operated during a day). The objective function is 

related to minimizing access time for patients with higher clinical weight values 

(defining based on the priority of the patient --surgery’s urgency-- and the number of 

days spent on the waiting list at the time of the planning). 

A set of approximate methods have been proposed for solving the problem under 

consideration. To show the efficiency of our proposed heuristics, we have adapted 
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existing heuristics to the problem and compare them using a testbed we have developed 

based on the literature. In total, we have compared 17 efficient heuristics (i.e. the best 

parameters of any method have been selected by a calibration procedure). The 

computational experiments show that the proposed heuristics statistically outperform 

existing ones in the literature for every type of heuristic proposed (constructive, 

improvement and meta-heuristic). 
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Chapter 5            

The Stochastic Operating Room Planning 

Problem 

5.1 Introduction 

In this chapter, we address a stochastic OR planning problem which consists of 

assigning an intervention date and OR to a set of surgeries on the waiting list, 

minimizing the unexploited OR time and overtime costs. Uncertainty in surgeries 

duration and in the arrivals of emergency surgeries and in surgeons’ capacity is 

considered. To solve the problem we present a stochastic mathematical model (Section 

5.2) and a Monte Carlo optimization method based on the SAA method (Section 5.3), 

which combines an iterative greedy local search (IGLS) method (Section 5.4) and 

Monte Carlo simulation. The performance of the IGLS method is evaluated against an 

exact method and two existing heuristics for solving the deterministic version of the 

problem, using a testbed generated based on the literature (Section 5.5). Finally, a 

computational experiment is presented to evaluate the performance of the Monte Carlo 

optimization method in a stochastic setting (Section 5.6). The results highlight that the 

objective function value obtained by our proposal converges to the optimal value of the 

problem and presents a high robustness in terms of the proportion of feasible 

simulations when the number of samples increases. Finally, Section 5.7 presents the 

conclusions.  

5.2 Problem formulation 

In this section, we formalize the stochastic advance OR scheduling problem with 

uncertainty in surgical activities, which has been analyzed in the literature review 

presented in Chapter 2 (see Section 2.3). Our problem is to determine the OR and the 

intervention date for surgeries on the waiting list, considering the open scheduling 

strategy, resources availabilities (OR and surgeons), and deadline constraints. The 

objective function is to minimize the total cost of the unexploited OR time and  
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Indices and Sets 

h ∈ H Set of days within the planning horizon 

i ∈ I Set of patients (surgeries) on the waiting list 

j ∈ J Set of ORs 

k ∈ K Set of surgeons 

ζ ∈ Z Set of scenarios 

 

Parameters 

𝒓𝒋𝒉
𝜻

 Regular capacity (in minutes) of OR j on day h under scenario ζ   

𝒐𝒋𝒉 Overtime capacity (in minutes) of OR j on day h 

𝒂𝒌𝒉
𝜻

 Regular capacity (in minutes) of surgeon k on day h under scenario ζ   

τi Surgeon in charge of patient i   

rdi Release date for performing the surgery on patient i 

di Deadline for performing the surgery on patient i 

𝒕𝒊
𝜻
 Length of surgery i (in minutes) under scenario ζ   

φ Ratio of the cost of an hour of overtime to the cost of a regular working hour 

 

Variables 

Xijh  1 if patient i is to be scheduled in OR j on day h; 0 otherwise 

Table 5.1. Indices, sets, parameters and variables used in the decision model 

overtime. The uncertainty in surgical activities is denoted by scenario ζ ∈ Z as in Min 

and Yih (2010). A scenario ζ is defined by three random variables: surgery durations, 

emergency surgeries’ arrivals (by means of OR capacity that must be booked in advance 

for emergencies) and the surgeon time for performing emergency surgeries during a day 

(by reducing their regular capacity).   

In the stochastic advance OR scheduling problem (see Section 2.3) we consider a set H 

of planning days (h = 1…|H|) where there is a set J of parallel ORs (j = 1…|J|) available 

on each day h in the planning horizon. The regular capacity for performing elective 

surgeries of the j-th OR during day h under scenario ζ (ζ =1…|Z|) is denoted by 𝑟𝑗ℎ
𝜁

. In 

the following, a tuple (j, h) is denoted as OR-day. On each OR-day (j, h), the OR 

overtime is limited to 𝑜𝑗ℎ. There is a set K of surgeons (k = 1…|K|) and, on each day h 

and each scenario ζ, each surgeon k has a maximum available time (𝑎𝑘ℎ
𝜁

) for performing 

elective surgeries. The remaining human and instrumental resources are assumed to be 

available whenever needed. Recovery facilities are also assumed to be always available 

during the planning horizon. A set I of elective surgeries (i.e. patients) are on the 

waiting list (i = 1…|I|). For each surgery i and each scenario ζ, the surgery duration is 

represented by 𝑡𝑖
𝜁
. Each surgery i has a surgeon in charge (τi) and must be scheduled 

within the time period defined by its release date (rdi) and deadline (di). 
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We present below the stochastic integer programming model to solve the problem under 

consideration. Table 5.1 summarizes sets, data and variables used in the decision model. 

(𝑃)   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑∑∑𝑚𝑎𝑥 {(𝑟𝑗ℎ
𝜁
−∑𝑡𝑖

𝜁
∙ 𝑋𝑖𝑗ℎ

𝑖∈𝐼

) , 𝜑 (∑𝑡𝑖
𝜁
∙ 𝑋𝑖𝑗ℎ

𝑖∈𝐼

− 𝑟𝑗ℎ
𝜁
)}

𝑗∈𝐽ℎ∈𝐻𝜁∈𝑍

                                     (5.1) 

Subject to: 

∑∑𝑋𝑖𝑗ℎ ≤ 1     (∀𝑖 ∈ 𝐼)                                                                                                                                   (5.2) 

ℎ∈𝐻𝑗∈𝐽

 

∑ ∑ 𝑋𝑖𝑗ℎ = 0     (∀𝑖 ∈ 𝐼)                                                                                                                          (5.3𝑎)
ℎ∈𝐻

ℎ≤𝑟𝑑𝑖−1
𝑗∈𝐽

 

∑∑ 𝑋𝑖𝑗ℎ = 1     (∀𝑖 ∈ 𝐼|𝑑𝑖 ≤ |𝐻|)                                                                                                              (5.3𝑏)
ℎ∈𝐻
ℎ≤𝑑𝑖

𝑗∈𝐽

 

∑𝑡𝑖
𝜁
∙ 𝑋𝑖𝑗ℎ ≤ 𝑟𝑗ℎ

𝜁
+ 𝑜𝑗ℎ      (∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻, ∀𝜁 ∈ 𝑍)                                                                                        (5.4)

𝑖∈𝐼

 

∑∑ 𝑡𝑖
𝜁
∙ 𝑋𝑖𝑗ℎ ≤ 𝑎𝑘ℎ

𝜁
     (∀𝑘 ∈ 𝐾,∀ℎ ∈ 𝐻, ∀𝜁 ∈ 𝑍)                                                                                       (5.5)

𝑖∈𝐼
𝜏𝑖=𝑘

𝑗∈𝐽

 

𝑋𝑖𝑗ℎ ∈ {0,1}     (∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻)                                                                                                               (5.6) 

The objective function (5.1) minimizes the total cost of the unexploited OR time and 

overtime. Following Fei et al. (2009) we use a cost ratio φ between a regular working 

hour and overtime to penalize overtime. Constraints (5.2) enforce that each surgery is 

scheduled at most once during the planning horizon. Constraints (5.3a) and (5.3b) 

define the earliest and the latest date on which a patient has to be scheduled. Constraints 

(5.3a) ensure that the patient is scheduled after his/her release date, while constraints 

(5.3b) ensure that the surgery of a patient with a deadline within the planning horizon 

must take place before his/her deadline. Constraints (5.4) ensure that the total amount of 

OR time assigned to surgeons in an OR-day under a scenario is lesser than its total 

capacity (i.e. regular plus overtime). Constraints (5.5) ensure that the total amount of 

time allocated to a surgeon is lesser than his/her capacity in any day and scenario. 

Finally, constraints (5.6) are binary constraints for decision variables. 
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5.3 Monte Carlo optimization method 

In this section we present a Monte Carlo optimization method to solve the proposed 

stochastic advance OR scheduling problem. The Monte Carlo optimization method is 

based on the SAA method proposed by Min and Yih (2010) for solving a stochastic OR 

scheduling problem. The problem (P) can be approximated by a SAA problem (PN) and 

formulated as the following decision model for a sample size N: 

(𝑃𝑁)   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧𝑁 =∑
1

𝑁
∑∑𝑚𝑎𝑥 {(𝑟𝑗ℎ

𝑛 −∑𝑡𝑖
𝑛 ∙ 𝑋𝑖𝑗ℎ

𝑖∈𝐼

) , 𝜑 (∑𝑡𝑖
𝑛 ∙ 𝑋𝑖𝑗ℎ

𝑖∈𝐼

− 𝑟𝑗ℎ
𝑛)}

𝑗∈𝐽ℎ∈𝐻

𝑁

𝑛=1

                (5.7) 

Subject to: 

∑∑𝑋𝑖𝑗ℎ ≤ 1     (∀𝑖 ∈ 𝐼)                                                                                                                                   (5.8) 

ℎ∈𝐻𝑗∈𝐽

 

∑ ∑ 𝑋𝑖𝑗ℎ = 0     (∀𝑖 ∈ 𝐼)                                                                                                                          (5.9.1)
ℎ∈𝐻

ℎ≤𝑟𝑑𝑖−1
𝑗∈𝐽

 

∑∑ 𝑋𝑖𝑗ℎ = 1     (∀𝑖 ∈ 𝐼|𝑑𝑖 ≤ |𝐻|)                                                                                                              (5.9.2)
ℎ∈𝐻
ℎ≤𝑑𝑖

𝑗∈𝐽

 

∑𝑡𝑖
𝑛 ∙ 𝑋𝑖𝑗ℎ ≤ 𝑟𝑗ℎ

𝑛 + 𝑜𝑗ℎ      (∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻, 𝑛 = 1…𝑁)                                                                            (5.10)

𝑖∈𝐼

 

∑∑ 𝑡𝑖
𝑛 ∙ 𝑋𝑖𝑗ℎ ≤ 𝑎𝑠ℎ

𝑛      (∀𝑘 ∈ 𝐾, ∀ℎ ∈ 𝐻, 𝑛 = 1…𝑁)                                                                            (5.11)

𝑖∈𝐼
𝜏𝑖=𝑘

𝑗∈𝐽

 

𝑋𝑖𝑗ℎ ∈ {0,1}     (∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻)                                                                                                            (5.12) 

 

The procedure of the Monte Carlo optimization method is shown in Figure 5.1. A 

number of replications (M) are introduced in the procedure for reducing the effects of 

large variances in the calculation of the objective function value (Min and Yih, 2010). 

In step 2, the problem PN is heuristically solved using the IGLS method (see Section 

5.4) because of the long computation times required by the integer programming for 

solving problems of realistic size (see e.g. Lamiri et al., 2009), providing an 

approximated objective function value (𝑧𝑁
𝑚). In step 3, a Monte Carlo simulation is used 

to evaluate the objective function value. A good feasible solution is required to obtain a  
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Figure 5.1. Monte Carlo optimization method 

good estimated objective function value (𝑧′𝑁′
 𝑚 ). Even though several procedures to 

obtain a feasible solution exist, the solution of the problem PN (i.e. 𝑋𝑁
𝑚) is selected to 

evaluate the true value of the objective function of P, following what has been 

previously considered in the OR scheduling literature (see e.g. Lamiri et al., 2009) and 

because it yields the best results (Min and Yih, 2010). Finally, in the calculation of 𝑧′𝑁′
 𝑚, 

we only consider samples satisfying the stochastic constraints (i.e. constraints 5.4 and 

5.5). 
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5.4 Iterative greedy local search method 

In this section we propose an IGLS method for solving the problem PN. The method is 

composed of two phases: the construction surgical schedule phase and the iterative 

greedy local search phase.  

The construction surgical schedule phase determines a feasible surgical schedule as 

follows: 

 Step 1: Waiting list sorting. In this step, a sorted waiting list (WLsort) is obtained by 

sorting the surgeries in the initial waiting list, following the procedure employed in 

the constructive heuristics proposed in Chapter 4 (see Section 4.3.1). Regarding 

sorting criteria, we consider the same criteria used in Section 4.3.1 (i.e. INC, DEC, 

HILL, VALLEY, LOHI, HILO, and RAN), while we only consider the surgery 

duration (t) as sorting indicator. As t is a random variable, a sample of the N samples 

is randomly selected (nran), considering the corresponding surgery duration values in 

the sorting procedure. Note that seven sorted waiting lists are obtained in Step 1. 

 Step 2: Surgical schedule construction. In this step, a surgery schedule is obtained by 

applying a BP operator to each WLsort obtained in Step 1 taking into account 

constraints (5.8)-(5.12). We consider the following BP algorithms presented in 

Section 4.3: FF, BF and LF. Due to the nature of the objective function, in this step, 

we assume that OR overtime is not allowed, considering only OR regular capacity. In 

order to select the suitable OR-day on BP algorithms (i.e. to determine the available 

OR time), the values of surgery durations and OR regular capacities considered are 

those corresponding to the nran sample. Note that 21 surgical schedules are 

constructed in Step 2. We select the one that yields the best value of the objective 

function (5.7). 

 Step 3: Iterative improvement. Starting from the best surgical schedule obtained in 

Step 2, the solution is improved by applying a swapping method. The method 

consists of swapping two surgeries between different OR-days (a pair-wise swap) 

and swapping a pair of surgeries scheduled in the same OR-day with another surgery 

scheduled in a different OR-day (a triplet-wise swap). Note that swaps between 

scheduled and unscheduled surgeries are also considered (i.e. a scheduled surgery is 

unscheduled, while an unscheduled surgery is assigned its OR-day). In order to 
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evaluate a given swap, the values of the random variables (i.e. surgeries duration, OR 

regular capacities and surgeons’ capacities) are those corresponding to the nran 

sample, and the total capacity of an OR-day is the regular capacity plus the overtime 

capacity (note that the overtime is not allowed in Step 2). In each iteration, for each 

OR-day, surgeries (pair-wise swap) and pairs of surgeries (triplet-wise swap) are 

considered one by one in the swapping method, determining and performing the 

swap that yields the largest improvement and satisfies constraints (5.8)-(5.12). The 

iterative improvement step finishes when the solution cannot improve any more.    

The local search phase determines a new surgical schedule from the surgical schedule 

constructed in the previous phase by the following five steps: 

 Step 4. Destruction step: randomly remove q surgeries from an incumbent surgical 

schedule. This yields a surgical schedule composed of |I| - q surgeries. 

 Step 5. Construction step. It reinserts the q surgeries (one by one) in the OR-day that 

yields the best value of the objective function, while satisfying constraints (5.8)-

(5.12). After the reinsertion of the q surgeries, Step 3 is applied to the surgical 

schedule obtained. Note that a sample of the N samples (n’ran) is randomly selected 

for evaluating swaps.  

 Step 6. The resulting surgical schedule is considered as the incumbent surgical 

schedule if the value of the objective function improves the best value obtained so 

far. A simulated annealing-like acceptance criterion with a constant temperature is 

implemented to avoid the stagnation in the search procedure. The constant 

temperature is set such that moves that deteriorate the solution more than a 

percentage θ of the maximal deterioration are accepted with a probability smaller 

than φ (Lamiri et al., 2009).  

 Step 7. If the termination criterion is not satisfied, return to Step 4. The termination 

criterion of the iterative greedy local search phase is defined as a CPU time limit 

depending on the size of the problem (see Section 5.4). 
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Combination |J| β α CV �̅� �̅� 

1 4 1 1.5 0.1 81.1 8.1 

2 4 1 1.5 0.5 82.3 8.3 

3 4 1 2 0.1 80.7 10.1 

4 4 1 2 0.5 81.2 11.1 

5 4 1.25 1.5 0.1 101 8 

6 4 1.25 1.5 0.5 102.8 7.9 

7 4 1.25 2 0.1 100.8 10.7 

8 4 1.25 2 0.5 105.7 11 

9 8 1 1.5 0.1 161 15.7 

10 8 1 1.5 0.5 163.2 15.3 

11 8 1 2 0.1 161.1 20.3 

12 8 1 2 0.5 162 20.7 

13 8 1.25 1.5 0.1 200.4 15.8 

14 8 1.25 1.5 0.5 204.9 15.5 

15 8 1.25 2 0.1 201.9 20.8 

16 8 1.25 2 0.5 207.4 21.2 

Table 5.2. Size of problems considered in the proposed testbed 

5.5 Analysis of deterministic solutions 

In this section we present the results of the integer programming approach, the IGLS 

method and the existing heuristics for solving the advance OR scheduling problem in a 

deterministic way. In order to conduct the fairest computational experience, we carry 

out an experimental calibration of the parameters of the IGLS method. We have 

generated a 160-instance calibration testbed using the procedure described in Chapter 3. 

We have considered 16 different combinations of |J|, β, α and CV (see Table 5.2) and, 

for each combination, we have generated 10 instances. Table 5.2 details the average size 

of the problem for each combination. The values of |H|, μ, and a are 5, 120 and 480 

respectively (see Section 3.5). Finally, mds is drawn from a uniform distribution [3, 5]. 

In order to select the best algorithm, we consider the following response variables: 

(1) feasibility of the solution,   

(2) Relative Deviation Index (RDI), according to the expression   𝑅𝐷𝐼 = (𝐻𝑒𝑢𝑠𝑜𝑙 −

𝐵𝑒𝑠𝑡𝑠𝑜𝑙)/(𝑊𝑜𝑟𝑠𝑡𝑠𝑜𝑙 − 𝐵𝑒𝑠𝑡𝑠𝑜𝑙)  where Bestsol and Worstsol are the best and the 

worst solutions obtained among all the methods and Heusol is the solution obtained 

by a given algorithm configuration, and  

(3) CPU time (in seconds) required for solving a given instance. 

 In the construction surgical schedule phase, the sorting criterion (SC) and the BP 

algorithm have been calibrated. The results show that the 21 surgical schedules obtained 
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in the construction surgical schedule phase are feasible. Regarding the objective 

function value, the results show that INC is the worst sorting criterion, while there are 

no statistically significant differences among the remaining sorting criteria. Note that 

DEC provides better results than the other sorting criteria. Finally, there are statistically 

significant differences between LF and the remaining BP algorithms at a 95% 

confidence interval, where LF obtains the best average objective function value. 

Regarding CPU time, there are no statistically significant differences for the parameters 

at a 95% confidence interval. In the iterative greedy local search phase, the number of 

extracted surgeries (q), the percentage of the maximal deterioration (θ) and the 

probability of accepting a solution which deteriorates a solution (φ) have been 

calibrated. The IGLS method has been tested with the following levels: q is set to 3, 5 

and 7; θ is set to 10% and 20%, and φ is set to 1%, 5%, and 10%. According to RDI 

values, the best setting is q = 3, θ = 10% and φ = 10%.  

Regarding the existing heuristics for solving the problem under consideration, Fei et al. 

(2009, 2010) propose a column-generation-based heuristic (CGBH) procedure. Liu et al. 

(2011) propose a heuristic based on the dynamic programming idea (in the following 

dynamic programming heuristic, DPH), where the objective is to partition the set of 

surgeries to be performed into subsets, and then assign an OR-day to each subset in 

order to optimize the objective function. In the computational experiments carried out 

by Liu et al. (2011), DPH outperforms CGBH for large size instances (120 and 160 

surgeries on the waiting list) with respect to the feasibility of the surgical schedule and 

to CPU time requirements. Therefore, DPH can be considered the best-so-far heuristic 

method for the problem. In order to make a fair comparison regarding CPU time, we 

code the DPH algorithm. 

The analysis of the effectiveness of the integer programming approach, the DPH 

method and the IGLS method is carried out using the testbed provided by Liu et al. 

(2011) and the 160-instances testbed. The experiments have been executed on a PC with 

2.40 GHz Intel Core i5-450 processor and 4 GBytes of RAM memory. The integer 

programming decision model is solved using the commercial software Gurobi version 

5.6. The computation time limit is fixed to |I| ∙ |J| ∙ |H| ∙ η seconds for the integer 

programming model and the IGLS method. η is a time factor, which is set to 0.003125, 

0.00625, 0.0125 and 0.025. 
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Figure 5.2. Feasibility, optimality and RDI results for methods using the testbed based on the 

literature 
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Figure 5.2 shows the results using the testbed generated in this chapter. Note that, for 

this testbed, RDI is calculated replacing Bestsol by Bestbound, which is the best bound 

provided by the solver Gurobi. Regarding feasibility, it should be pointed out that the 

high percentage of unfeasible solutions (33%) obtained by DPH algorithm is due to the 

non fulfilment of deadline constraints. The procedure used to sort the waiting list (see 

the waiting list sorting step) guarantees a feasible solution on every instance solved by 

the IGLS method. Furthermore, the high percentage of optimal solutions (52%) 

obtained by the IGLS method should be noted. It finds an optimal solution whenever the 

factor β is set to 125% (i.e. 50% of the instances). Regarding RDI, the results show that 

the IGLS method is statistically the best algorithm at a 95% confidence interval. The 

time factor does not affect the performance of the IGLS method, being 0.03 the average 

RDI value after an average CPU time limit of 20 seconds (η = 0.003125). The DPH 

algorithm yields a RDI value of 0.52 after an average CPU time of 38 seconds. Note 

that the DPH algorithm is a constructive heuristic and, therefore, no stopping criterion 

has to be considered. The results show that there are no statistically significant 

differences between the DPH algorithm and the integer programming method with η = 

0.00625 (40 seconds on average) and η = 0.0125 (80 seconds on average). 

Figure 5.3 shows the results using the testbed proposed by Liu et al. (2011). Note that 

the IGLS method is only analyzed considering the lowest time factor (η = 0.003125), 

and time factors are not taken into account for the integer programming method since 

optimal solutions are found in less CPU time. We observe that the DPH algorithm 

increases the percentage of feasible solutions obtained from 77% to 90%, and we 

observe a significant increase of the optimal solutions obtained by the methods 

(especially the DPH method). In contrast with the performance in the testbed proposed 

in the paper, the algorithms obtain similar RDI average values in the testbed proposed 

by Liu et al. (2011) especially for 40, 80 and 120 surgeries. This fact, together with the 

high unexploited OR time obtained (the mean objective function values are 2854.7, 

1982.8 and 1150.50 for 40, 80, and 120 respectively), suggests that instances involve 

excessive resources (OR time) relative to the total surgery time in the waiting list and 

explains the significant increase of the proportion the optimal solutions. 

In view of the results, we conclude that the IGLS method is the best method for solving 

the deterministic version of the advance OR scheduling problem, yielding a high 

percentage of optimal solutions for realistic size instances. 
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Figure 5.3. Feasibility, optimality and RDI results for methods using the testbed proposed by Liu et 

al. (2011) 
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5.6 Analysis of stochastic solutions 

A computational experiment is presented to evaluate the performance of the Monte 

Carlo optimization method for solving the proposed stochastic advance OR scheduling 

problem. The Monte Carlo optimization method is used with a number of replications 

(M) equals to 20. The values of the number of samples (N) for solving the SAA problem 

(PN) are 1, 5, 10, 20, 30, 40, 50, 100, 200, and 300. Finally, we consider 50,000 samples 

(N’) in the Monte Carlo simulation as in Min and Yih (2010). In this section, we have 

only considered the factors which statistically influence on the deterministic version of 

the problem, i.e. |J| and β, considering the resulting 4 different combinations (see Table 

5.2). Without loss of generality, factors α and CV are set to 1.5 and 0.1 respectively, 

since these levels resulting in more difficult problems in terms of RDI. The computation 

time limit is fixed to 0.0003125 ∙ N ∙ |I| ∙ |J| ∙ |H| seconds for the IGLS method. 

Regarding surgery durations, we assume that 𝑡𝑖
𝜁

 follows a 2-parameter log-normal 

distribution. The expected duration is set to the deterministic surgery duration for 

surgery i (ti), while the standard deviation is calculated as CV’∙ti. CV’ is randomly and 

uniformly drawn from the set {0.1, 0.2, 0.3}. Regarding emergency arrivals, the 

following statistical distributions are used to generate the total OR time of an OR-day 

required for emergency demands (𝑒𝑗ℎ
𝜁

): an exponential distribution (Lamiri et al., 2009; 

Lamiri, Xie, Dolgui et al., 2008; Lamiri, Xie and Zhang, 2008), a log-normal 

distribution (Lamiri et al., 2007), a normal distribution (Lamiri et al., 2009), and an 

uniform distribution (Min and Yih, 2010). According to Lamiri et al. (2009), we assume 

an expected emergency capacity of 72 minutes and a coefficient of variation 0.5. 

Finally, the surgeon capacity uncertainty due to emergency arrivals has not been 

previously addressed in the literature. In this paper, we propose the following procedure 

to generate the regular capacity of a surgeon considering emergency demands: In the 

first step, for each day, the total OR time for emergency surgeries is determined. In the 

second step, for each day, surgeons are randomly sorted (in order to randomize the 

allocation of emergency surgeries to surgeons) and, one by one, the regular capacity 

(i.e. 8 hours) is reduced by a 0%, 25% (2 hours) or 50% (4 hours) with an equal 

probability of 1/3. The procedure stops when the total reduced time is equal to the total 

OR time for emergency surgeries determined in the first step. 
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For each N sample size and each statistical distribution considered to generate 

emergency demands, the mean approximated objective function value (𝑧𝑁
𝑀), the mean 

estimated objective function value (𝑧′𝑁′
𝑀 ), the optimality index value, and the mean 

proportion of feasible simulations are shown in Figure 5.4. Note that only feasible 

simulations are considered for determining  𝑧′𝑁′
𝑚

. The results highlight that, 

independently of the statistical distribution considered to generate emergency demands, 

the objective function value obtained by the IGLS method converges to the optimal 

value of the problem and presents a high robustness in terms of the proportion of 

feasible simulations when the number N of samples increases (see red and orange 

curves in Figure 5.4). Depending on the statistical distribution considered to generate 

emergency demands, an optimality index value of around 1% is obtained with sample 

size 40 (exponential) and 100 (log-normal, normal, and uniform). However, the number 

N of samples must be greater than the above sizes for yielding a reasonable proportion 

of feasible simulations (e.g. more than 85% of simulations are feasible with N = 200 for 

any statistical distribution). As shown in the blue curve of Figure 5.4, a high robustness 

of the solution implies an important increase of the total cost of the unexploited OR 

time and overtime. Without loss of generality, we present the conclusions obtained for 

the exponential distribution since similar performances are observed for the statistical 

distributions.  

To increase the percentage of feasible simulations obtained from 37.1% (N = 40) to 

88.3% (N = 200), an increase of 95% of the objective function value is observed (from 

2,186 to 4,263). In order to clarify the increase of the total cost of the unexploited OR 

time and overtime, nine performance indicators values are detailed in Table 5.3. First, 

the mean values of the number of scheduled surgeries, the total OR undertime, and the 

total OR overtime are calculated considering only feasible simulations. Second, in order 

to analyze the unfeasibility of simulations, Table 5.3 also shows the mean values of the 

number of cancelled surgeries, the mean OR time exceed (over the OR overtime 

allowed) and the surgeon overtime. The increase of 95% is because of both important 

increases of the mean OR undertime per OR-day (from 114.9 to 222.0 minutes) and the 

number of under-utilized OR-days (from 15.02 to 18.61 OR-days), as consequence of 

the decrease of the mean number of scheduled surgeries (from 58.7 to 34.7 surgeries) 

due to the high uncertainty considered (by increasing N) in emergency demands and 

surgeons’ capacity for performing emergency surgeries. 
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Figure 5.4. 𝒛𝑵
𝑴, 𝒛′𝑵′

𝑴  , optimality index and proportion of feasible simulations values   for problem |J| = 4 and β = 1.25
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N % feasible 

simulations 

Feasible simulations Unfeasible simulations 

Scheduled 

surgeries 

Unex. 

OR-days 

Undertime  

(min/OR-day) 
Overex. 

OR-days 

Overtime 

(min/OR-day) 
Cancelled 

surgeries 

Overtime 

exceed 

(min.) 

Surgeon 

overtime 

(min.) 

1 0.6 72.30 9.99 81.34 9.93 67.99 8.34 39.76 324.49 

5 4.2 70.84 10.90 70.32 9.01 66.93 6.78 28.91 176.60 

10 10.1 68.47 11.72 78.72 8.19 67.41 5.42 26.06 117.49 

20 20.3 64.86 13.44 86.31 6.49 66.03 4.85 20.64 74.48 

30 30.7 61.10 14.46 102.79 5.47 66.27 4.41 18.84 50.22 

40 37.1 58.65 15.02 114.88 4.92 66.31 3.90 18.04 42.43 

50 43.2 56.30 15.94 120.99 4.01 64.60 3.74 14.19 39.45 

100 66.2 46.30 17.42 169.34 2.54 63.62 2.87 11.95 30.44 

200 88.3 34.65 18.61 221.96 1.37 61.59 2.22 13.43 23.85 

300 94.6 27.63 19.04 256.14 0.95 59.42 1.94 18.57 21.41 

Table 5.3. Mean values for problem |J| = 4 and β = 1.25 considering the exponential distribution to 

generate emergency demands 

However, the latter decrease supposes that the proportion of feasible simulations 

increases by reducing the surgeon overtime (from 42.43 to 23.85 minutes) and the OR 

time exceed (from 18.04 to 13.43 minutes). Note that the latter values imply a reduction 

of the number of cancelled surgeries (from 3.90 to 2.22 cancelled surgeries). In view of 

the results, the setting of the number of samples will depend on a tradeoff between costs 

and robustness. 

Finally, Table 5.4 shows the 95.0 confidence intervals of 𝑧𝑁
𝑀  for each statistical 

distribution and each N sample size. The results highlight that the IGLS method is 

robust for solving the problem PN, since reasonable confidence intervals of 𝑧𝑁
𝑀  are 

obtained considering M = 20 (number of replications in the Monte Carlo optimization 

method). Given that the low error margins obtained for solving the problem PN (8.93% 

for the exponential distribution and N = 300 in the worst case), the CPU time (see Table 

5.4) required for solving the problem can be reduced by decreasing the value of M. 

5.7 Conclusions 

In this chapter, we have addressed a stochastic advance OR scheduling problem under 

the open scheduling strategy, taking into account resources availability (OR and 

surgeons) and time period constraints (release and deadlines) in order to minimize the 

unexploited OR time and overtime costs. A stochastic decision model is proposed for  
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N 
Statistical Distribution CPU Time 

(sec./replication) Exponential Log-normal Normal Uniform 

1 (0.94, 5.81) (0.5, 3.8) (-0.3, 1.7) (0.1, 1.7) 0.64 

5 (1218.4,1336.4) (1028.2, 1044.1) (961.1, 1134.5) (985.0, 1058.3) 3.22 

10 (1575.8, 1708.5) (1225.6, 1256.8) (1183.6, 1310.5) (1225.2, 1282.5) 6.44 

20 (1714.7, 1822.6) (1389.9, 1444.4) (1357.4, 1491.0) (1359.2, 1473.1) 12.88 

30 (1883.1, 2152.8) (1512.0, 1538.4) (1462.2, 1610.0) (1455.9, 1531.6) 19.31 

40 (2073.4, 2298.2) (1583.0, 1592.7) (1476.0, 1690.0) (1520.0, 1648.9) 25.75 

50 (2179.4, 2413.0) (1674.3, 1766.5) (1640.9, 1813.8) (1688.5, 1817.0) 32.19 

100 (3026.0, 3329.8) (2306.1, 2474.0) (2306.3, 2520.5) (2315.4, 2459.3) 64.38 

200 (3929.5, 4595.6) (3263.7, 3440.6) (3266.6, 3391.3) (3310.5, 3424.5) 128.75 

300 (4533.9, 5423.4) (3763.7, 3829.0) (3735.8, 3882.9) (3703.9, 3870.5) 193.13 

Table 5.4. 95.0% Confidence intervals of 𝒛𝑵
𝑴 and CPU time values 

solving the problem, taking into account the uncertainty in the surgery duration, in the 

total emergency surgery time in the planning horizon and in the surgeons’ regular 

capacity. A Monte Carlo optimization method, based on the SAA method proposed by 

Min and Yih (2010), is proposed for solving the problem. The method combines an 

iterative local search method and Monte Carlo simulation. The performance of the 

iterative local search method is analyzed against a column-generation-based heuristic 

procedure proposed by Fei et al. (2009) and a heuristic based on the dynamic 

programming idea proposed by Liu et al. (2011) for solving the deterministic version of 

the problem. These methods constitute the up-to-now state of the art heuristics for the 

(deterministic) problem. The analysis is carried out using the testbed proposed by Liu et 

al. (2011) and a testbed generated based on the literature. The results show that the 

iterative local search method is the best method for solving the deterministic version of 

the advance OR scheduling problem, yielding a high percentage of optimal solutions for 

realistic size instances. We also carry out a computational experiment to evaluate the 

performance of the Monte Carlo optimization method for solving the proposed 

stochastic advance OR scheduling problem. The results highlight that, regardless the 

statistical distribution employed to generate the arrivals of emergency surgeries, the 

objective function value obtained by the IGLS converges to the optimal value of the 

problem and presents a high robustness in terms of the proportion of feasible 

simulations when the number of samples increases. 
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Chapter 6            

The Integrated Operating Room Planning and 

Scheduling Problem 

6.1 Introduction 

As described in Chapter 2, the offline operational level is traditionally solved into two 

steps (the OR planning and scheduling problems), intending to reduce the complexity of 

the integrated problem. In Chapters 4 and 5, we have addressed the OR planning 

problem considering deterministic and stochastic surgery durations, emergency arrivals 

and resources capacity. However, due to the high interdependence among these 

problems, an integrated approach would improve the quality of the surgery schedule. 

Therefore, in this chapter, we address the integrated OR planning and scheduling 

problem.  

There is evidence in the literature that most surgeries in hospitals are performed by a 

team composed of two surgeons, and that their experience largely influences the surgery 

duration. However, to the best our knowledge, only one contribution has addressed the 

OR planning and scheduling problem with surgical teams, but in such case surgery 

durations did not depend on the experience of surgeons. In this chapter we address an 

integrated OR planning and scheduling problem with surgical teams composed by one 

or two surgeons where surgery durations depend on their experience and skills (Section 

6.2). We propose an ILP model to optimally solve this problem (Section 6.3). Given the 

high computation requirements of our ILP model, Section 6.4 proposes an iterative 

constructive method. The computational experience presented in Section 6.5 shows that 

the proposed algorithm is able to find feasible solution for all problems requiring shorter 

CPU time and average relative percentage deviation than the ILP model. In addition, the 

robustness of the so-obtained surgical schedules is analyzed using simulation. Finally, 

conclusions and further research are presented in Section 6.6. 
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6.2 Problem formulation 

In the integrated OR planning and scheduling problem we consider a set H of planning 

days (h = 1,…,|H|) where there is a set J of parallel ORs (j = 1,…,|J|) available on each 

day h in the planning horizon. The regular capacity of the j-th OR during day h is 

denoted by rjh. In the following, a pair (j, h) is denoted as OR-day. Recovery facilities 

are also assumed to be always available during the planning horizon. There is a set K of 

surgeons (k = 1,…,|K|) and, on each day h, each surgeon k has a maximum available 

time (skh) to perform surgeries without limits in the number of surgeries performed and 

in the number of different ORs that he/she may visit in an OR-day. Additionally, we 

consider a set L of levels of experience of the assistant surgeons (l = 1,…,|L|). We 

denote the set of surgeons belonging to level l as Kl (k’ = 1,…,|Kl|), and ∑ |𝐾𝑙| = |𝐾|𝑙 . 

Note that each surgeon may belong only to one level of experience. The remaining 

human and material resources are assumed to be available whenever needed. In this 

setting, a set I of elective surgeries (i.e. patients) are in the waiting list (i = 1,…,|I|). 

Each surgery i should be performed before a given deadline (di) according to the 

disease’s characteristics and the waiting time in the waiting list. The binary parameter 

δij yields 1 if surgery i can be performed in OR j, 0 otherwise. Many realistic situations 

can be modeled with this parameter such as, for example, to book OR-days in order to 

plan a certain type of surgery or to forbid the assignment of a surgery to an OR that 

does not have the equipment required to perform this specific surgery. Finally, the 

following additional assumptions will help in formulating the problem.  

 Surgical team composition.  

In this chapter, we consider that a surgery can be performed by a surgical team 

composed by either one surgeon (the most extended assumption in the literature), or two 

surgeons (a realistic setting in many cases, see the previous section). In the first case, 

the surgery is performed only by the responsible surgeon (τi), which is assigned to each 

surgery in the waiting list before solving the integrated OR planning and scheduling 

problem. Such decision is usually made by the head of the surgical specialty according 

to surgeon’s specialty, availability, workload, etc. In the second case, the responsible 

surgeon is accompanied by an assistant surgeon, due to the complexity of a surgery, the 

need of training residents, etc. As a surgical specialty is usually composed by faculty 

and resident surgeons, we assume that any of them can perform a surgery as assistant 
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surgeon. In order to simplify the exposition of the ILP model, a dummy assistant 

surgeon (k = 0) is introduced for considering a surgical team of two surgeons when a 

surgery is carried out only by the responsible surgeon.    

 Assistant surgeon’s level of experience. 

Due to the medical characteristics of each surgery, only assistant surgeons with the 

required level of experience are able to perform the surgery. We define parameter γil to 

indicate whether surgery i can be performed by an assistant surgeon with a level of 

experience l (γil = 1), or not (γil = 0). In this chapter, the following levels of experience 

have been considered: 0 (for the dummy surgeon), 1 (for junior residents), 2 (for senior 

residents), and 3 (for faculty surgeons).   

 Impact of the level of experience on the surgery duration.    

Depending on the experience of the responsible surgeon assigned to a surgery, the 

surgery duration (the duration required by one surgeon surgical team) is established by 

the head of the surgical specialty. As discussed in Chapter 2, the assistant surgeon’s 

experience also influences on this duration. The effect might be positive (reducing the 

duration, see e.g. Ludwig et al., 2005) or negative (increasing the duration, see e.g. 

Bridges and Diamond, 1999). In our notation, the parameter til represents the expected 

duration (in minutes) of surgery i when it is performed with an assistant surgeon with a 

level of experience l. For surgery i, the value til (l = 1, 2, 3) is assumed to be related to ti0 

(i.e. the length of the surgery when performed only by the responsible surgeon). 

Therefore, for each value of l, a variation interval affecting ti0 is defined as follows: (1) 

junior residents’ surgeries are commonly trained surgeries, whereby the involvement of 

them always causes an increase of the surgery duration; (2) however, for senior 

residents, there are situations in which the resident has a similar level of experience that 

the faculty surgeon, causing a decrease of the surgery duration; (3) finally, the 

involvement of a faculty surgeon as assistant surgeon always produces a decrease of the 

surgery duration. 

Hence, the problem can be considered as an integrated OR planning and scheduling 

problem under an open scheduling strategy where the assistant surgeons may influence 

surgery’s duration (see Section 2.4). Additionally, the interventions may require a 

certain level of experience of the assigned assistant surgeon.  



Operating Theatre Planning & Scheduling in Real-Life Settings Chapter 6 

76 

 

Indices and Sets 

i ∈ I Index of surgery in the waiting list 

j ∈ J Index of OR 

k ∈ K Index of surgeon 

l ∈ L Index of level experience  

k’ ∈ Kl Index of surgeon in level of experience l 

h ∈ H Index of day within the planning horizon 

Parameters 

til Expected time of surgery i performed by an assistant surgeon belonging to level of experience l 

di Latest day to perform surgery i 

τi Responsible surgeon of surgery i 

δij 1 if surgery i can be performed in OR j; 0 otherwise 

γil 1 if surgery i can be performed by an assistant surgeon belonging to surgeon type l; 0 otherwise 

skh Maximum available time for surgeon k to conduct surgeries in day h  

rjh Regular capacity of OR j in day h 

B Maximum value of OR regular capacity (max𝑗∈𝐽,ℎ∈𝐻 𝑟𝑗ℎ)  

A Total surgeon availability,  ∑ ∑ 𝑠𝑘ℎℎ∈𝐻𝑘∈𝐾  

wP Weighted factor for the maximization of surgeries scheduled 

wT Weighted factor for the minimization of tardiness 

wS Weighted factor for the minimization of surgeons’ idle time 

Variables 

Xikjh 1 if surgery i is performed by assistant surgeon k in OR-day (j,h); 0 otherwise 

Yii’ 1 if surgery i precedes surgery i’ on a shared resource; 0 otherwise, i < i’ 

Cih Completion time of surgery i in day h  

C
max

kh Maximum surgery completion time of surgeon k in day h 

I
min

kh Minimum surgery starting time of surgeon k in day h 

Zkh Idle time between surgeries of surgeon k in day h  

Table 6.1. Sets, data and variables used in the ILP decision model 

The objective of the problem is to maximize a weighted objective function which 

includes the number of surgeries scheduled, the tardiness of each surgery, and the idle 

time of each surgeon between consecutive surgeries. 

6.3 ILP model formulation 

In this section, we present an ILP model to solve the integrated OR planning and 

scheduling problem. Table 6.1 summarizes sets, data and variables used in the decision 

model. 

The objective function is: 
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𝑀𝑎𝑥  
𝑤𝑃
|𝐼|
∑∑∑∑𝑋𝑖𝑘𝑗ℎ

ℎ∈𝐻𝑗∈𝐽𝑘∈𝐾𝑖∈𝐼

−
𝑤𝑇

|𝐻| · |𝐼|

(

 ∑ ∑∑∑(ℎ − 𝑑𝑖) 
ℎ∈𝐻
ℎ>𝑑𝑖

𝑗∈𝐽𝑘∈𝐾𝑖∈𝐼
𝑑𝑖≤|𝐻|

𝑋𝑖𝑘𝑗ℎ + ∑ (|𝐻| − 𝑑𝑖 + 1)(1 −∑∑∑𝑋𝑖𝑘𝑗ℎ
ℎ∈𝐻𝑗∈𝐽𝑘∈𝐾

)
𝑖∈𝐼

𝑑𝑖≤|𝐻| )

 

−
𝑤𝑆
𝐴
∑∑𝑍𝑘ℎ

ℎ∈𝐻𝑘∈𝐾

                                                                                                                                                                           (6.1) 

 And the constraints are: 

 

∑∑∑𝑋𝑖𝑘𝑗ℎ ≤ 1, ∀𝑖 ∈ 𝐼                                                                                                                                            (6.2)   

ℎ∈𝐻𝑗∈𝐽𝑘∈𝐾

 

 

∑ ∑∑𝑋𝑖𝑘′𝑗ℎ ≤ 𝛾𝑖𝑙 , ∀𝑖 ∈ 𝐼, ∀𝑙 ∈ 𝐿                                                                                                                        (6.3)   

ℎ∈𝐻𝑗∈𝐽𝑘′∈𝐾𝑙

 

 

𝐶𝑖′ℎ + 𝐵 (2 −∑𝑋𝑖𝑘𝑗ℎ
𝑘∈𝐾

− ∑ 𝑋𝑖′𝑘′𝑗ℎ
𝑘′∈𝐾

) ≥ 𝐶𝑖ℎ +∑ ∑ 𝑡𝑖′𝑙 𝑋𝑖′𝑘′𝑗ℎ
𝑘′∈𝐾𝑙𝑙∈𝐿

− 𝐵 (1 − 𝑌𝑖𝑖′), 

∀𝑖 ∈ 𝐼, ∀𝑖′ ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻 | 𝑖 < 𝑖′, 𝛿𝑖𝑗 = 𝛿𝑖′𝑗 = 1                                                                                                         (6.4𝑎) 

 

𝐶𝑖ℎ + 𝐵 (2 −∑𝑋𝑖𝑘𝑗ℎ
𝑘∈𝐾

− ∑ 𝑋𝑖′𝑘′𝑗ℎ
𝑘′∈𝐾

) ≥ 𝐶𝑖′ℎ +∑∑ 𝑡𝑖𝑙 𝑋𝑖𝑘𝑗ℎ
𝑘∈𝐾𝑙𝑙∈𝐿

− 𝐵 𝑌𝑖𝑖′ , 

∀𝑖 ∈ 𝐼, ∀𝑖′ ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻 | 𝑖 < 𝑖′, 𝛿𝑖𝑗 = 𝛿𝑖′𝑗 = 1                                                                                                         (6.4𝑏) 

 

𝐶𝑖′ℎ + 𝐵(2 −∑𝑋𝑖𝑘𝑗ℎ
𝑗∈𝐽

−∑𝑋𝑖′𝑘′𝑗′ℎ
𝑗′∈𝐽

) ≥ 𝐶𝑖ℎ +∑ 𝑡𝑖′𝑙 𝑋𝑖′𝑘′𝑗′ℎ
𝑗′∈𝐽

− 𝐵 (1 − 𝑌𝑖𝑖′), 

 ∀𝑖 ∈ 𝐼, ∀𝑖′ ∈ 𝐼, ∀𝑙 ∈ 𝐿, ∀𝑘′ ∈ 𝐾𝑙 , ∀𝑘 ∈ 𝐾, ∀ℎ ∈ 𝐻 | 𝑖 < 𝑖
′, (𝜏𝑖′ = 𝜏𝑖) ∨ (𝑘 = 𝑘

′  ∧  𝑘 ≠ 0) ∨ (𝜏𝑖′ = 𝑘) ∨ (𝜏𝑖 = 𝑘
′)       (6.5𝑎) 

 

𝐶𝑖ℎ + 𝐵(2 −∑𝑋𝑖𝑘𝑗ℎ
𝑗∈𝐽

−∑𝑋𝑖′𝑘′𝑗′ℎ
𝑗′∈𝐽

) ≥ 𝐶𝑖′ℎ +∑𝑡𝑖𝑙 𝑋𝑖𝑘𝑗ℎ
𝑗∈𝐽

− 𝐵 𝑌𝑖𝑖′ , 

∀𝑖 ∈ 𝐼, ∀𝑖′ ∈ 𝐼, ∀𝑙 ∈ 𝐿, ∀𝑘 ∈ 𝐾𝑙 , ∀𝑘
′ ∈ 𝐾, ∀ℎ ∈ 𝐻 | 𝑖 < 𝑖′, (𝜏𝑖′ = 𝜏𝑖) ∨ (𝑘 = 𝑘

′  ∧  𝑘 ≠ 0) ∨ (𝜏𝑖′ = 𝑘) ∨ (𝜏𝑖 = 𝑘
′)         (6.5𝑏) 

 

𝐼𝑘ℎ
𝑚𝑖𝑛 ≤ 𝐶𝑖ℎ −∑ ∑ ∑𝑡𝑖𝑙 𝑋𝑖𝑘′𝑗ℎ

𝑗∈𝐽

,

𝑘′∈𝐾𝑙𝑙∈𝐿

          ∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝐼, ∀ℎ ∈ 𝐻 | 𝜏𝑖 = 𝑘, 𝑘 ≠ 0                                                    (6.6𝑎) 

 

𝐼𝑘ℎ
𝑚𝑖𝑛 − 𝐵(1 −∑𝑋𝑖𝑘𝑗ℎ

𝑗∈𝐽

) ≤ 𝐶𝑖ℎ −∑ ∑ ∑𝑡𝑖𝑙 𝑋𝑖𝑘′𝑗ℎ
𝑗∈𝐽𝑘′∈𝐾𝑙

,

𝑙∈𝐿

       ∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝐼, ∀ℎ ∈ 𝐻 | 𝜏𝑖 ≠ 𝑘, 𝑘 ≠ 0               (6.6𝑏) 

 

𝐶𝑘ℎ
𝑚𝑎𝑥 ≥ 𝐶𝑖ℎ ,         ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼, ∀ℎ ∈ 𝐻 | 𝜏𝑖 = 𝑘, 𝑘 ≠ 0                                                                                                 (6.7𝑎) 
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𝐶𝑘ℎ
𝑚𝑎𝑥 + 𝐵(1 −∑𝑋𝑖𝑘𝑗ℎ

𝑗∈𝐽

) ≥ 𝐶𝑖ℎ ,         ∀𝑘 ∈ 𝐾, ∀𝑖 ∈ 𝐼, ∀ℎ ∈ 𝐻 | 𝜏𝑖 ≠ 𝑘, 𝑘 ≠ 0                                                         (6.7𝑏) 

 

𝑍𝑘ℎ ≥ 𝐶𝑘ℎ
𝑚𝑎𝑥 − 𝐼𝑘ℎ

𝑚𝑖𝑛 − ∑∑∑ ∑ 𝑡𝑖𝑙′  𝑋𝑖𝑘′𝑗ℎ
𝑘′∈𝐾𝑙′

𝑘′≠𝑘

𝑙′∈𝐿𝑗∈𝐽𝑖∈𝐼
𝜏𝑖=𝑘

−∑∑𝑡𝑖𝑙 𝑋𝑖𝑘𝑗ℎ
𝑗∈𝐽𝑖∈𝐼

 , 

∀𝑙 ∈ 𝐿, ∀𝑘 ∈ 𝐾𝑙 , ∀ℎ ∈ 𝐻 | 𝑘 ≠ 0                                                                                                                                                 (6.8) 

 

𝐶𝑖ℎ ≥∑∑∑ 𝑡𝑖𝑙 𝑋𝑖𝑘𝑗ℎ
𝑘∈𝐾𝑙𝑙∈𝐿𝑗∈𝐽

, ∀𝑖 ∈ 𝐼, ∀ℎ ∈ 𝐻                                                                                                                     (6.9) 

     

𝐶𝑖ℎ ≤ ∑∑𝑟𝑗ℎ 𝑋𝑖𝑘𝑗ℎ,

𝑗∈𝐽𝑘∈𝐾

          ∀𝑖 ∈ 𝐼, ∀ℎ ∈ 𝐻                                                                                                                         (6.10) 

 

∑∑∑ ∑ 𝑡𝑖𝑙′  𝑋𝑖𝑘′𝑗ℎ
𝑘′∈𝐾𝑙′

𝑘′≠𝑘

𝑙′∈𝐿𝑗∈𝐽𝑖∈𝐼
𝜏𝑖=𝑘

+∑∑𝑡𝑖𝑙 𝑋𝑖𝑘𝑗ℎ
𝑗∈𝐽𝑖∈𝐼

≤ 𝑠𝑘ℎ, ∀𝑙 ∈ 𝐿, ∀𝑘 ∈ 𝐾𝑙 , ∀ℎ ∈ 𝐻 | 𝑘 ≠ 0                                   (6.11) 

 

𝑋𝑖𝑘𝑗ℎ = 0, ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻 | 𝜏𝑖 = 𝑘                                                                                                     (6.12) 

 

𝑋𝑖𝑘𝑗ℎ = 0, ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻 | 𝛿𝑖𝑗 = 0                                                                                                    (6.13) 

 

𝑋𝑖𝑘𝑗ℎ ∈ {0,1}, ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻                                                                                                              (6.14) 

 

𝑌𝑖𝑖′ ∈ {0,1}, ∀𝑖 ∈ 𝐼, ∀𝑖′ ∈ 𝐼 | 𝑖′ > 𝑖                                                                                                                                   (6.15) 

 

𝐶𝑖ℎ ≥ 0, ∀𝑖 ∈ 𝐼, ∀ℎ ∈ 𝐻                                                                                                                                                      (6.16) 

 

𝐶𝑘ℎ
𝑚𝑎𝑥, 𝐼𝑘ℎ

𝑚𝑖𝑛 ≥ 0, ∀𝑘 ∈ 𝐾, ∀ℎ ∈ 𝐻                                                                                                                                     (6.17) 

 

𝑍𝑘ℎ ≥ 0, ∀𝑘 ∈ 𝐾, ∀ℎ ∈ 𝐻                                                                                                                                                  (6.18) 

Equation (6.1) represents the objective function. As describe above, the first term is 

related to the maximization of the number of patients scheduled. The second term 

considers the minimization of the tardiness (i.e. the difference between the scheduled 

date and the deadline when the scheduled date is higher than the deadline). Surgeries 

which are scheduled after their deadlines as well as non-scheduled surgeries with 

deadline within the planning horizon are considered. Finally, the third term is related to 

the minimization of surgeons’ waiting time between their surgeries. Note that each 

objective is normalized since these are measured in different units. 
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Constraints (6.2) enforce that each surgery is performed by only one assistant surgeon 

in only one suitable OR-day at most once. The set of constraints (6.3) ensures that a 

surgery is performed by an assistant surgeon with the level of experience required. 

Constraints (6.4) define the precedence relationship in each OR-day avoiding the 

overlap of surgeries. For each pair of surgeries (i, i’), the constraints do not apply if any 

of these surgeries are not scheduled in the same OR-day (j, h). Therefore, B is defined 

as the maximum value of OR regular capacity available in the planning horizon, being 

the completion times of these surgeries non positive numbers. The variable Yii’ is 

introduced to consider whether surgery i is finished before surgery i’ (6.4a) or vice 

versa (6.4b) when both surgeries are scheduled in the same OR-day (j, h). The set of 

constraints (6.5) defines the precedence relationship for each surgeon k avoiding the 

overlap of surgeries (i, i’) in the same day. As in constraints (6.4), B makes redundant 

the constraint if surgeries are not performed in the same day and Yii’ is introduced to 

obtain the precedence between surgeries if both are scheduled in the same day. In this 

manner, the following situations can be considered for two consecutive surgeries (i, i’) 

in day h: ηi = ηi’ assumes that a given surgeon is the responsible surgeon in both 

surgeries; k = k’ supposes that a given surgeon is the assistant surgeon in both surgeries 

; ηi = k’ assumes that surgeon k’ operates surgeries i and i’ as responsible and assistant 

surgeon, respectively; and finally, ηi’ = k assumes that surgeon k operates surgeries i’ 

and i as responsible and assistant surgeon respectively. Constraints (6.6a)-(6.6b)-(6.7a)-

(6.7b) define the earliest starting time (I
min

kh) and the latest completion time (C
max

kh) for 

each surgeon during a day respectively, working as a responsible surgeon (6.6a)-(6.7a) 

or assistant surgeon (6.6b)-(6.7b). The waiting time of a surgeon during a day (Zkh) is 

determined by constraints (6.8). Constraints (6.9) and (6.10) ensure that the completion 

time of a surgery in an OR-day must be higher or equal than the surgery duration -- set 

(6.9)--, and lesser or equal than OR-day regular capacity --set (6.10)--, respectively. 

Constraints (6.11) prohibit that the total surgery time allocated to a surgeon during a day 

is higher than his/her availability in this day. Note that the first and the second term take 

into account surgeries performed by the responsible surgeons and assistant surgeons, 

respectively. Constraints (6.12) prohibit that a surgeon perform a surgery as responsible 

and assistant, while constraints (6.13) ensure that each surgery is performed in a suitable 

OR. Finally, constraints (6.14)-(6.15) and constraints (6.16)-(6.17)-(6.18) are binary and 

non-negative continuous constraints for decision variables, respectively. 
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Figure 6.1. Iterated Constructive algorithm 

6.4 Iterated constructive method 

In this section we propose an Iterated Constructive (IC) method for the problem. The 

algorithm is composed of two phases (see Figure 6.1): Phase I and Phase II. Phase I is 

aimed to obtain a fast feasible surgery schedule for a given problem. Then, the surgery 

schedule is improved using Phase II by changing the assistant surgeons and the order in 

the sequence of several surgeries. 

The pseudocode of Phase I is shown in Figure 6.2, and consists of three steps: 

 Step 1: Surgeon Assignment. In this step, an assistant surgeon is assigned to each 

surgery in the waiting list according to the following procedure: If possible (γi0 = 1), 

the dummy surgeon is assigned to the surgery (i.e. the surgery is only performed by 

the responsible surgeon). If not, a suitable assistant surgeon is randomly selected 

from the surgeon list. The result of this step is a vector (AS) containing the assistant 

surgeon for each surgery.  

 Step 2: Waiting list sorting. In this step, surgeries in the waiting list are grouped into 

two lists: surgeries whose deadline falls within the planning period (WLA), and the 

rest of patients (WLB). A sorted waiting list (WLS) is obtained by sorting the surgeries 

in WLA in ascending order of deadline (ties are broken by selecting the surgery with 

the lowest surgery duration), and then adding at the end the remaining surgeries (i.e. 

surgeries in WLB) sorted in ascending order of surgery duration (note that surgery 
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Figure 6.2. Phase I procedure 

durations are already set as the assistant surgeons have been assigned to each surgery 

in the previous step). 

 Step 3: Surgery schedule construction. A surgery schedule (date, OR and time 

indication for each surgery scheduled) is obtained here once AS and WLS have been 

determined in the previous steps. Then, ORs in day h are ordered in descending order 

of the amount of time that has been previously assigned to the responsible or 

assistant surgeon of the surgery. This order is denoted by RO. Each surgery is 

assigned to the earliest feasible day according to the order RO of ORs. Using this 

procedure, the completion times of the surgeries are determined, as well as their OR 

and day where they take place. When trying to assign surgery i to OR RO[j] in day h, 

it is tried to be placed as soon as possible i.e. with a completion time equal to its 

surgery duration. Then, the feasibility with the rest of surgeries in the waiting list is 

checked. Note that infeasibilities due to other surgeries or due to the surgeons may 

appear. In case of infeasibility with surgery j’, the completion time of surgery j is 

replaced by the completion time of j’ plus the surgery duration of j and again, this 

completion time is checked against each other surgery. If it is not possible to further 

assign the surgery in RO[j], RO[j+1] is tried.  
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Figure 6.3. Construction surgery schedule procedure 

After assigning the surgeries, the new weighted objective function is calculated. The 

detailed procedure employed for obtaining such schedule is shown in Figure 6.3. 

In order to improve the solution obtained in Phase I, successive calls of the construction 

surgery schedule step are made in Phase II. First, N surgeries are randomly selected 

from WLS. Then, new assistant surgeons (ASnew) and new positions in the waiting list 

(WLSnew) are randomly chosen for the N surgeries and the constructive surgery schedule 

is invoked. Then, the new weighted objective function is calculated. The procedure is 

iteratively called while the stopping criterion is not reached. The stopping criterion is 

defined as a CPU time limit depending on the size of the problem (see section 6.5.2). 

The pseudo-code of Phase II is shown in Figure 6.4. 

6.5 Computational evaluation 

In this section, we formulate the integrated OR planning and scheduling problem by 

slightly modifying the multi-mode blocking job shop model proposed by Pham and 

Klinkert (2008). Then, we compare the performance of the proposed model with that of 

the model proposed by Pham and Klinkert (2008). Finally, we carry out an extensive 

computational analysis to compare the quality of the solution obtained by solving the 

proposed model in an exact way and by using the proposed approximate method.  
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Figure 6.4. Phase II procedure 

We generate a testbed according to the procedure described in Chapter 3, considering 

the 54 different combinations of |H|, |J|, β and α shown in shown in Table 6.2. 

Additionally, four different scenarios were defined by means of the following values of 

the objective weights: 

 Scenario I: wP = 0.33, wT = 0.33 and wS = 0.33. 

 Scenario II: wP = 0.6, wT = 0.2 and wS = 0.2. 

 Scenario III: wP = 0.2, wT = 0.6 and wS = 0.2.  

 Scenario IV: wP = 0.2, wT = 0.2 and wS = 0.6. 

The different scenarios have been chosen in order to determine the influence of each 

objective. Thereby, in Scenario I, all objectives are equally weighted, while in scenarios 

II, III and IV, an objective (the number of surgeries scheduled, the tardiness for each 

surgery scheduled and the total idle time of each surgeon during a day) is prioritized 

above the others. For each combination of the parameters and scenarios, 10 instances 

are generated, resulting in a total of 1,080 instances. The experiments were carried out 

on a PC with 2.80 GHz Intel Core i7-930 processor and 16 GBytes of RAM memory. 
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Factor Level 

|H| 1,2,5 

|J| 3, 6, 9 

β 0.75,1.00,1.25 

α 1.5, 2.0 

CV Ran [0.1…0.5] 

μ Ran [60,120,180,240] 

mds Ran [3…5] 

a Ran [240, 360, 480] 

Table 6.2. Factors and levels in the integrated OR planning and scheduling problem 

6.5.1 Comparison to the multi-mode blocking job shop model 

proposed by Pham and Klinkert (2008) 

Pham and Klinkert (2008) propose a multi-mode blocking job shop model to solve the 

elective surgical case scheduling problem, considering the makespan minimization 

objective (i.e. the maximum completion time). A mode is defined as a set of resources 

required to perform a surgery. Preoperative (a nurse), perioperative (a suitable OR, the 

responsible surgeon, a nurse and an anesthetist) and postoperative (a post-anesthesia 

care unit bed or a recovery bed) resources modes are considered. They assume 

constraints related to the availability of the resources as well as OR eligibility 

constraints. In order to adapt the multi-mode blocking job shop model proposed by 

Pham and Klinkert (2008) to our assumptions, the following modifications are made:   

 Preoperative and postoperative stages are not taken into account. Blocking 

constraints are not allowed since the postoperative stage is not considered. 

 Nurses and anesthetists are excluded from the model. Therefore, each surgical mode 

is composed by an OR, a responsible surgeon and an assistant surgeon.  

 Since both deadlines constraints and surgeons idle time are not considered in the 

multi-mode proposed by Pham and Klinkert (2008), we only consider the 

maximization of the number of surgeries scheduled as objective function for the 

comparison, i.e. the following objective weights are taken into account: wP = 1, wT = 

0 and wS = 0. 
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Problem Our model Pham and Klinkert model adaptation 

|H| |J| Β |I| |K| Variables Constraints OS  FS NS 
Time 

(sec.) 
Variables Constraints OS FS NS 

Time 

(sec.) 

1 

3 0.75 10 11 446 3,253 10 0 0 0 243 10,337 9 1 0 67 

6 2.00 40 42 11,820 242,466 7 3 0 202 6,731 6,211,743 0 1 9 600 

9 1.50 45 47 21,339 350,753 6 4 0 367 11,463 16,039,818 0 0 10 600 

2 

3 2.00 40 22 6,900 257,125 8 2 0 158 4,139 2,977,093 0 9 1 600 

6 1.50 59 32 26,077 874,369 0 10 0 600 14,383 32,245,172 0 0 10 600 

9 0.75 47 25 22,799 429,593 10 0 0 69 12,327 26,646,042 0 0 10 600 

5 

3 1.50 74 21 29,073 2,332,420 0 10 0 600 16,211 54,082,673 0 0 10 600 

6 0.75 72 21 51,668 2,295,601 0 10 0 600 26,827 1.55·108 0 0 10 600 

9 2.00 294 75 609,159 57,793,120 0 0 10 600 323,058 6.33·108 0 0 10 600 

Table 6.3.Comparison of decision models. 

The following indicators are considered in the comparison: 

 Size of both models (average number of variables and constraints), 

 Effectiveness of both models, according to the type of solution found after a given 

CPU time limit: Number of optimal solutions (OS), number of feasible (not optimal) 

solutions (FS), and number of problems for which no feasible solution is found (NS). 

 Average CPU time required for both models.  

Regarding the solver employed to analyze both models, Gurobi 5.6 and CPLEX 12.4 

were initially tested. The best results were obtained by Gurobi, so it was selected for 

solving both models. The results are shown in Table 6.3 (for several sizes of the 

testbed). Note that the mean CPU time is obtained by averaging these results only for 

optimal and feasible solutions among the 10 instances of each size. It can be seen that 

our ILP model is more effective than the adaptation of the multi-mode decision model 

due to the much lesser number of constraints. Together with the fact that our ILP model 

always find better solutions than the adapted model, the proposed ILP model provides 

88.9% feasible solutions (45.5% optimal solutions), while the adaptation of the multi-

mode decision model yields 22.2% feasible solutions (10% optimal solutions).  

Despite its efficiency, the proposed ILP model requires very long CPU times to obtain 

good feasible solutions (most instances reach the CPU time limit) and it is not able to 

obtain feasible solutions for planning horizons employed in practice (most commonly, 

the planning horizon length is 5 days). Therefore, in the next section, we evaluate the 

performance of the proposed approximate algorithm in terms of the CPU time required 
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and the relative percentage deviation of feasible solutions for large planning horizons 

such as those appearing in real cases. 

6.5.2 Performance of the iterated constructive method 

In order to compare the quality of the solution obtained by solving the proposed model 

in an exact way or by using the proposed approximate method, we consider the 

following response variables:  

 CPU time required for solving a given instance, and 

 Relative Percentage Deviation (RPD) and Relative Percentage Deviation’ (RPD’), 

according to expressions   bsolb MMMRPD 100 and 

  ,100 boundsolbound MMMDRP  where Msol is the value of the objective function 

obtained by a given method for a given instance, Mb is the value of the objective 

function corresponding to the best solution found and Mbound is the upper bound 

obtained by solving the instance by means of Gurobi (version 5.6) with a CPU time 

limit of 600 seconds. Note that the upper bound is determined by taking the 

maximum of the optimal objective values of all of the leaf nodes in the branch-and-

bound procedure used by Gurobi.  

In order to determine the best parameter setting for the approximate method, different 

values of the parameter N (3, 5, 7, 9) are tested, obtaining N = 5 the best results. 

Regarding the CPU time limit, it is calculated as   vHJI  2  milliseconds, being v 

an integer parameter (25 and 100). 

For each level of parameter |H|, the results are classified with respect to |J|, β and the 

number of each scenario. The average number of patients (|𝐼|̅) and the average number 

of surgeons (|�̅�|) are presented for each set of instances. Regarding the ILP model, 

Table 6.4 shows the number of optimal solutions (OS), the number of feasible (non-

optimal) solutions (FS), and the number of instances for which no feasible solution is 

found (NS). Note that no statistically significant differences at a 99% confidence 

interval between the levels of α were found, setting to 1.5 without loss of generality. 

The results highlight the difficulty for the ILP model to find optimal solutions, or even 

feasible solutions as the problem size increases. Thereby, 178, 41 and 0 optimal 
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solutions are found for 1, 2 and 5 days respectively. Regarding feasible (non-optimal) 

solutions, the ILP model is able to find solutions in 182, 282 and 167 instances for 1, 2 

and 5 days respectively. No solution has been found for the 230 remaining instances. To 

sum up, the ILP model is able to obtain 219 optimal solutions and 631 feasible (non-

optimal) solutions while there are 230 unsolved instances. The CPU time (seconds) 

values for the ILP model and the IC (with v = 25 and v = 100) are also detailed in Table 

6.4. The CPU time required by the ILP model increases with the problem size. The time 

limit of 600 seconds is reached in 861 times by the ILP model with an average runtime 

of 488.6 seconds for the total testbed. This represents a huge amount of time as 

compared to the average CPU time required by the IC with v = 25 and v = 100 for the 

total testbed (24.5 and 98.1 seconds respectively). The Average RPD (ARPD) and the 

Average RPD’ (ARPD’) values for the ILP model and the IC (with v = 25 and v = 100) 

are detailed in Table 6.5. Note that ARPD and ARPD’ values are obtained by averaging 

these results only for optimal and feasible solutions. The approximate methods clearly 

outperform the ILP model. Thereby, the global ARPD-ARPD’ values (for the whole 

testbed) are 6.90%-8.02%, 0.38%-1.69% and 0.11%-1.41% for the ILP model, the IC 

with v = 25 and v = 100 respectively.  

For one-day planning horizons, ARPD and ARPD’ values obtained by the ILP model 

(0.4%-1.2%) are closer to those obtained by the heuristics. However, these values 

significantly increase with the size of the problem, being 9%-10.6% and 12.1%-15.8% 

for 2 and 5 days, respectively. This fact, together with the CPU time requirements, 

justifies the implementation of approximate methods to find acceptable solutions in 

short period of times. 
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Problem Type of solutions obtained by MILP CPU time (sec.) 

|J| β (%) Scenario 

|H| = 1 |H| = 2 |H| = 5 |H| = 1 |H| = 2 |H| = 5 

|�̅�| |�̅�| OS FS NS |�̅�| |�̅�| OS FS NS |�̅�| |�̅�| OS FS NS 
MILP IC 

(v=25) 

IC 

(v=100) 

MILP IC 

(v=25) 

IC 

(v=100) 

MILP IC 

(v=25) 

IC 

(v=100) 

3 0.75 

I 

10.0 10.8 10 0 0 16.3 9.9 9 1 0 39.6 11.8 0 10 0 0.5 0.4 1.5 87.0 1.2 4.9 600.0 7.4 29.7 

3 1.50 16.2 18.4 8 2 0 29.4 17.7 0 10 0 73.7 20.9 0 10 0 142.4 0.6 2.4 600.0 2.2 8.8 600.0 13.8 55.3 

3 2.00  21.1 23.8 5 5 0 39.6 21.9 0 10 0 97.7 27.1 0 10 0 324.5 0.8 3.2 600.0 3.0 11.9 600.0 18.3 73.3 

6 0.75 15.6 18.5 10 0 0 31.1 17.9 1 9 0 71.7 21.4 0 10 0 2.1 1.2 4.7 551.1 4.7 18.7 600.0 26.9 107.6 

6 1.50 31.8 34.2 0 10 0 59.1 31.5 0 10 0 144.5 39.6 0 0 10 600.0 2.4 9.5 600.0 8.9 35.5 600.0 54.2 216.8 

6 2.00  40.3 41.7 0 10 0 80.5 41.7 0 10 0 198.2 51.9 0 0 10 600.0 3.0 12.1 600.0 12.1 48.3 600.0 74.3 297.3 

9 0.75 25.9 26.2 10 0 0 46.5 24.5 0 10 0 107.2 29.9 0 2 8 22.0 2.9 11.7 600.0 10.5 41.9 600.0 60.3 241.2 

9 1.50 45.0 47.3 0 10 0 89.5 47.7 0 10 0 221.4 57.1 0 0 10 600.0 5.1 20.3 600.0 20.1 80.6 600.0 124.5 498.2 

9 2.00  59.6 62.8 0 10 0 117.8 61.9 0 1 9 293.5 75.1 0 0 10 600.0 6.7 26.8 600.0 26.5 106.0 600.0 165.1 660.4 

3 0.75 

II 

10.0 10.8 10 0 0 16.3 9.9 9 1 0 39.6 11.8 0 10 0 0.5 0.4 1.5 73.8 1.2 4.9 600.0 7.4 29.7 

3 1.50 16.2 18.4 8 2 0 29.4 17.7 0 10 0 73.7 20.9 0 10 0 169.3 0.6 2.4 600.0 2.2 8.8 600.0 13.8 55.3 

3 2.00  21.1 23.8 7 3 0 39.6 21.9 0 10 0 97.7 27.1 0 10 0 239.8 0.8 3.2 600.0 3.0 11.9 600.0 18.3 73.3 

6 0.75 15.6 18.5 10 0 0 31.1 17.9 0 10 0 71.7 21.4 0 10 0 2.4 1.2 4.7 600.0 4.7 18.7 600.0 26.9 107.6 

6 1.50 31.8 34.2 0 10 0 59.1 31.5 0 10 0 144.5 39.6 0 0 10 600.0 2.4 9.5 600.0 8.9 35.5 600.0 54.2 216.8 

6 2.00  40.3 41.7 0 10 0 80.5 41.7 0 10 0 198.2 51.9 0 0 10 600.0 3.0 12.1 600.0 12.1 48.3 600.0 74.3 297.3 

9 0.75 25.9 26.2 10 0 0 46.5 24.5 0 10 0 107.2 29.9 0 1 9 27.8 2.9 11.7 600.0 10.5 41.9 600.0 60.3 241.2 

9 1.50 45.0 47.3 0 10 0 89.5 47.7 0 10 0 221.4 57.1 0 0 10 600.0 5.1 20.3 600.0 20.1 80.6 600.0 124.6 498.2 

9 2.00  59.6 62.8 0 10 0 117.8 61.9 0 1 9 293.5 75.1 0 0 10 600.0 6.7 26.8 600.0 26.5 106.0 600.0 165.1 660.4 

3 0.75 

III 

10.0 10.8 10 0 0 16.3 9.9 8 2 0 39.6 11.8 0 10 0 0.5 0.4 1.5 144.5 1.2 4.9 600.0 7.4 29.7 

3 1.50 16.2 18.4 9 1 0 29.4 17.7 0 10 0 73.7 20.9 0 10 0 89.8 0.6 2.4 600.0 2.2 8.8 600.0 13.8 55.3 

3 2.00  21.1 23.8 8 2 0 39.6 21.9 0 10 0 97.7 27.1 0 10 0 173.4 0.8 3.2 600.0 3.0 11.9 600.0 18.3 73.3 

6 0.75 15.6 18.5 10 0 0 31.1 17.9 2 8 0 71.7 21.4 0 10 0 2.0 1.2 4.7 531.9 4.7 18.7 600.0 26.9 107.6 

6 1.50 31.8 34.2 0 10 0 59.1 31.5 0 10 0 144.5 39.6 0 0 10 600.0 2.4 9.5 600.0 8.9 35.5 600.0 54.2 216.8 

6 2.00  40.3 41.7 0 10 0 80.5 41.7 0 10 0 198.2 51.9 0 0 10 600.0 3.0 12.1 600.0 12.1 48.3 600.0 74.3 297.3 

9 0.75 25.9 26.2 10 0 0 46.5 24.5 0 10 0 107.2 29.9 0 3 7 17.5 2.9 11.7 600.0 10.5 41.9 600.0 60.3 241.2 

9 1.50 45.0 47.3 0 10 0 89.5 47.7 0 10 0 221.4 57.1 0 0 10 600.0 5.1 20.3 600.0 20.1 80.6 600.0 124.6 498.2 

9 2.00  59.6 62.8 0 10 0 117.8 61.9 0 1 9 293.5 75.1 0 0 10 600.0 6.7 26.8 600.0 26.5 106.0 600.0 165.1 660.4 

3 0.75 

IV 

10.0 10.8 10 0 0 16.3 9.9 9 1 0 39.6 11.8 0 10 0 0.8 0.4 1.5 77.0 1.2 4.9 600.0 7.4 29.7 

3 1.50 16.2 18.4 7 3 0 29.4 17.7 0 10 0 73.7 20.9 0 10 0 192.3 0.6 2.4 600.0 2.2 8.8 600.0 13.8 55.3 

3 2.00  21.1 23.8 6 4 0 39.6 21.9 0 10 0 97.7 27.1 0 10 0 310.3 0.8 3.2 600.0 3.0 11.9 600.0 18.3 73.3 

6 0.75 15.6 18.5 10 0 0 31.1 17.9 3 7 0 71.7 21.4 0 10 0 5.0 1.2 4.7 516.9 4.7 18.7 600.0 26.9 107.6 

6 1.50 31.8 34.2 0 10 0 59.1 31.5 0 10 0 144.5 39.6 0 0 10 600.0 2.4 9.5 600.0 8.9 35.5 600.0 54.2 216.8 

6 2.00  40.3 41.7 0 10 0 80.5 41.7 0 10 0 198.2 51.9 0 0 10 600.0 3.0 12.1 600.0 12.1 48.3 600.0 74.3 297.3 

9 0.75 25.9 26.2 10 0 0 46.5 24.5 0 10 0 107.2 29.9 0 1 9 20.1 2.9 11.7 600.0 10.5 41.9 600.0 60.3 241.2 

9 1.50 45.0 47.3 0 10 0 89.5 47.7 0 10 0 221.4 57.1 0 0 10 600.0 5.1 20.3 600.0 20.1 80.6 600.0 124.5 498.2 

9 2.00  59.6 62.8 0 10 0 117.8 61.9 0 0 10 293.5 75.1 0 0 10 600.0 6.7 26.8 600.0 26.5 106.0 600.0 165.1 660.4 

Average   178 182 0   41 282 37   0 167 193 315.1 2.6 10.2 538.4 9.9 39.6 600.0 60.6 242.2 

Table 6.4. Number of optimal solutions (OS), feasible solutions (FS), not feasible solution found (NS) and CPU time values 
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Problem ARPD (%) ARPD’(%) 

|J| β (%) Scenario 

|H| = 1 |H| = 2 |H| = 5 |H| = 1 |H| = 2 |H| = 5 

MILP IC 

(v=25) 

IC 

(v=100) 

MILP IC 

(v=25) 

IC 

(v=100) 

MILP IC 

(v=25) 

IC 

(v=100) 

MILP IC 

(v=25) 

IC 

(v=100) 

MILP IC 

(v=25) 

IC 

(v=100) 

MILP IC 

(v=25) 

IC 

(v=100) 

3 0.75 

I 

0.0 0.1 0.1 0.0 0.1 0.0 0.7 0.4 0.2 0.0 0.1 0.1 0.0 0.1 0.0 1.0 0.7 0.5 

3 1.50 0.0 0.4 0.3 1.8 0.4 0.1 9.6 0.5 0.0 0.2 0.6 0.5 3.4 1.9 1.6 12.0 3.2 2.7 

3 2.00  0.0 0.8 0.5 2.9 0.3 0.1 21.5 0.4 0.1 0.0 1.1 0.8 4.6 2.0 1.8 23.5 2.9 2.6 

6 0.75 0.0 0.1 0.0 0.1 0.5 0.2 13.3 0.5 0.0 0.0 0.1 0.0 0.3 0.6 0.4 14.4 1.8 1.3 

6 1.50 0.1 0.5 0.3 7.8 0.4 0.1 -- 0.3 0.0 1.6 1.9 1.8 10.5 3.3 3.1 -- -- -- 

6 2.00  0.7 0.7 0.0 16.9 0.4 0.1 -- 0.3 0.0 2.3 2.3 1.6 19.0 2.8 2.6 -- -- -- 

9 0.75 0.0 0.6 0.1 6.8 0.7 0.0 26.7 0.4 0.0 0.0 0.6 0.1 7.9 1.9 1.2 28.3 2.8 2.0 

9 1.50 0.6 0.9 0.1 24.7 0.2 0.1 -- 0.2 0.0 2.8 3.2 2.4 27.1 3.4 3.3 -- -- -- 

9 2.00  1.1 0.8 0.0 21.6 0.3 0.0 -- 0.2 0.0 3.2 2.9 2.1 23.8 2.9 2.6 -- -- -- 

3 0.75 

II 

0.0 0.1 0.0 0.0 0.0 0.0 0.4 0.3 0.1 0.0 0.1 0.0 0.0 0.1 0.0  0.5 0.4 0.2 

3 1.50 0.0 0.5 0.5 1.1 0.8 0.1 12.4 0.5 0.0 0.0 0.6 0.6 2.4 2.2 1.5 15.1 3.5 3.1 

3 2.00  0.0 0.9 0.8 1.7 0.1 0.1 25.2 0.4 0.1 0.2 1.0 1.0 3.4 1.9 1.8 27.5 3.5 3.2 

6 0.75 0.0 0.2 0.0 0.0 0.4 0.1 30.8 0.5 0.0 0.0 0.2 0.0 0.0 0.5 0.2 31.7 1.8 1.3 

6 1.50 0.1 0.7 0.6 5.5 0.2 0.0 -- 0.5 0.0 1.6 2.1 2.1 8.6 3.5 3.4 -- -- -- 

6 2.00  0.3 0.7 0.1 25.6 0.3 0.2 -- 0.3 0.1 2.2 2.6 2.0 27.6 3.1 3.0 -- -- -- 

9 0.75 0.0 0.4 0.2 16.0 0.5 0.0 37.8 0.4 0.0 0.0 0.4 0.2 16.7 1.5 1.0 39.0 2.5 2.0 

9 1.50 0.3 0.9 0.6 34.3 0.5 0.1 -- 0.3 0.0 2.7 3.3 3.0 36.6 4.1 3.7 -- -- -- 

9 2.00  3.5 0.5 0.2 30.5 0.2 0.1 -- 0.4 0.0 5.9 3.0 2.7 32.3 3.7 3.0 -- -- -- 

3 0.75 

III 

0.0 0.0 0.1 0.0 0.2 0.1 0.4 0.4 0.1 0.0 0.0 0.1 0.0 0.2 0.1 0.5 0.5 0.2 

3 1.50 0.0 0.5 0.1 0.9 0.1 0.0 4.0 0.2 0.0 0.1 0.6 0.2 2.0 1.2 1.1 5.9 2.1 2.0 

3 2.00  0.0 0.6 0.3 1.6 0.2 0.0 17.5 0.1 0.1 0.0 0.7 0.4 2.8 1.4 1.2 19.0 2.0 1.9 

6 0.75 0.0 0.1 0.1 0.2 0.3 0.1 16.0 0.3 0.0 0.0 0.1 0.1 0.4 0.4 0.2 16.7 1.2 0.9 

6 1.50 0.3 0.6 0.1 4.5 0.4 0.0 -- 0.2 0.1 1.1 1.3 0.9 6.3 2.2 1.9 -- -- -- 

6 2.00  0.3 0.6 0.0 17.1 0.3 0.1 -- 0.2 0.0 1.5 1.7 1.2 18.5 2.0 1.8 -- -- -- 

9 0.75 0.0 0.3 0.2 12.5 0.1 0.2 22.9 0.4 0.0 0.0 0.3 0.2 13.2 1.0 1.0 23.2 1.6 1.4 

9 1.50 0.4 0.4 0.1 22.8 0.1 0.1 -- 0.3 0.0 2.0 1.9 1.6 24.5 2.3 2.3 -- -- -- 

9 2.00  0.8 0.5 0.0 20.1 0.3 0.0 -- 0.2 0.0 2.2 1.9 1.5 22.6 1.8 2.0 -- -- -- 

3 0.75 

IV 

0.0 0.3 0.1 0.0 0.4 0.1 1.4 0.4 0.0 0.0 0.3 0.1 0.0 0.4 0.1 2.0 0.9 0.6 

3 1.50 0.0 0.5 0.3 1.6 0.3 0.0 7.0 0.4 0.0 0.3 0.8 0.6 2.8 1.5 1.2 9.3 2.8 2.4 

3 2.00  0.1 0.7 0.5 4.0 0.3 0.0 12.7 0.4 0.1 0.2 0.8 0.6 5.3 1.7 1.4 14.5 2.5 2.2 

6 0.75 0.0 0.2 0.1 0.5 0.5 0.1 12.4 0.4 0.1 0.0 0.2 0.1 0.8 0.8 0.4 13.6 1.8 1.5 

6 1.50 0.6 0.5 0.1 6.7 0.5 0.1 -- 0.3 0.1 1.9 1.8 1.4 9.0 2.9 2.5 -- -- -- 

6 2.00  1.1 0.5 0.1 12.3 0.3 0.1 -- 0.2 0.1 2.6 1.9 1.5 14.4 2.6 2.4 -- -- -- 

9 0.75 0.0 0.7 0.5 5.3 0.3 0.1 17.2 0.3 0.1 0.0 0.7 0.5 6.9 2.0 1.8 18.9 2.6 2.3 

9 1.50 1.3 0.4 0.0 15.6 0.5 0.0 -- 0.4 0.0 3.3 2.4 2.1 18.0 3.3 2.8 -- -- -- 

9 2.00  3.2 0.5 0.0 -- 0.1 0.1 -- 0.2 0.0 5.0 2.3 1.8 -- -- -- -- -- -- 

Average 0.4 0.5 0.2 9.0 0.3 0.1 12.1 0.3 0.0 1.2 1.3 1.0 10.6 1.9 1.7 15.8 2.1 1.7   

Table 6.5. ARPD and ARPD’ values 
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Objective 
Scenario 

I II III IV 

No.  scheduled surgeries 0.778 0.801 0.782 0.765 

Tardiness 0.016 0.023 0.010 0.019 

Surgeon idle time 0.022 0.035 0.023 0.011 

Table 6.6. Objective functions normalized values 

Finally, Table 6.6 shows the normalized average value for each objective under the 

different scenarios, providing to the OR manager an overview of the implications of 

choosing any of the proposed scenarios. Obviously, scenario II, III and IV maximize the 

number of surgeries, minimize the tardiness of the surgeries and minimize the surgeons’ 

waiting time respectively. Thereby, for example under the scenario III, the tardiness 

sharply decreases from 0.016 to 0.010 with respect to the equally weighted scenario (i.e. 

scenario I) as well as the number of scheduled surgeries increases from 0.778 to 0.782, 

while the surgeon idle time stay very similar (from 0.022 to 0.023).  

6.5.3 Analysis of surgery duration uncertainty: a simulation approach 

In Section 6.5.2, the computational experience of this section has been carried out 

assuming deterministic surgery durations. However, the surgical schedule is usually 

influenced by the stochastic nature of the surgery duration (see e.g. Cardoen et al., 

2010). For these reasons, a number of simulations have been carried out to analyze the 

robustness of the so-obtained surgical schedules. More specifically, for each instance of 

the testbed, the surgical schedule obtained in a deterministic way was simulated 100 

times by modifying the surgery duration of surgeries scheduled. Surgery durations were 

varied according to a log-normal distribution where the expected duration is the 

deterministic surgery duration and the standard deviation is 5%, 10%, 15% or 20% of 

the expected duration (i.e. CV = 0.05, 0.10, 0.15 and 0.20). Note that 432,000 

simulations were performed, being the feasibility of each surgical schedule analyzed for 

each value of CV. The robustness is measured by: the average OR-day utilization, the 

percentage of surgical resources (OR and surgeons) with overtime and the average 

overtime. These results and the average OR-day utilization are shown in Table 6.7. 
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CV 
Av. OR-day 

Utilization (min.) 

% OR-days 

with overtime 

Av. OR-day 

Overtime (min.) 

% Surgeons 

with overtime 

Av. Surgeon 

Overtime (min.) 

0.05 376.46 5.58% 9.24 1.99% 8.46 

0.10 376.46 11.91% 18.99 4.21% 17.12 

0.15 376.51 16.88% 29.49 6.27% 26.10 

0.20 376.50 20.66% 40.63 8.14% 35.41 

Table 6.7. Simulation results for analyzing the stochasticity of surgery durations 

It can be seen that the average OR utilization is not influenced by the stochasticity of the 

surgery duration. Thereby, the average utilizations are 376.46, 376.46, 376.51 and 

376.50 minutes by using CV = 0.05, 0.1, 0.15 and 0.20 respectively. Due to the large 

number of simulations performed, 95% confidence intervals lengths are very narrow for 

each case, being, for example, 0.85 minutes for CV = 0.20. Regarding OR overtime, 

only 5.58% of OR-days have overtime for CV = 0.05, being the average overtime 9.24 

minutes. Even for a high stochasticity of surgery durations represented by CV = 0.20, 

20.66% of the OR-days have overtime, being the average overtime 40.63 minutes 

(which represents 8.47% of the capacity of the ORs). Finally, surgeons’ overtime are 

still more favorable since only the 1.99%, 4.21%, 6.27% and 8.14% of the surgeons 

have overtime for CV = 0.05, 0.10, 0.15 and 0.20 respectively. In case of overtime, it is 

8.46, 17.12, 26.10 and 35.41 minutes on average for CV = 0.05, 0.10, 0.15 and 0.20 

respectively. Summarizing the results of the simulation, we can conclude that the 

surgical schedules proposed by the approximate method are robust in terms of: (i) ORs, 

since the worst overtime value (i.e. 40.53 minutes, a 8.47% of the OR-day regular 

capacity for CV = 0.20) is acceptable in real/literature settings, in which the overtime 

allowed varies from 25% to 50% of the regular capacity (see e.g. Roland et al., 2010); 

(ii) Surgeons, since the average surgeon overtime is 35.41 minutes, which represents a 

9.84% of the average available time of surgeons. In the case overtime is not allowed, the 

simulation results can be used to determine planned slacks for reducing/avoiding the 

overtime (see e.g. Hans et al., 2008).      
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6.6 Conclusions 

In this chapter, we have addressed the integrated OR planning and scheduling problem 

which consists on assigning the date, the OR and the time indication for each surgery in 

the waiting list over a given planning horizon. In practice, surgeries are usually 

performed by two-surgeon surgical teams (the responsible surgeon and the assistant 

surgeon), and the surgery duration depends on the type of the assistant surgeon assigned 

to the surgery. To the best of our knowledge, this decision problem has not been 

addressed in the literature. The novelty of our contribution is that surgery durations 

depend on the surgical team, which may be composed by one or two surgeons with 

different level of experience. 

We have proposed a ILP model and an adaptation of the multi-mode blocking job shop 

model (Pham and Klinkert, 2008) to solve the problem. The performance of both 

models is compared by generating a set of instances based on the literature. The results 

show that the proposed model is more effective than the adapted multi-mode model. 

Nevertheless, both approaches are not able to find feasible solutions for real-life 

instance sizes in an acceptable CPU time. Therefore, we propose an approximate 

algorithm for obtaining good feasible solutions in short CPU times. The computational 

experience shows that the proposed algorithm is able to find feasible solutions for all 

problems in the testbed, requiring shorter CPU times than the ILP model. Additionally, 

the algorithm provides better average relative percentage deviations than the ILP model 

for each planning horizon of the testbed, resulting in an ARPD of 0.11% for IC (v = 

100), which is a 7.52% lower than that of Gurobi. Finally, the robustness of surgical 

schedules calculated in such deterministic way has been analyzed via simulation, 

resulting that, in the worst case, 20.66% of OR-days and 8.14% of surgeons would have 

overtime. Nevertheless, the average overtime for both surgeons and ORs is 8.47% of the 

OR-day regular capacity and 9.84% of the average available surgeon time. These results 

are acceptable in real settings and hence, a deterministic approach is suitable for solving 

the proposed problem.  
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Chapter 7            

Validation of Solution Procedures: A Real 

Application 

7.1 Introduction 

In this chapter we present the results of the implementation of the decision models and 

solution approaches described in previous chapters in the University Hospital “Virgen 

del Rocio”, focusing on the Plastic Surgery and Major Burns Specialty, the pilot 

surgical specialty. In order to give a clear idea of this surgical specialty, first, the 

specific OR planning and scheduling problem of the Plastic Surgery and Major Burns 

Specialty is described in Section 7.2. Then, the decision models and solution approaches 

presented in Chapter 4 are validated for this Specialty. The validation is carried out both 

with experimental (i.e. generating specific problem instances based on the sizes and 

patterns of past interventions in this department, together with the specific constraints 

and policies employed in this specialty), and historical data (i.e. by using pasts waiting 

lists to compare the solution obtained by the procedures with the schedules applied in 

practice) in Section 7.3. By conducting the experimental validation we aim to ensure the 

quality of the solution procedures (already tested in testbeds extracted from the 

literature) when applied to this specific. The so-called historical validation provides us 

with a quantification of the advantages of using the proposed models, which serves us to 

increase the acceptance of the DSS by the responsible of the surgical and to set goals for 

and after its implementation. Furthermore, the capabilities of such DSS are explored by 

conducting a what-if analysis on several allocation policies, and on different objectives. 

In Section 7.4., the DSS implemented and currently in use in the Specialty is outlined. 

Finally, in Section 7.5, the conclusions of the chapter are presented. 
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7.2 The OR planning and scheduling problem of the Plastic 

Surgery and Major Burns Specialty 

In this Section, we describe the specific OR planning and scheduling problem in the 

Plastic Surgery and Major Burns Specialty of the University Hospital “Virgen del 

Rocio”. Note that the problem under consideration is modeled by the decision model 

presented in Chapter 4.  

The Plastic Surgery and Major Burns Specialty performs around 3,000 surgeries per 

year, including emergency, deferred urgency, elective and ambulatory surgeries. More 

specifically, the specialty has 14 surgeons and 4 multifunctional ORs for performing 

deferred urgency, elective and ambulatory surgeries. Emergency surgeries are not 

considered as a part of our problem, since these surgeries are performed using additional 

resources (called urgent surgical resources). Currently, on each day, 3 ORs are available 

for performing deferred urgency and elective surgeries from 8.30 a.m. to 3 p.m., and 1 

OR is reserved for performing ambulatory surgeries from 3 p.m. to 8 p.m. Regarding 

surgeons availability, a weekly schedule is defined by the responsible of the surgical 

unit, specifying who surgeons are available for performing surgeries (the maximum 

surgery time is 6.5 hours per day), and for doing other tasks (consultations, look after 

patients operated, etc.). The number of ORs where a surgeon could be allocated is 

limited in order to reduce surgeon idle time and overlapping of consecutive surgeries by 

the same surgeon. Finally, the remaining human and instrumental perioperative 

resources and recovery facilities are assumed to be available whenever needed, thus not 

representing bottlenecks.     

The modified block scheduling strategy is used by the Decision Maker to manage ORs. 

Burn surgeries (i.e. deferred urgency surgeries) have two reserved OR-days (i.e. a tuple 

of an OR and a day) every week because of their unpredictable arrivals and their high 

priority (they have to be operated as soon as possible), and because they can only be 

operated by only few surgeons. Most plastic surgeries can be performed in any available 

OR by any available surgeon, with the exception of microsurgeries which have two 

reserved OR-days every week because of their complexity, the special surgical 

equipment required, and the high estimated length of the surgery (around 10 hours). 
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At the consultation stage, each patient on the waiting list is assigned to a surgeon who is 

the responsible for performing the surgery. This assignment is made by the responsible 

of the surgical specialty (Decision Maker) based on surgeon’s specialty (i.e. types of 

surgery which could be performed by the surgeon), his/her skills and workload. The 

expected surgery duration is forecasted by the Decision Maker based on the historical 

data and patient’s characteristics. Each surgery must be scheduled within a time period 

defined by its release and deadlines. The release date is the earliest date in which the 

patient could be operated (i.e. once all medical tests are completed). The deadline (i.e. 

the latest date for performing the surgery) depends on the maximum time before 

treatment (in days) established by the patient`s urgency-related group, which is defined 

by National Healthcare Services based on a set of explicit clinical and social criteria. 

The maximum times considered in the Specialty are 45, 180 and 365 days.   

The objective function is derived from the performance indicators employed by the 

Regional Healthcare System in Andalusia (Spain), and it is related to minimizing access 

time for patients with higher clinical weight values. The clinical weight depends on a 

linear combination of the priority of the surgery (so a higher urgency of the surgery 

leads to a greater weight) and the number of days per patient spent on the waiting list at 

the time (patients with longer stays on the waiting list have higher weights and thus it 

aims to reduce access time). It is to note that this weighting function yields a higher 

priority to the single patient with the highest weight as long as a set of patients whose 

sum of weights is highest than that of the single patient and they all together can be 

planned in the available slot. For this reason, it is necessary to give greater weight to a 

single patient’s clinical weight as compared to the sum of patients’ clinical weight. In 

Section 7.4, we take into account this issue in the objective function by means of a 

parameter g which is the exponent of the patient’s clinical weight, so that  if g = 1 we 

consider the first scenario, while g > 1 indicates the second one.  

Finally, the OR planning and scheduling problem is performed on a two weekly base 

and is finalized on Friday for the following two weeks. In addition, other decisions are 

made over medium-long planning horizons (four-week, eight-week or twelve-week 

planning horizons) in order to inform patients several weeks or even months in advance 

of their surgeries (reducing the number of cancellations, and improving the quality of 

service) or to negotiate surgical resources for future planning periods (managerial what-

if analyses). 
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7.3  Validation and analysis 

In this section we carry out computational experiments in order to validate the proposed 

solution procedures for solving the OR planning and scheduling problem in the Plastic 

Surgery and Major Burns Specialty of the University Hospital “Virgen del Rocio”. Note 

that, the problem is modeled using the decision model proposed in Chapter 4, and 

solved using the proposed constructive heuristics and the Random Extraction-Insertion 

(REI) algorithm. Although the REI metaheuristic is the best method for solving the OR 

planning problem (see Chapter 4), the constructive heuristics are also taken into account 

in this analysis due to the lower CPU times required to solve the problem, which would 

be an important advantage to make decisions over medium-long planning horizons. 

First, an experimental validation is carried out to ensure the quality of the solution 

approaches for solving the problem (see Section 7.3.1). We focus on the performance 

for solving the problem over medium-long planning horizons, since the efficiency for 

solving the problem over a short planning horizon (week) has been showed in Chapter 

4. Once the efficiency of the proposed solution approaches is showed for solving the 

problem, we present a historical validation to quantify the advantages of using the 

decision model and the REI method (see Section 7.4.2). Finally, Section 7.4.3 presents 

what-if analyses for solving the problem to compare the impact on several patient 

allocation policies, several objective functions, several resource management strategies 

and several planning horizons. 

7.3.1 Experimental validation 

As described above, the Decision Maker makes decisions related to inform patients 

several weeks or even months in advance of their surgeries or negotiate surgical 

resources for future planning periods. In this context, the complexity of the problem 

increases due to the huge number of decision variables (i.e. the number of surgeries in 

the waiting list, and the number of OR-days) and constraints. With this consideration in 

mind, we propose a solution approach to solve the problem over medium-long planning 

horizons. The solution approach is as follows: 

 First, the planning horizon is divided into weekly planning horizons, since a week is 

typically used for solving the OR planning problem (see Chapter 4).  
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 Second, a partial waiting list is determined for each weekly planning horizon. The 

partial waiting list is determined using the following procedure: (i) patients that 

could not be scheduled in previous planning horizons are sorted according to their 

clinical weight (i.e. the best sorting indicator as shown in Chapter 4); (ii) patients are 

selected one by one until the total sum of their expected surgery duration exceeds a 

percentage γ of the OR regular capacity available in the weekly planning horizon. 

For each partial waiting list, the planning problem is solved by the constructive 

heuristics and the REI metaheuristic proposed in this Thesis.  

A calibration procedure is carried out to determine the best parameter setting for the 

REI metaheuristic. We generate a test bed according to the procedure described in 

Chapter 3, considering the 20 different combinations of β, |H| and |J| (see Table 7.1). 

For each combination of the factors, 10 instances are generated, resulting in a total of 

120 instances. The experiments were carried out on a PC with 2.40 GHz Intel Core i5 

processor and 4 GBytes of RAM memory. The RPD is considered as the response 

variable, being define as   bsolb MMMRPD 100 . Msol is the value of the objective 

function obtained by a given method for a given instance, and Mb is the value of the 

objective function corresponding to the best solution found. 

Regarding the percentage used to determine the waiting list considered at each weekly 

planning horizon, we test 100%, 125% and 150% as levels of γ, being γ = 125% the best 

level. As describe in Chapter 4, REI is characterized by the constructive heuristic used 

to generate the initial solution, the number of extracted surgeries (n), the percentage of 

the maximal deterioration (θ) and the probability of accepts a solution which 

deteriorates a solution (φ). Regarding the constructive heuristic used to generate the 

initial solution, we consider ST and MT heuristics proposed in Chapter 4. The MTALL 

heuristic yields the best results to determine the surgical schedule from which the initial 

waiting list is constructed. In order to reduce CPU time values, we only consider the 

sorting tuples (t, HILL) and (w, DEC), which are involved in the best ST heuristics (see 

the best ST heuristics for each level of |H| in Table 7.2). REI is tested with the following 

levels: n is set to 1, 3 and 5; θ is set to 10% and 20%} and; φ is set to 1%, 5%, and 10%. 

The best setting was n = 1, θ = 10% and φ = 5%. 
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Factor Level 

|H| 5, 10, 20, 40, 60 

|J| 4, 8 

β 1.00,1.25 

|K| 8, 16 

CV 0.1 

μ 120 

mds Ran [3…5] 

a 480 

u |J| 

Table 7.1. Factors and levels considered in the OR planning and scheduling problem in the 

University Hospital “Virgen del Rocio” 

 

|H| BP 

algorithm 

I C RPD 

(%) 

5 

FF 
w 

 

DEC 

 

0.10 

BF 1.97 

LF 10.64 

10 

FF 
w 

 

DEC 

 

0.16 

BF 0.89 

LF 5.43 

20 

FF 
w 

 

DEC 

 

0.50 

BF 0.52 

LF 2.52 

40 

FF 
w 

 

DEC 

 

1.40 

BF 1.11 

LF 1.23 

60 

FF 
w 

DEC 

 

2.54 

BF 1.76 

LF t HILL 1.08 

Table 7.2. TSBP heuristics calibration results 

The results are classified with respect to |H|, |J| and β, being the average number of 

patients in the waiting list (|𝐼|̅) and the average number of surgeons (|�̅�|) presented for 

each set of instances. Table 7.3 shows the Average RPD (ARPD), the number of 

instances in which a feasible solution is found and the CPU time (in seconds) required 

for each approach (i.e. ILP, best ST heuristics, MTALL and REI). Note that ARPD values 

are obtained by averaging these results only for feasible solutions. The ILP approach is 

solved by using the commercial software Gurobi version 5.6 with a stopping criterion.  
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|H| 

|J| β (|𝑰|̅) |�̅�| 
ARPD (%) /No. solutions found CPU time (sec.) 

ILP ST MTALL REI ILP ST MTALL REI 

5 

4 
1.00 (81.1) 8.1 0.26 / 10 4.31 / 10 4.31 / 10 0.12 / 10 20.0 0.015 0.016 20.0 

1.25 (100.4) 8.2 0.55 / 10 4.71 / 10 4.52 / 10 0.00 / 10 25.0 0.012 0.016 25.0 

8 
1.00 (161.5)  15.7 0.27 /10 3.37 / 10 3.33 / 10 0.06 / 10 40.0 0.020 0.053 40.0 

1.25 (201.6) 15.7 0.29 / 10 3.47 / 10 3.30 / 10 0.35 / 10 50.0 0.019 0.070 50.0 

10 

4 
1.00 (160.9) 8.2 0.90 /10 4.79 / 10 4.70 / 10 0.01 / 10 40.0 0.020 0.030 40.0 

1.25 (201.8) 8.1 1.51 /10 5.33 / 10 4.87 / 10 0.00 / 10 50.0 0.020 0.031 50.0 

8 
1.00 (321.2) 15.4 0.24 /10 3.87 / 10 3.85 / 10 0.07 / 10 80.0 0.040 0.118 80.0 

1.25 (402.5) 15.7 0.72 / 10 4.26 / 10 4.08 / 10 0.14 / 10 100.0 0.039 0.130 100.0 

20 

4 
1.00 (322.2) 8.1 1.39 / 10 5.70 / 10 5.33 / 10 0.00 / 10 80.0 0.041 0.066 80.0 

1.25 (401.7) 8.6 1.45 / 10 7.00 / 10 6.26 / 10 0.00 / 10 100.0 0.047 0.066 100.0 

8 
1.00 (643.7) 15.4 1.33 / 10 3.99 / 10 3.74 / 10 0.00 / 10 160.0 0.091 0.268 160.0 

1.25 (804.7) 15.7 0.91 / 10 5.65 / 10 5.53 / 10 0.11 / 10 200.0 0.102 0.276 200.0 

40 

4 
1.00 (643.0) 7.9 1.89 / 10 6.63 / 10 5.50 / 10 0.09 / 10 160.0 0.104 0.150 160.0 

1.25 (803.2) 8.1 1.53 / 10 7.05 /10 5.62 / 10 0.00 / 10 200.0 0.122 0.166 200.0 

8 
1.00 (1284.5) 15.3 1.58 / 10 5.93 / 10 5.05 / 10 0.00 / 10 320.0 0.265 0.648 320.0 

1.25 (1606.2) 14.9 0.76 /10 6.30 / 10 5.51 / 10 0.01 / 10 400.0 0.337 0.696 400.0 

60 

4 
1.00 (963.8) 8.1 2.33 /10 6.81 / 10 5.44 / 10 0.00 / 10 240.0 0.206 0.284 240.0 

1.25 (1206.0) 7.9 1.34 / 8 6.51 / 10 5.28 / 10 0.05 / 10 300.0 0.264 0.333 300.0 

8 
1.00 (1925.9) 15.8 -- / 0 5.26 / 10 4.16 / 10 0.00 / 10 480.0 0.610 1.149 480.0 

1.25 (2408.2) 15.9 -- / 0 4.71 / 10 4.77 / 10 0.00 / 10 600.0 0.828 1.367 600.0 

Average 1.07 / 8.4 5.28 / 10 4.76 / 10 0.01 / 10 182.3 0.160 0.297 182.3 

Table 7.3. ARPD, No. solutions found and CPU time values 

The stopping criterion is defined as a CPU time limit for the ILP approach and using the 

REI heuristic. The CPU time limit depends on the size of the problem, being calculated 

as |H| ∙ |J| ∙ β. Results highlight that REI heuristic is better than the ILP approach, being 

0.01% and 1.07% the ARPD values respectively. It is also important to remark that 

constructive heuristics (ST and MTALL) yield good quality of solutions requiring short 

CPU times (5.28% and 4.76% in 0.160 and 0.297 seconds respectively). Regarding the 

number of solutions found, the proposed heuristics always find feasible solutions, while 

the ILP approach presents difficulties to find feasible solutions when the size of the 

problem increases (it only finds feasible solutions for 45% of the instances for a twelve-

week planning horizon).  

7.3.2 Validation with historical data 

In this Section we present results of a historical validation of the decision model and the 

REI metaheuristic for solving the OR planning and scheduling problem in the Plastic 

Surgery and Major Burns Specialty of the University Hospital “Virgen del Rocio”.  

First, we present computational experiments to evaluate and compare the results 

obtained by using the decision model against the real results obtained by the Decision 

Maker from February 2009 to July 2009. As an example, we show the results for 

February. The waiting list was composed by 365 patients, getting the data for several 
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information systems of the Hospital. In order to consider the prioritization criteria 

proposed in Section 7.2, we introduce the parameter g in the objective function in the 

following manner: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑
1

ℎ
(∑∑𝑤𝑖

𝑔
𝑋𝑖𝑗ℎ

𝑗∈𝐽𝑖∈𝐼

)

ℎ∈𝐻

                                                                                                                (7.1) 

We propose the following scenarios to compare the results obtained by the decision 

model against the real results obtained by the Specialty: 

 Scenario I, the parameter g is set to 1, i.e. the objective of maximizing the sum of 

patients’ weights scheduled in the planning horizon is considered. 

 Scenario II, the parameter g is set to 4, i.e. the objective of maximizing the service 

level by planning patients with greater clinical weight as soon as possible in the 

planning horizon. 

 Scenario III, same scenario as in I, increasing a 10% the length of each surgery.  

 Scenario IV, same scenario as in II, increasing a 10% the length of each surgery. 

Table 7.4 shows the value of the service level, and the number of scheduled patients in 

the considered planning horizon. The real schedule column represents the value of the 

service level and the number of patients scheduled in the Specialty. In order to compare 

the scenarios, the service level showed on Table 7.4 is determined as the sum of the 

quotients between the clinical weight and the date of the intervention of scheduled 

patients with g =1. The values of the service level and the numbers of patients 

scheduled in the tested scenarios are greater than the ones in the real schedule. 

In view of these results, the proposed decision model were used to solve the OR 

planning problem in the Plastic Surgery and Major Burns Specialty from October 2009 

to May 2010. The values of the service level and the number of scheduled patients were 

better than the real results obtained in last years, turning out surgical schedules with a 

high adhesiveness (80% of surgeries were performed in the OR-day proposed by the 

solution approaches). In addition, it also has to be noted that the time that the Decision 

Maker devotes to planning surgeries is greatly reduced by the use of the decision. 
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Scenario Decision model Real schedule 

Service level No. of scheduled patients Service level No. of scheduled patients 

I 7617 (116%) 120 (35%) 

3525 89 
II 4723 (34%) 111 (25%) 

III 6821 (93%) 112 (26%) 

IV 4001 (13%) 105(18%) 

Table 7.4. Decision model result vs. real results 

Then, we generate an extensive testbed to validate the performance of the REI 

metaheuristic for solving the problem. The testbed (100 instances) is generated based on 

meetings with the Decision Maker, data provided by the annual management report and 

historical data from the Specialty following the procedure proposed in Chapter 3. Each 

instance contains an initial waiting list along with the patient arrivals for each week of 

the year (i.e. 52 weeks). Surgery parameters are generated by empirical statistical 

distributions. Note that the results are compared against the real results obtained by the 

Specialty during 2012. The number of surgeries performed by the Specialty during 2012 

was 2,823. Using the same surgical resources (ORs and surgeons) and the same initial 

waiting list, the REI metaheuristic is able to schedule 2,962 surgeries, which means an 

average increase of 2.67 surgeries per week. 

7.3.3 What-if analysis 

In this section we present results of different managerial what-if analyses for solving the 

OR planning and scheduling problem in the Plastic Surgery and Major Burns Specialty. 

Several managerial decisions were identified by meetings with the Decision Maker 

during two years, as were the selection of the patient allocation strategy (how patients 

are allocated to surgeons), the objective function (which is the impact on the size of the 

waiting list and on the use of resources), the planning horizon (what is the best planning 

horizon to solve the problem), and, finally, the resource management strategy (how the 

operating theatre resources are managed). The results presented in this section have 

been obtained from solving testbeds used in Section 7.3.1 using the decision model and 

the REI metaheuristic proposed in Chapter 4. 

7.3.3.1 Patient allocation strategies 

The following patient allocation policies are analyzed to solve the OR planning problem 

of the Plastic Surgery and Major Burns Specialty: 
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 In the P-S-OR policy, it is assumed that patients have been previously assigned to a 

surgeon. Therefore the set “patient-surgeon” is allocated to an OR-day where the 

surgery can be performed. This policy guarantees the continuity of care, i.e. each 

patient is operated by the surgeon who examined him/her from his/her arrival to the 

hospital (see e.g. Guinet and Chaabane, 2003; Jebali et al., 2006).  

 In the P-OR-S policy, patients are first assigned to an OR-day, and then surgeons are 

allocated to the set “patients-OR-day” (see e.g. Hans et al., 2008). This policy is 

more flexible than P-S-OR, as the patient does not depend on the capacity of a 

particular surgeon, but it may present problems both from social and professional 

point of view. On one hand, it is possible that a patient does not want to be operated 

by a surgeon who did not examine him/her before. On the other hand, it may happen 

that a surgeon does not want to operate a patient who has been initially examined by 

another surgeon.   

 In order to reduce the drawbacks of the so-called P-OR-S policy, we propose a 

hybrid policy in which there are patients who are scheduled based on the so-called P-

S-OR policy and others are scheduled based on the P-OR-S. Patients, who are 

scheduled according to the P-OR-S policy, must be a level of medical priority 

established by the Decision Maker. These patients are assigned to a “knapsack 

surgeon” available in each OR-day in the planning horizon. In fact, surgeries 

assigned to the fictitious surgeon in a day will be performed by surgeons in the 

Specialty who are not assigned to any OR-day. 

Note that the P-S-OR policy is the strategy used in the Specialty, and it is modeled by 

using the decision model proposed in Chapter 4. However, minor modifications are 

needed to model the P-OR-S and hybrid policies: 

 To model the P-OR-S policy, we replace constraints (4.5)-(4.7), and adding the 

following ones: 

∑𝑍𝑘𝑗ℎ ≤ 1     (∀𝑘 ∈ 𝐾, ∀ℎ ∈ 𝐻|𝑎𝑘ℎ > 0)                                                                                               (7.1)

𝑗∈𝐽

 

    

∑𝑍𝑘𝑗ℎ = 1     (∀𝑗 ∈ 𝐽, ∀ℎ ∈ 𝐻)                                                                                                             (7.2)

𝑘∈𝐾
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 Scenario Policy Real schedule 

P-S-OR Hybrid P-OR-S 

 7617 (116%) 7705 (119%) 8075 (129%) 

3525 
II 4723 (34%) 4820 (37%) 5027 (43%) 

III 6821 (93%) 7030 (99%) 7332 (108%) 

IV 4001 (13%) 4062 (15%) 4205 (19%) 

 Table 7.5. Service level of the surgical schedule 

 

Scenario Policy Real schedule 

P-S-OR Hybrid P-OR-S 

I 120 (35%) 120 (35%) 126 (42%) 

89 
II 111 (25%) 112 (26%) 116 (30%) 

III 112 (26%) 112 (26%) 117 (31%) 

IV 105(18%) 105 (18%) 108 (21%) 

Table 7.6. Number of scheduled patients 

Constraints (7.1) specify that a surgeon can be assigned at most to one OR-day 

during a day if he/she is available to perform surgeries, while constraints (7.2) ensure 

that each OR-day must be assigned to a surgeon. 

 To model the hybrid policy, we include the knapsack surgeon in the model by 

extending the set K (i.e. k =1…|K|+1). We assume that the regular capacity of the 

knapsack surgeon (a|K|+1h) is equal to the total OR capacity during the day in order to 

consider the extreme scenario in that all surgeries scheduled during a day belong to 

the knapsack surgeon. Finally, we replace constraints (4.6) for the knapsack surgeon 

due to surgeons belonged to the Specialty will perform the surgeries allocated to the 

knapsack surgeon. 

The value of the service level and the number of scheduled patients in February 2009 

are shown in Table 7.5 and 7.6 respectively. In the P-OR-S policy, the value of the 

service level and the number of scheduled patients is the largest for each scenario. A 

patient is not assigned to a specific surgeon, and therefore can be scheduled earlier in 

the planning horizon. Regarding the hybrid policy, the number of patients assigned to 

the “knapsack surgeon” influences the quality of service of a surgical specialty. 

According to the results, if the percentage of patients assigned to the “knapsack 

surgeon” in the waiting list is high, then the value of the service level is close to the 

value obtained in the P-OR-S policy. In our case, only 20 patients are assigned to the 

“knapsack surgeon” so the value is closer to the results of the P-S-OR policy. On the 
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other hand we can choose to schedule as many surgeries as possible in the planning 

period by setting g = 1 or to prioritize the scheduling of patients with greater clinical 

weight g = 4. As a consequence, the value of the service level and the number of 

scheduled patients in scenarios with g = 1 is bigger than scenarios with g = 4. 

7.3.3.2 Selection of planning horizons and objective functions 

In this section, with the help of the REI metaheuristic, we evaluate different objectives 

functions using several planning horizons under several guidelines (patient 

prioritization, waiting list reduction, etc.). Besides analyzing the service level (O1) 

under the modified block scheduling strategy that is used in the Specialty, the following 

objectives have been considered: number of scheduled surgeries maximization (O2), 

ORs utilization maximization (O3), and a weighted objective that maximizes the service 

level during the first 6 months and the number of scheduled surgeries during the second 

6 months (O4) using different planning horizons of a week, a two-week, and four-week. 

On Table 7.7, the average annual values for each objective and planning horizon are 

shown, taking into account the average values of service level, the number of scheduled 

surgeries (increase in number of patients with respect to the effectively intervened is 

shown in brackets), ORs utilization, number of patients on the waiting list at the end of 

the year (within brackets, the difference with respect to the size of the waiting list at the 

beginning of the year), and CPU time required to solve the instance. Note that the 

termination criterion of REI for each planning horizon is determined by the length (1, 2 

and 4 seconds for each weekly, two-weekly and four-weekly planning horizons 

respectively). The results show that the selection of the planning horizon greatly 

depends on the indicator selected by the Decision Maker. More specifically, the four-

week horizon seems the best one regarding the service level, as there are a larger 

number of high-priority surgeries that can be schedule as compared to shorter horizons. 

With respect to the number of scheduled surgeries, the best horizon is a week, as in this 

case there are lesser surgeries on the waiting list whose deadline is within the planning 

horizon and therefore there is more flexibility to build the surgical schedule. Finally, the 

planning horizon does not seem to be a significant factor when the objective involves 

OR utilization. With respect to the time required to generate the surgical schedules, it 

has to be noted that the maximum average time for the evaluation of a scenario is 467.5 

seconds. 
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 Objective 

Function 

Planning 

horizon 

Service 

Level 

Scheduled 

surgeries 

OR 

utilization 

Waiting list CPU time 

(sec.) 

O1 

Weekly 1322.0 2970 (2.83) 89% 666 (29.1%) 159.1 

Two-weekly 1641.0 962 (2.67) 89% 674 (30.7%) 243.5 

Four-weekly 1816.3 2943 (2.31) 89% 693 (34.2%) 399.0 

O2 

Weekly 1298.3 3151 (6.30) 88% 485 (-6.0%) 122.2 

Two-weekly 1586.9 3138 (6.06) 88% 498 (-3.5%) 184.5 

Four-weekly 1960.6 3097 (5.27) 87% 539 (4.4%) 313.5 

O3 

Weekly 1220.0 2857 (0.65) 91% 780 (51.1%) 188.7 

Two-weekly 1464.7 2821 (-0.04) 91% 816 (58.0%) 296.6 

Four-weekly 1720.9 2836 (0.25) 91% 800 (55.1%) 467.5 

O4 

Weekly 1250.6 3143 (6.15) 88% 493 (-4.5%) 134.9 

Two-weekly 1522.9 3134 (5.98) 88% 502 (-2.7%) 207.7 

Four-weekly 1725.4 3100 (5.33) 88% 536 (3.8%) 348.7 

       Table 7.7. Analysis of the objectives and horizons under the modified block scheduling strategy 

7.3.3.3 Resource management strategies 

In this section we use the REI metaheuristic to assess the impact of the different 

strategies to manage the resources. Table 7.8 shows the results assuming an open 

scheduling strategy, releasing ORs reserved to burn surgeries. In general, there are 

substantial improvements for all objectives and planning horizons. Regarding the 

service level, a maximum improvement of 7.71% is achieved (over the value obtained 

assuming the modified block scheduling strategy). Again, a four-week planning horizon 

seems to offer the best results. The number of scheduled surgeries increases from 6.30 

to 9.65 patients per week, which translates into a 39.8% reduction of the waiting list at 

the end of the year. Finally, ORs utilization increases a 6% average for all objectives 

and planning horizons under consideration. 

Finally, the heuristics help the Decision Maker to negotiate with the hospital manager 

with respect to the services (blood tests, anesthesia tests…) and the resources required 

(ORs, surgeons…) in order to reduce surgery cancellations (e.g. expired tests). The 

graph in Figure 7.1 shows the evolution of the number of scheduled surgeries depending 

on the objectives sought. As shown in this figure, the number of scheduled surgeries 

greatly depends on surgeries’ deadlines and on the objective. For O1, the deadline has 

no influence on the scheduled surgeries, because the surgeries with a deadline within the 

planning horizon are those with highest clinical weight, and are therefore gradually 

scheduled. For O2, the effect of the deadline can be clearly seen, reaching the maximum 

values for months 2 and 9.  
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Objective 

Function 

Planning 

horizon 

Service 

level 

Scheduled 

surgeries 

OR 

utilization 

Waiting list CPU time 

(sec.) 

O1 

Weekly 1348.1 3151 (6.30) 95% 485 (-6.1%) 124.4 

Two-weekly 1681.6 3143 (6.15) 95% 493 (-4.5%) 191.5 

Four-weekly 1956.0 3129 (5.88) 95% 507 (-1.7%) 311.2 

O2 

Weekly 1297.8 3325 (9.65) 93% 311 (-39.8%) 108.1 

Two-weekly 1584.3 3317 (9.5) 93% 319 (-38.1%) 139.9 

Four-weekly 1963.7 3256 (8.33) 92% 380 (-26.4%) 243.1 

O3 

Weekly 1260.8 3050 (4.36) 98% 587 (13.7%) 147.8 

Two-weekly 1454.2 3132 (5.94) 98% 504 (-2.3%) 198.8 

Four-weekly 1691.8 3084 (5.02) 97% 552 (6.9%) 358.8 

O4 

Weekly 1252.2 3319 (9.54) 94% 317 (-38.5%) 107.2 

Two-weekly 1515.8 3310 (9.36) 94% 326 (-36.9%) 162.5 

Four-weekly 1770.58 3263 (8.46) 94% 373 (-27.8%) 273.5 

Table 7.8. Analysis of the objectives and horizons under the open scheduling strategy 

 

Figure 7.1. Plot of the evolution of the scheduled surgeries based on objectives O1 and O2 

In both months there are patients close to their deadline and with long duration of the 

intervention (otherwise they would have been previously scheduled according to O2).  

7.4 The Decision Support System 

In view of the results presented in Section 7.3, the decision model and the solution 

approaches (ST, MTALL and REI) presented in Chapter 4 were embedded in a DSS for 

solving the problem in the Plastic Surgery and Major Burns Specialty. The DSS is 

currently in use in the Hospital. In this section we briefly discuss the main design and 

implementation issues of the DSS. We first outline the main requirements, secondly we 
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briefly explain the framework architecture and then we present the main use cases of the 

DSS.  

7.4.1 Requirement and Design 

The main features of the DSS are: 

 It must accomplish with DPA (Data Protection Act), i.e. the system must be secured 

by checking user identity and that the host is licensed before executing the DSS tool.  

 Since the Decision Maker usually decides the surgical schedule using his/her own 

laptop (sometimes out of working hours), the required tool is conceived to be a 

standalone system. As a consequence, the DSS is not integrated with the Hospital 

Information System, but imports from it the relevant data of patients in the waiting 

list and the corresponding surgery data, such as surgery duration, surgeon (or group 

of surgeons) in charge, OR (or group of ORs) where the patient can be intervened, 

clinical weight, etc.  

 The optimization engine should provide a surgical schedule that can be manually 

modified by the Decision Maker, so he/she can incorporate 'soft' constraints that 

cannot be easily integrated in the model, such as the preference of using the first 

hours of a shift for certain types of surgeries (not only depending on the type of 

surgery, but on the specific patient), or some days in the beginning/end of the week 

due to the specific needs of post-surgery recovery. Therefore, easy manual fine-

tuning of the solution is required.  

 The DSS tool should provide detailed analysis tools and drill-down capabilities so 

the Decision Maker can analyze the so-called scenario (i.e. a surgery schedule arisen 

from a waiting list and staffed ORs for a specific planning horizon) with great detail. 

Consequently, the system should be capable of handling different possible scenarios, 

that is: several solutions of the decision problem with the same/different data and 

using same/different parameter settings must be maintained so that the Decision 

Maker may explore their feasibility, introduce manual changes, etc. and ultimately 

choose one as an 'executable' schedule.  
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 The DSS is required to be flexible and extensible, so that it satisfies the currently 

identified business rules while makes it easy to add new ones. Consequently, the tool 

should be modular to allow incorporating new decision problems (decision models/ 

solution approaches) to the system. 

 Since, in most surgical specialties, surgeons can be organized in groups (i.e. patients 

may be assigned to a group of surgeons instead of to a single surgeon), the DSS 

should allow for setting groups of surgeons and defining surgeons' capacities within 

each group. In order to include groups of surgeons in the decision model presented in 

Chapter 4, we introduce a fictitious surgeon for each group of surgeons existing in 

the Specialty, defining the maximum time for performing surgeries in a given day 

from the regular capacity of the surgeons belonged to the group.  

The most appropriate architecture for the required system is composed of three 

modules: Database Management, Model Management and Dialogue Management. As in 

other DSSs designs (see e.g. Moormann and Lochte-Holtgreven, 1993; Power and 

Sharda, 2007), splitting a software system into these three modules allows a greater 

degree of flexibility to independently renew the database technology, the decision 

model embedded or the user interface. 

The Database Management module is based on a relational database including the 

relevant input data, as data about patients (name, age, address), surgeries (duration, 

clinical weight, medical priority), human resources (surgeons and their capacity), and 

material resources (number of ORs), etc. This component includes different 

mechanisms for storing, handling, updating and retrieving these data, which are used for 

efficient scenario management. More specifically, the module is in charge of reading 

input data from database, gathering the computed solution (i.e. obtained by the 

resolution of the optimization model), and then creating an scenario by saving both 

together, so they can be used when conducting “what-if” analysis. 

The Model Management module brings together data from the database, 

models/solution approaches from an optimization repository, and user preferences 

(parameter sets by the Decision Maker) from the Dialogue Management module. More 

specifically, it is responsible for generating a problem instance and for controlling the 

launching of optimization calls. Note that the Model Management module includes the  
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Figure 7.2. Overview of the DSS 

decision model proposed in Chapter 4, along with the decision models required for 

solving the problem under the P-OR-S and hybrid strategies. Regarding the solution 

procedures, the module includes the constructive heuristics (ST and MTALL) and the 

REI metaheuristic presented in Chapter 4. 

Finally, the Dialogue Management module is responsible to handle the communication 

between the DSS and the Decision Maker. 



Operating Theatre Planning & Scheduling in Real-Life Settings Chapter 7 

112 

 

7.4.2 Implementation and Main Use Cases 

Taking into account the above requirements and the design proposed, the DSS was 

implemented using Microsoft's C# and Visual Studio as Integrated Development 

Environment (IDE), and MySQL as database management system. An overview of the 

system functionalities is provided in Figure 7.2. The main use cases of the DSS (shown 

in Figure 7.3) are: 

 Medium term estimation, with the objective of generating a tentative surgical 

schedule for a period of up to six months by assuming a weekly pattern (i.e. same 

ORs and surgeons capacity in all weeks). The purpose is twofold: Check whether the 

available surgical resources pattern (ORs, surgeons, and working shifts) is sufficient 

to accomplish the surgeries in the waiting list in a proper manner, and to notify the 

patients with an estimated week for their schedule dates. To develop this surgical 

schedule, ST, MTALL and REI (considering short termination criteria) proposed in 

Chapter 4 are employed. 

 Short term scheduling. The objective of this use case is to obtain a detailed surgical 

schedule for a short planning period (typically the next two weeks) over a rolling-

horizon basis. More specifically, at the end of each week, the Decision Maker 

imports the waiting list from the Hospital Information System, refines the availability 

pattern of resources along the next two weeks by incorporating specific events 

(closure of certain OR, punctual non-availability of a surgeon, etc.) and generates a 

detailed surgical schedule for the next two weeks using the REI metaheuristic 

presented in Chapter 4. The choice of approximate methods is left to the Decision 

Maker in view of the size of the problem. It is also possible to specify the maximum 

running time allowed to generate the surgical schedule so the DSS may choose the 

best method. 

 Manual fine-tuning. As stated before, a requirement for the DSS was that the 

Decision Maker will be able to move any of the scheduled surgeries within the short 

term surgical schedule, whether to postpone it (e.g. a patient has flu or some health 

complication impeding the intervention), or to put them into a specific OR-day. 

Moreover, not scheduled surgeries could also be manually allocated into a specific 

OR-day.  
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Figure 7.3. Main use cases 

 

 

Figure 7.4. Generation of surgeons’ groups and availabilities assignment 
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Figure 7.5. Availabilities refinement within the planning horizon: the ORs example 

 

 

Figure 7.6. The user-friendly graphical interface: Example of short term scheduling within a three 

ORs  
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7.4.3 Friendly operational decision level 

As mentioned before, the DSS allows for setting groups of surgeons and defining 

surgeons' capacities inside each group. Similarly, ORs sharing certain properties (e.g. 

equipped for certain specific procedures) can be also grouped to define group of ORs 

where a certain type of surgeries can be performed (see parameter δij in Chapter 3). 

Starting from this initial assignment, there is an easy procedure for refining 

availabilities within the planning horizon, to obtain the so-called 'refined availability'. 

The DSS guides the Decision Maker through a road map to specify the day-to-day 

availability of staffed ORs, which comprises both facilities' and surgeons' capacities 

(see the sequence in the upper part of Figure 7.5). 

As mentioned in the requirements, data from patients and their surgeries are imported 

from the Hospital information systems. The last step in the sequence shown in Figure 

7.5 allows specifying patients' unavailability in a very intuitive manner. Detailed tools 

for analysis and drill-down capabilities have been also built in the DSS so the Decision 

Maker can study their scenarios in greater detail. All use cases invoke the heuristics for 

either scheduling or rescheduling. For manual fine-tuning, the Decision Maker can 

“freeze” a number of formerly staffed and scheduled OR-days so the surgeries who 

have already been notified remain unmodified. Once the optimization engine produces a 

solution (either exact or approximate), the resulting surgical schedule is displayed in a 

user-friendly graphical interface so the Decision Maker can visualize the available 

information of every surgery, the surgical timetable for every surgeon, and the graphic 

representation of the surgical schedules (sketched as a time-space matrix drawing, see 

Figure 7.6). 

The above mentioned functionalities help the Decision Maker to conduct “what-if” 

analyses. Figure 7.7 shows an example in which the Decision Maker may use the DSS 

to assess the impact of using additional ORs and surgeons in order to discuss with the 

Hospital Managers future budget/OR-time allocation for his/her surgical specialty. 

7.5 Conclusions 

The purpose of the objective is to validate the decision model and the solution 

procedures presented in the Thesis for solving the specific OR planning and scheduling  



Operating Theatre Planning & Scheduling in Real-Life Settings Chapter 7 

116 

 

 

Figure 7.7. “What-if” analysis 

problem in the Plastic Surgery and Major Burns Specialty of the University Hospital 

“Virgen del Rocio”. 

First we introduce the problem in the Specialty, which is modeled and solved by the 

decision model and the solution procedures proposed in Chapter 4. Then, the decision 

model and solution procedures have been validated both experimental and historical 

manners:  

 By the experimental manner, we ensure the quality of solution procedures to solve 

the problem over medium-long planning horizons in order to make decisions as 

inform patients several weeks or even months in advance of their surgeries or to 

negotiate surgical resources for future planning periods. With these considerations in 

mind, a solution approach for handling medium-long planning horizons is 

incorporated in the solution procedures presented in Chapter 4, since the complexity 

of the problem increases due to the huge number of decision variables. The results of 

the computational experiments show that the REI metaheuristic clearly outperforms 

the ILP approach (both in the quality of the solution and in the number of feasible 

solutions found), and the good performance of the constructive heuristics (ST and 

MTALL) with short CPU times. 
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 By the historical manner, we have quantified the advantages obtained by the 

responsible of the Specialty using the decision model and the solution procedures. 

Once decision models and solutions procedures are validated, several managerial 

decisions identified by meetings with the Decision Maker during two years are 

analyzed. The main findings are: (1) the selection of a flexible patient allocation 

strategy yields a considerable reduction of the waiting list; (2) the selection of the 

planning horizon (a week, a two-weeks and a four-week) has a great impact on the 

problem, depending on the objective function optimized; (3) the evolution of the 

number of scheduled surgeries over a year depends on the selected objective function, 

being an important issue for the Decision Maker to negotiate the availability of shared 

services and resources (blood tests, anesthesia test…) with the hospital management; 

and (4) an important improvement is observed by changing from a modified block 

scheduling to an open scheduling strategy (the ORs reserved are released). 

Finally, we present the DSS for solving the OR planning problem in the Plastic Surgery 

and Major Burns Specialty of the University Hospital “Virgen del Rocio”, which is 

currently in use in the Hospital. 
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Chapter 8            

Conclusions and Future Research Lines 

8.1 Conclusions 

This Thesis focuses on operating theatre planning and scheduling. This decision 

problem is commonly decomposed into three hierarchical decision levels: strategic, 

tactical, and operational (see Chapter 1). Despite the importance and the complexity of 

decisions related to these hierarchical levels, it is a common practice that decision 

makers make such decisions based on their experience without considering the 

underlying optimization problems, providing solutions that are far from being optimal, 

and consuming long times on performing management tasks instead of healthcare tasks. 

In this context, the goal of this thesis is to develop models and solution procedures from 

operations research techniques that can help healthcare professionals to improve the 

efficiency of the operating theatre resources and the quality of the healthcare services at 

the operational level.  

In order to fulfill the general goal of the Thesis, a number of research objectives were 

established in Chapter 1. Next we present a review of these objectives and how they 

have been addressed in this document: 

i. To carry out a literature review on the operational level of the operating theatre 

management problem. 

This objective has been extensively addressed in Chapter 2. Usually, this decision 

level is decomposed into two separate steps: the OR planning problem and the OR 

scheduling problem. This decomposition reduces the complexity of the whole 

problem, although the quality of the decisions is reduced due to the high 

interdependence among these steps. Therefore, we study both the OR planning 

problem (which is the most extended operational problem in the University Hospital 

“Virgen del Rocio”), and the integrated OR planning and scheduling problem. For 

each decision problem, their main features are presented (see Section 2.3 and Section 
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2.4), and the literature is extensively reviewed and classified. The main conclusions 

are: 

 There are not experimental benchmarks to analyze and evaluate the performance 

of the different solution approaches. Comparisons are carried out mostly in ad-hoc 

data sets, which makes difficult to extract conclusions on the general validity of 

existing methods, and to compare new ones. 

 The deterministic OR planning problem has been extensively analyzed in the 

literature, with efficient decision models and solution procedures. However, given 

the computation times required for the exact methods (i.e. procedures yielding the 

optimal solution), there is room for investigating more efficient approximate 

methods (i.e. yielding better quasi-optimal solutions in less CPU time), 

particularly in view of the need of a) an interactive approach to re-plan the 

interventions, and b) a long-term planning that allows the Decision Maker to have 

a higher visibility of the plan in order to check for the availability of additional 

resources.   

 While the stochastic OR planning problem assuming a block scheduling strategy 

is considered in the literature, there is no such analysis assuming an open 

scheduling management strategy taking into account the responsible surgeons and 

their availabilities, together with time period constraints (specially, the deadline 

constraints established by the National Healthcare Services). 

  The integrated OR planning and scheduling problem has been analyzed by 

considering that surgeries are performed by only one surgeon. In addition, the 

influence of the assistant surgeon’s experience on the length of the surgery has not 

been considered in the literature. Since, according to the literature, 90% surgeries 

are performed by surgical teams composed by more than one surgeon --being two-

surgeons team the most extended-- addressing this problem remains a research 

opportunity.   

ii.  To propose a testbed generator to analyze the operating theatre problems identified 

in i). 
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Chapter 3 presents a testbed generator for solving the OR planning and scheduling 

problems identified in the Thesis, providing the literature with a set of benchmarks. 

The proposed testbeds allow to researches to solve any OR planning and scheduling 

that involve constraints and objectives related to patients, OR and surgeons. 

iii. To address the OR planning problem by proposing decision models and solution 

procedures under deterministic and stochastic surgery durations, emergency arrivals 

and resources capacity. 

The deterministic OR planning problem is analyzed in Chapter 4. We propose a 

mathematical decision model to solve the problem of assigning the intervention date 

and the OR where a set of surgeries will be performed, minimizing access time for 

patients with diverse clinical priority values. A set of approximate methods are 

proposed for solving the problem under consideration. To show the efficiency of the 

heuristics proposed, existing heuristics for the problem are adapted and compared in 

a testbed based on the procedure presented in Chapter 3. The main conclusion is: 

 The proposed heuristics statistically outperform existing ones in the literature for 

every type of heuristic proposed (constructive, improvement and meta-heuristic), 

providing the literature with a benchmark for the deterministic version of the 

problem. 

The stochastic OR planning problem is addressed in Chapter 5. We propose a 

mathematical decision model considering resources availability (OR and surgeons) 

and time period constraints in order to minimize the unexploited OR time and 

overtime costs. Uncertainties in surgeries duration, in the arrivals of emergency 

surgeries and in surgeons’ capacity are considered. A Monte Carlo optimization 

method, based on the SAA method, is proposed for solving the problem. The method 

combines an iterative local search method and Monte Carlo simulation. The main 

conclusions are: 

 The performance of the iterative local search method is analyzed against the up-

to-now state of the art heuristics for solving the deterministic version of the 

problem, yielding the best results.  
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 The results of the computational experiments highlight that, regardless the 

statistical distribution considered to generate the arrivals of emergency surgeries, 

the solution obtained by the Monte Carlo optimization method converges to the 

optimal solution of the problem and presents a high robustness in terms of the 

proportion of feasible simulations when the number of samples increases. 

iv. To address a deterministic integrated OR planning and scheduling problem, taking 

into account the case where there is a surgical team composed by surgeons with 

different surgical experience. 

Chapter 6 analyzes an integrated OR planning and scheduling problem which 

consists on assigning the date, the OR and the time indication for each surgery in the 

waiting list over a given planning horizon, maximizing a weighted objective 

function. The objective function includes the number of surgeries scheduled, the 

tardiness of each surgery, and the idle time of each surgeon between consecutive 

surgeries. We assume that surgery durations depend on the surgical team, which may 

be composed by one or two surgeons with different level of experience. We propose 

an ILP decision model to optimally solve the problem. Given the high computation 

requirements of our MILP model, we also propose an iterative constructive method. 

The main conclusions are: 

 The computational experience shows that the proposed algorithm is able to find 

feasible solution for all problems requiring shorter CPU time and average relative 

percentage deviation than the ILP-based approach. 

 A simulation analysis shows that the deterministic approach is suitable for solving 

the proposed problem considering random surgery durations, yielding acceptable 

values of OR and surgeon overtime. 

v. To demonstrate the validity of decision models and solution procedures developed in 

the Thesis for solving the OR planning and scheduling problem in the University 

Hospital “Virgen del Rocio”. 

Chapter 7 presents the OR planning and scheduling problem in the Plastic Surgery 

and Major Burns Specialty, which is modeled and solved using the decision model 

and solution procedures proposed in Chapter 4. A solution approach integrated in the 
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solution methods is proposed to help the Decision Maker to make decisions over 

medium-long planning horizons. Computational experiments are carried out to 

validate the decision model and the solution procedures with experimental and 

historical data. The main conclusions are: 

 The REI metaheuristic clearly outperforms the ILP approach (both in the quality 

of the solution and in the number of feasible solutions found), and the good 

performance of the constructive heuristics (ST and MTALL) with short CPU times. 

 The usage of the decision model and the solution procedures clearly improves the 

operating theatre management, providing the Decision Maker with a tool to 

analyze managerial decisions under different scenarios.  

Finally, we present a DSS developed for the University Hospital “Virgen del Rocio”, 

where the decision models and solution procedures presented in Chapter 4 are 

embedded. 

8.2 Contributions 

This section summarizes the research output of the Thesis. Section 8.2.1 describes the 

framework (i.e. research projects and grants) in which the Thesis has been carried out. 

Section 8.2.2 and Section 8.2.3 present the research outcomes published on international 

journals and conferences respectively.    

8.2.1 Research projects 

The Thesis has been carried out in the framework of several healthcare research projects 

carried out by the Industrial Management Research Group, where the author of the 

Thesis has been member since 2007. These projects are: 

 “Operations Research & Operating Room (OR2)” funded by the Spanish Ministry of 

Science and Innovation (reference ACC-300100-07-5),   

 ASSYST funded by the Progress and Healthcare Foundation of the Andalusian 

Government (reference PI-0661/2010),  

 PLAGES-IDQ funded by INGENIA company (reference PI-0502/2010), and  
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 SUPPORT funded by the Andalusian Government (reference PI-0502/2010).  

The agent for validation and implementation of these projects has been the University 

Hospital “Virgen del Rocio” in Seville (Spain). 

8.2.2 Journals 

The following journal publications have derived from the contributions in this Thesis:  

 Molina-Pariente J.M., Fernandez-Viagas, V., Framinan, J.M., (2015). Integrated 

operating room planning and scheduling problem with assistant surgeon dependent 

surgery durations. Computers and Industrial Engineering, 88, 8-20 (2014 Impact 

Factor: 1.783).  

 Dios, M., Molina-Pariente J.M., Fernandez-Viagas, V., Andrade-Pineda J.L., 

Framinan, J.M., (2015).  A decision support system for operating room scheduling.  

Computers and Industrial Engineering, 88, 430-443 (2014 Impact Factor: 1.783).  

 Molina-Pariente, J.M., Hans, E.W., Framinan, J.M., Gomez-Cia, T.  New heuristics 

for planning operating rooms. Computers and Industrial Engineering (2014 Impact 

Factor: 1.783). Accepted. 

 Molina-Pariente, J.M., Hans, E.W., Framinan, J.M. A stochastic approach for solving 

the operating room scheduling problem. Under review 

8.2.3 Conferences 

 Dios, M., Molina-Pariente, J.M., Hans, E.W., Framinan, J.M. A decision support 

system for solving the stochastic operating theater tactical problem. Proceedings of 

the 40
th

 International Conference on Operational Research Applied to Health 

Services (ORAHS), Lisbon, July 20-25, 2014. 

 Molina-Pariente, J.M., Framinan, J.M., Perez-Gonzalez, P. Employing fast heuristics 

for operating room planning. Proceedings of the 13
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 International Conference on 

Project Management and Scheduling (PMS), Leuven, April 1-4, 2012.  
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Framinan, J.M. ASSYST®: Herramienta para el soporte a la toma de decisiones en 
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Madrid, March 20-22, 2012. 
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8.3 Future research lines 

In this section we present some research issues that need to be further addressed for 

enhancing the real-life application of the proposed decision models and solution 

procedures. In addition, we discuss future research lines to improve the efficiency of the 

operating theatre resources and the quality of the healthcare services. 

1) In this Thesis, the OR planning and scheduling problem is analyzed and solved 

considering only the perioperative stage, given the fact that the resources that 

commonly represent bottleneck at most hospital are the ORs and surgeons. However, 

the unavailability of other operating theatre resources could negatively influence the 

surgical schedule, causing delays or cancellations. Therefore, the integration of pre-

operative (ward) and post-operative (post anesthesia care unit, intensive care unit and 

wards) resources in the OR planning and scheduling problem, along with the 

consideration of stochastic issues represents an interesting future research line. 

2) In order to improve the efficiency of the operating theatre resources and the quality 

of the healthcare services, new research lines would be focused on the integration of 

tactical and operational decision levels, as are: 

2.1) the construction of efficient master surgical schedules and surgical schedule, 

integrating simultaneously all surgical resources and waiting lists of surgical 

specialties, 

2.2.) the determination of the pool of sharable surgical resources (surgeons, nurses, 

etc.) to reach the goals defined in the surgical specialty (i.e. how much surgeon time 
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is allocate to do consultations and to perform surgeries during a given planning 

horizon), and  

2.3) the development of solution procedures that allow to decision makers use 

planning horizons shorter than those decision makers use in real-life applications 

(typically, a year) for solving the problem.  

3) Finally, in order to ensure patient safety and to minimize risks, an interesting 

direction would be to analyze, in the construction of the surgical schedule, the tradeoff 

between the efficiency and the formation of stable functional surgical teams. 
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