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Abstract. Fluids adsorbed at micro-patterned and geometrically structured substrates
can exhibit novel phase transitions and interfacial fluctuation effects distinct from those
characteristic of wetting at planar, homogeneous walls. We review recent theoretical
progress in this area paying particular attention to filling transitions pertinent to fluid
adsorption near wedges, which have highlighted a deep connection between geometrical
and contact angles. We show that filling transitions are not only characterized by large
scale interfacial fluctuations leading to universal critical singularities but also reveal hidden
symmetries with short-ranged critical wetting transitions and properties of dimensional
reduction. We propose a non-local interfacial model which fulfills all these properties and
throws light on long-standing problems regarding the order of the 3D short-range critical
wetting transition.
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1. Introduction

The last decade has seen some highly impressive technological advances which al-
low the controlled fabrication and tailoring of micropatterned and structured solid
surfaces on the nanometre to micrometre scale [1], and that are crucially important
to the emerging microfluidic industry [2]. From a more fundamental point of view,
the influence of the surface character can be rather dramatic and radically alter
the character of the fluid adsorption compared to that ocurring at planar, homoge-
neous walls [3–5]. A simple example of how the substrate geometry can influence
the fluid adsorption is provided by a simple wedge geometry [6–14]. This paper
reviews recent advances in the understanding of fluid wedge adsorption, focussing
on the mesoscopic scale where we anticipate the interfacial fluctuations may play
an important role.

In this paper, we will first revisit the filling transition, which refers to the phase
transition from microscopic to macroscopic adsorption as θ → α+, where π− 2α is
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the wedge opening angle and θ is the sessile drop contact angle. Previous studies
showed that the filling transitions is continuous under less restrictive conditions
than for continuous wetting at planar walls [10,11] and present far stronger large-
scale fluctuations than those characteristic of critical wetting transitions reflecting
the anisotropy of soft-mode interfacial fluctuations induced by the wedge geometry.
On the other hand, two-dimensional wedge filling in the fluctuation-dominated
regime in both ordered and disordered systems show scaling properties which are
identical with short-ranged critical wetting transitions. The only influence of the
wedge geometry is to shift the effective value of the contact angle from θ to θ−α – a
feature which has been referred to as wedge covariance [14]. This ‘hidden symmetry’
between wetting and filling appears to restrict the allowed values of the critical
exponents at both 2D filling and wetting and leads to some new insights into the
properties of critical wetting transitions.

Here we show that, in addition to this fluctuation-induced wedge covariance,
there is a classical wedge covariance for 3D systems with short-ranged forces which
is supported by microscopic Landau-like calculations for both shallow and acute
wedges. Thus classical covariance provides a stringent test for any interfacial model
to be physically acceptable.

We argue that the general theory of short-ranged wetting at structured walls
should be formulated using a non-local interfacial model. This is somewhat anal-
ogous to important advances in density functional models [15]. The interactions
in the interfacial model have a natural physical interpretation in terms of bulk-
like correlations arising from tube-like fluctuations [16] between the unbinding
interface and the wall which contribute towards a binding-potential functional
W [l, ψ]. In the limit of small interfacial fluctuations the NL model identically re-
covers the known form of the local Hamiltonian, including the position-dependence
term which arises from the theory of critical wetting proposed by Fisher and Jin
(FJ) [17], allowing one to trace the specific position dependence of the binding
potential and position-dependent stiffness to the Ornstein–Zernike (OZ) bulk cor-
relation function. When applied to the wedge filling with arbitrary tilt angles
the model obeys the classical wedge covariance relations. Finally, this model
may throw some light on the problem of the order of the 3D short-range criti-
cal wetting of planar interfaces. Renormalization group (RG) analysis and com-
puter simulations show the non-perturbative influence of NL interactions. Despite
precise connection with the FJ model at a perturbative level, our results show
that the full NL model has no stiffness instability which may drive the transition
first-order (as in the FJ model [18]) and the wetting transition remains second
order. The size of the asymptotic critical regime for various observables is also
discussed.

2. Background

Consider a wedge formed from the intersection of two smooth, planar walls that
meet at angles α to the z = 0 plane (see figure 1), so that its opening angle
is π − 2α. We represent the parallel displacement vector in the z = 0 plane as
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Figure 1. Schematic illustration of a typical interfacial configuration in the
3D wedge geometry and the typical diverging length scales at the filling tran-
sition. Note that lw = 〈l0〉.

x = (x, y1, . . . , yD−2) where the Cartesian coordinates x and y1, . . . , yD−2 measure
the distances across and along the wedge, respectively, and D is the dimensionality
of the system. The height of the wall above the z = 0 plane is described by a
height function ψ(x) = tan α|x|. The wedge is in contact with a bulk vapour at
subcritical temperature T (for later convenience, we will consider kBT = 1, defining
the energy scale), and chemical potential at saturation conditions µ = µsat(T )−.
The wedge preferentially adsorbs liquid near its bottom provided the contact angle
θ(T ) of the sessile drop (defined for the planar wall–fluid interface) is less than
π/2. Under these assumptions, a phase transition between a partial and complete
filling (i.e. between situations in which the wedge adsorption is microscopic and
macroscopic, respectively) was predicted by Concus and Finn [6] (see also [7] and
[8]). We sketch here their argument for the 3D case. The total grand potential Ω
contains the following contributions:

Ω = −pV + σwvA + fwL, (1)

where the pressure p, the surface tension σwv of the wall–vapour interface and the
excess wedge free energy fw are the conjugated fields to the accessible volume of
the fluid V , the wedge area A and the length L along the wedge. The excess wedge
free energy has a thermodynamic contribution which arises from the fact that the
wedge is filled to a height lw where the liquid–vapour interface is macroscopically
flat. This contribution can be written as

fw =
2Σ(cos α− cos θ)lw

sin α
, (2)

where Σ is the liquid–vapour surface tension (stiffness for anisotropic systems) and
we have used Young’s equation. It is clear from eq. (2) that for θ < α the free
energy can be lowered by completely filling the wedge (i.e. lw ≡ ∞), while for
θ > α the equilibrium value of lw is finite and arises from a balance between

Pramana – J. Phys., Vol. 64, No. 5, May 2005 711



A O Parry and J M Romero-Enrique

thermodynamics and internal energy (intermolecular forces) or entropy (fluctua-
tions) contributions. So, the condition for the wedge filling transition is given by
the elegant expression:

θ(Tf) = α, (3)

where Tf is the filling transition temperature. This prediction remains unchanged
when interfacial fluctuations are also considered. Note that this condition is ful-
filled for a temperature smaller than the wetting transition value Tw (assuming the
usual scenario where the contact angle decreases with the temperature). Filling
transitions may be first or second order corresponding to an infinite jump or a con-
tinuous divergence of the mean interfacial height lw respectively. The conditions
for continuous filling are less restrictive than for continuous wetting and wedges
made from walls that exhibit first-order wetting may still exhibit continuous filling
[10,11].

As a critical phenomenon, the critical filling transition is characterized by a set of
critical exponents which describe the divergence of the relevant length scales (see
figure 1): the average mid-point height lw, the perpendicular correlation length
ξ⊥ at the mid-point, and the correlation lengths ξx and ξy describing fluctuations
across and along the wedge, respectively. Obviously, for the 2D case ξy does not
exist. If we define the temperature-like scaling field t ∝ (Tf − T ) ∝ (θ−α), at bulk
coexistence these length scales diverge as

lw ∼ t−βw , ξ⊥ ∼ t−ν⊥ , ξy ∼ t−νy (4)

while ξx is trivially related to the mean height via ξx ∼ lw cot α.
We are interested in the effect the capillary wave-like interfacial fluctuations

can have on the critical behaviour of the second-order filling transitions. Conse-
quently, we consider effective Hamiltonian models which describe the fluctuations
of a collective coordinate l(x) representing the local height of the interface. This
coarse-grained description is valid at length scales much bigger than the bulk cor-
relation length of the adsorbed phase. For planar substrates, the simplest version
corresponds to the capillary-wave (CW) model:

Hπ[l] =
∫

dx
{

Σ
2

(∇l)2 + W (l)
}

, (5)

where Σ is the stiffness coefficient of the unbinding interface which can be identi-
fied as the surface tension for isotropic fluids, and W (l) is the binding potential.
However, their generalization to the wedge geometry (and more complex geome-
tries) is far from obvious. A very reasonable, and for many purposes satisfactory,
model is the drumhead-like interfacial model proposed by Rejmer, Dietrich and
Napiórkowski (RDN) [9]:

HRDN =
∫

dx
{
Σ

[√
1 + (∇l)2 − 1

]
+ sec αW (cosα [l − ψ(x])

}
, (6)

where l(x) denotes the vertical height relative to the x = 0 plane and ψ(x) =
tan α|x|. Note that the square gradient term of the CW model has been replaced
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by the correct rotationally invariant expression for the total area of the liquid–
vapour interface. This ensures that the model recovers the correct filling phase
boundary. Secondly, the interface interacts with the closest substrate via the cor-
responding planar binding potential where the distance is taken to be normal to
the substrate. These assumptions are certainly valid far from the wedge bottom,
where the interface and wall are parallel. However, it can be seen that the interface
is blind to the wedge bottom since points for distances |x| < lw sin α cosα do not
contribute to the binding potential.

For small α, the RDN model simplifies to [9]:

H[l] =
∫

dx
{

Σ
2

(∇l)2 + W (l − α|x|)
}

. (7)

The binding potential W (l) decays at large distances as W (l) ∼ −al−p, where the
Hamaker constant a is positive in the temperature region of interest whilst the
value of exponent p depends on the specific range of the forces with p = 2, 3 for
non-retarded and retarded van der Waals forces, respectively. It is also possible to
modify the model to include the effect of quenched disorder but for the moment we
concentrate on pure systems with thermal fluctuations.

We first consider the 3D case. Minimization of the capillary-wave-like model (7)
determines the following mean-field values of the critical exponents for 3D filling
[10]

βw =
1
p
, ν⊥ =

1
4
, νy =

1
2

+
1
p
. (8)

However, fluctuation effects will modify these values, since fluctuations are ex-
tremely anisotropic at wedge filling with ξy À ξx and are dominated by pseudo-
one-dimensional local translations in the height of the filled region along the wedge
[10,11] (the ‘breather-mode’ excitations). Tilt and torsional modes can also be in-
cluded, but they do not affect the critical behaviour [19]. Mean-field exponents
will be valid only for intermolecular potentials with p < 4 for which ξ⊥ ¿ lw. The
filling fluctuation (FFL) regime corresponds to potentials with p > 4 and a pseudo-
one-dimensional wedge Hamiltonian which accounts only for the breather-mode
excitations can be used to study the filling transition [10,11]:

Hw[l0] =
∫

dy

{
Σl0
α

(
dl0
dy

)2

+ V (l0)

}
, (9)

where l0(y) ≡ l(0, y) > 0 is the local height of the interface above the wedge
bottom and lw = 〈l0(y)〉. The model is considered valid only for small wave-
vectors ky ¿ kmax

y ∼ ξ−1
x . However, because the fluctuations at filling are strongly

anisotropic the relevant scaling combination ξykmax
y diverges in the scaling limit and

the cut-off does not determine universal quantities. The most important feature of
this effective model is the presence of a bending term resisting fluctuations along
the wedge which is proportional to the local interfacial height. At bulk coexistence
the wedge potential V (l0) has the form

V (l0) =
Σ
α

(θ2 − α2)l0 + Cl1−p
0 (10)
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and for θ > α has a minimum located at the mean-field value of lw. Note that
the first term in the wedge binding potential is the small α approximation to the
thermodynamic term fw (eq. (2)) and is proportional to the linear, temperature-like
scaling field t.

The bending term in eq. (9) is invariant under the renormalization group rescaling
y → y′ = y/b, l0 → l′0 = l0/bζw , with ζw = 1/3 [10,11]. Under this transformation
the linear scaling field t and wedge Hamaker constant C rescale to t′ and C ′ with

t′ = b4/3t, C ′ = b(4−p)/3C. (11)

This result shows that the temperature-like scaling field is always relevant and that
the intermolecular forces are relevant and irrelevant for p < 4 and p > 4 respectively.
These results can also be obtained from mean-field theory if we assume that the
effective wedge potential has a fluctuation contribution Dl−τw

0 , where D ∝ Σ and
τw = 2/ζw − 3 [11]. The values of the exponents in the FFL regime are

βw =
1
4
, ν⊥ =

1
4
, νy =

3
4
. (12)

Recent computer simulation studies of the Ising model are in agreement with these
predictions [20,21]. From eqs (8) and (12) it is clear that fluctuations are enhanced
by geometry, since the interfacial roughness is much larger than that corresponding
to a wetting situation in a planar substrate. This fact can be understood from the
effective dimensional reduction for the relevant fluctuations [19].

The previous results can be generalized to a D-dimensional wedge which is trans-
lationally invariant in the D − 2 dimensions along the wedge [10,11] and in the
presence of random-bond disorder [19]. Breather-mode excitations do not lead to
large-scale interfacial roughness for D > Dc, where Dc is the upper critical di-
mension, and mean-field theory is valid. The upper critical dimension satisfies
the relation ζ(Dc − 1) = 0, where ζ(D) is the interfacial wandering exponent of
a D-dimensional planar interface [19]. For D < Dc we find two possible fluctu-
ation regimes corresponding to mean-field-like and fluctuation-dominated behav-
iour. The FFL occurs for sufficiently short-ranged potentials with p > 2(1/ζw − 1)
with a generalized wedge wandering exponent ζw and critical exponent for the
divergence of the interfacial height βw given in terms of ζ(D − 1) and ζ(D) as
[19]

ζw =
ζ(D − 1)

1 + ζ(D − 1)− ζ(D)
, βw =

ζ(D − 1)
2(1− ζ(D))

. (13)

Intriguingly, the βw exponent for pure systems (thermal disorder) has the cor-
rect two-dimensional limit βw = 1 known from explicit transfer-matrix results for
contact potentials [12,13]. In general, the 2D breather-mode picture can be explic-
itly obtained from transfer-matrix analysis and renormalization group calculations
[22].

The 2D critical wedge filling presents an unexpected connection with the critical
wetting transition on a planar substrate [12–14]. Although both transitions are
clearly different, explicit calculations for thermal and random-bond systems show
that at the FFL regime the probability distribution function (PDF) of the mid-
point wedge interfacial height Pw(l; θ, α) can be written in terms of the interfacial
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height PDF Pπ(l; θ) corresponding to a critical wetting transition at the strong
fluctuation regime (SFL) as:

Pw(l; θ, α) = Pπ(l; θ − α). (14)

This relationship is not restricted to the shallow limit α → 0 but it is also observed
for acute wedges [23] and it has been confirmed by Ising model exact calcula-
tions [24] and computer simulations [25]. As a consequence, the critical exponents
which characterize both transitions must be the same and the different moments
and related quantities of the interfacial height PDF at the wedge mid-point (as
lw, ξ⊥, etc.) fullfil covariance relationships (i.e. lw (θ, α) = lπ(θ − α) and so on).
Furthermore, wedge covariance leads to some new results for wetting [14]. For ex-
ample, it predicts that for thermal disorder the wetting wandering exponent ζ must
be ζ = 1/2 [14]. On the other hand, the relation between the wedge excess free
energy and the point tension τ(θ) implies that:

lπ(θ) = −τ ′(θ)
2Σ

. (15)

This expression leads to the Indekeu–Robledo conjecture [26], which is consistent
with exact Ising model calculations [16].

3. Classical wedge covariance

Now we turn to 3D systems with short-ranged forces. For this case, the binding
potential reflects the decay of the local microscopic order parameter (density, mag-
netization) rather than the real intermolecular interactions. The binding potential
at bulk coexistence is usually taken to have the form:

W (l) = −ae−κl + be−2κl, (16)

where κ is the inverse bulk correlation length of the wetting phase. The leading
order term vanishes at the mean-field wetting temperature TMF

w as a ∝ (TMF
w −T ),

whilst b is usually taken to be a positive constant at TMF
w . Formally, eq. (16) of

the binding potential can be inferred from a constrained fluctuation sum as in
the Fisher–Jin approach which also leads to the presence of a position-dependent
stiffness coefficient [17]. However, in the present analysis we will neglect such a
position-dependence in the stiffness.

At mean-field level the equilibrium thickness lπ of the interface is obtained by
minimization of W (l) whilst the contact angle θ can be identified from Σθ2/2 =
−W (lπ). Thus for systems with short-ranged forces the mean-field results are

κlπ = ln 2b/a = − ln

√
Σ
2b

θ, (17)

where we have used a =
√

2Σbθ. From this expression we obtain that the critical
exponents are βs = 0(ln) and αs = 0.
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For shallow wedges, as mentioned before, the natural generalization of the planar
model is the effective Hamiltonian (7). In the mean-field approach, the Hamiltonian
is minimized subject to the appropriate boundary condition l → lπ+α|x| as |x| → ∞
and yields the Euler–Lagrange equation

Σl′′(x) = W ′(l − α|x|). (18)

By integration, the ‘energy’ equation is obtained as:

Σ
2

(|l′(x)| − α)2 = ∆W (l − α|x|), (19)

where ∆W (l) = W (l) −W (lπ). At the wedge mid-point local height of the filling
film verifies

Σ
2

α2 = ∆W (lw). (20)

This equation shows that for quite arbitrary choices of binding potential the wedge
undergoes a filling transition when θ(T ) = α, in agreement with thermodynamic
arguments [9]. For the binding potential (16), the mid-point height is then given
by

κlw(θ, α) = − ln

√
Σ
2b

(θ − α). (21)

This not only identifies the logarithmic divergence of the film thickness at the filling
transition, βf = 0(ln), but also reveals that the mean-field theory shows a classical
analogue of wedge covariance observed in the 2D calculations:

lw(θ, α) = lπ(θ − α). (22)

Classical wedge covariance is also manifest in other quantities like the whole equi-
librium profile and the Gaussian fluctuations around the mean-field solutions [19].

For more general binding potentials, we must note that classical covariance is
not a general feature of the mean-field theory of filling and critical wetting. For
example, if we take the binding potential to have the form:

W (l) = −al−p + bl−q (23)

the filling and critical wetting exponents are distinct:

βw =
1
p
, βs =

1
q − p

. (24)

This automatically rules out the possibility of classical wedge covariance for binding
potentials of the form (23). Nevertheless the results presented above showing wedge
covariance for short-ranged forces do generalize to the class of potentials

W (l) = −aω(l) + bω(l)2, (25)
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where ω(l) corresponds to an arbitrary choice of monotonically decaying functions.
Choosing ω = e−κl we obtain the usual short-ranged binding potential whilst setting
ω = l−p one obtains a binding potential describing a particular type of multicritical
wetting transition with q = 2p. Classical wedge covariance is obeyed by these sys-
tems, so we refer to the class of potentials (25) as classical wedge covariant binding
potentials. Of course, only for the short-ranged case ω = e−κl do we anticipate
that such potentials have any physical significance. Nevertheless they do point to
an important feature of the present analysis. It is easy to demonstrate that the
wedge covariant potentials (25) all describe planar critical wetting transitions with
vanishing specific heat exponent αs = 0. This situation is exactly the same as the
fluctuation-induced non-classical covariance since for ζ ≥ 1/2 the value of the spe-
cific heat exponent in the SFL regime is αs = 0. This covers both cases, ζ = 1/2 and
ζ = 2/3 in 2D, where non-classical covariance is known to occur and it is tempting to
speculate that the vanishing of the specific heat exponent either at mean-field level
or beyond plays a key role for classical and non-classical covariance respectively.

Now we wonder if these results remain valid for acute wedges. As mentioned in
the previous section, the RDN model (eq. (6)) seems to be the natural generalization
of the Hamiltonian (eq. (7)) for acute wedges. So we have checked if the classical
covariance is fulfilled. The mean-field equation for lw in this case obeys

Σ(cos θ − cos α) = W (lw cos α). (26)

This equation predicts the correct filling transition boundary θ = α. If now we
consider the short-ranged binding potential (eq. (16)), the asymptotic divergence
of lw is given by

κlw ∼ − sec α ln(θ − α). (27)

So, the classical covariance result (eq. (22)) is not obeyed by the RDN model.
Then it is natural to ask if classical wedge covariance is an artifact of the shallow
wedge limit or that the RDN model is not a proper generalization of eq. (7). In
order to answer this question, we turn our attention to studies of filling based on
a microscopic Landau-like density functional theory. We remark that any effective
interfacial Hamiltonian result must be consistent with results obtained from a more
microscopic approach. For our Landau theory study we resort to a magnetic termi-
nology rather than the fluids-based one considered earlier. At mean-field level the
equilibrium order parameter m(r) is translationally invariant along the wedge and
so we can restrict ourselves to magnetization profiles in a two-dimensional space
r = (x, z) with x the coordinate across the wedge. The free-energy functional for
the infinite wedge that we wish to minimize is

F [m] =
∫

V

dr
{

1
2
(∇m)2 − t

2
m2 +

u

4
m4 − hm

}
, (28)

where the volume of integration is restricted to z ≥ tan α|x| for every x. The
parameter t measures the deviation from the bulk critical temperature (which
is always finite) whilst u > 0 for stability. The bulk field h = 0− so that the
bulk magnetization is negative. The temperature dependence of the equilibrium
profiles can be eliminated by measuring the magnetization in units of the bulk
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spontaneous magnetization m0(t) =
√

t/u and need not be specified further.
Rather than using a local surface field h1 and enhancement parameter c we use
fixed boundary conditions which set the surface magnetization to a positive value
m(x, tanα|x|) = m1 for all x. This is equivalent to h1 → ∞, c → ∞ limit with
m1 = h1/c fixed in the model of Nakanishi and Fisher [27]. This choice ensures
that the wetting transition pertinent to the planar wall-down spin interface is al-
ways second order. In the planar limit α = 0 the model can be solved analytically
and exhibits a critical wetting transition when the surface magnetization

mwet
1 = m0 (29)

which allows us to induce wetting (and filling in the wedge) by either increasing m1

at fixed t or varying t at fixed m1. We have chosen to vary m1 at fixed temperature
since this keeps the bulk magnetization and correlation length ξb = 1/κ = (2t)−1/2

fixed. The contact angle within this model can be calculated analytically as

cos θ =
3m1

2m0

(
1− m2

1

3m2
0

)
(30)

so that near the wetting transition θ ∝ (m0 −m1)/m0 where (m0 −m1)/m0 may
be regarded as the temperature-like linear scaling field. We also remark that near
the filling transition the scaling field θ − α is equivalent to (mfill

1 −m1)/m0.
We have numerically minimized a discretized version of the continuum Landau

free-energy functional. Details on the numerical procedures have been presented
elsewhere [19]. The results of our study are presented in figure 2. The numerically

Figure 2. Plot of the reduced mid-point interface height, lw/ξb, against the
reduced surface magnetization, m1/m0, for a range of α between approxi-
mately 15◦ (bottom) and 75◦ (top). The dashed line corresponds to α = 45◦.
Inset: Plot of the contact angle at the filling transition, θ, vs. the wedge angle
α. The continuous line corresponds to the theoretical prediction (eq. (3)).
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determined phase boundary for tilt angles between 15◦ and 75◦ is in excellent
agreement with the theoretical prediction θ = α. We have also studied the meniscus
profile defined as the surface of isomagnetization m = 0. For wedges with tilt angles
α ≤ π/4 there is clear evidence for the logarithmic growth of the mid-point filling
height

κlw = A ln(mfill
1 −m1) + C (31)

with a universal, angle independent constant A = 1.02 ± 0.04 consistent with the
classical covariance result A = 1 and in disagreement with the RDN model pre-
dictions. The constant C is non-universal as is the size of the asymptotic critical
regime which decreases with increasing wedge angle. Nevertheless, even for the
most acute angles we consider, there is no evidence that the amplitude A differs
from unity. Consequently, classical wedge covariance is not an artifact but a general
property which must be fulfilled by any physically acceptable interfacial model. The
failure of the RDN model to account for classical wedge covariance in more acute
wedges is a surprising result. Indeed the RDN model does predict non-classical
wedge covariance for 2D systems with strictly short-ranged forces [16]. However,
this is not unexpected since non-classical wedge covariance is a fluctuation-induced
phenomenon for which the precise form of the binding potential (determining the
way in which short-range forces are modelled) is irrelevant. This contrasts with
classical wedge covariance which reflects the precise form of the underlying interfa-
cial Hamiltonian model. Clearly the assumption that the wall–interface interaction
occurs via the normal distance to points on the closest wall is incorrect. The ab-
sence of a sec α prefactor in the Landau numerics indicate that the correct measure
of this is more akin to an effective local, vertical interaction similar to the shallow
wedge model. Now we confront the problem of constructing an interfacial model for
3D short-ranged forces which is consistent with well-established versions for planar
substrates and also verifies classical wedge covariance for shallow and acute wedges.

4. The non-local model

Consider a Landau–Ginzburg–Wilson Hamiltonian based on a continuum order-
parameter (magnetization) m(r) in a semi-infinite geometry with bounding surface
described by a single-valued height function ψ(x) where x = (x, y) is the parallel
displacement vector. Denoting the surface magnetization by m1(x) we write

HLGW = F [m] +
∫

dsψφ1(m1), (32)

where F [m] is given by eq. (28) where the volume V is the upper semi-space z > 0,
dsψ =

√
1 + (∇ψ)2dx is the wall area element and φ1(m1) is a suitable surface po-

tential [27]. Following FJ [17] we identify the interfacial model H = HLGW[mΞ(r)]
where mΞ(r) is the profile which minimizes eq. (32) subject to a given interfa-
cial configuration. FJ determined mΞ(r) perturbatively in terms of local planar
constrained profiles [17]. Here we construct mΞ non-perturbatively using Greens’
functions or equivalently correlation functions defined within the constrained wet-
ting layer. The latter reduces to the classical OZ form over relevant distances
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provided the wetting layer is much thicker than its bulk correlation length κ−1.
This non-local (NL) Hamiltonian can be written as

H =
∫

dx
{
Σ

√
1 + (∇l)2 + h(l − ψ)

}
+ W [l, ψ], (33)

where h is proportional to the bulk field. There is no explicit position-dependent
tension but rather a binding potential functional with three leading contributions

W [l, ψ] = −aΩ1
1[l, ψ] + b1Ω2

1[l, ψ] + b2Ω1
2[l, ψ], (34)

where a, b1 and b2 are best regarded as phenomenological parameters to be identified
later. Each Ων

µ represents integrated two-point interactions between µ and ν points
on the wall and interface mediated by the (rescaled) bulk OZ correlation function
K(r) = κe−κr/2πr. These can be viewed as contributions to the free energy of a
constrained thin film arising from tube-like fluctuations of the bulk phase which
tunnel from the interface to the wall [16]. The first term involves only one tube

Ω1
1[l, ψ] =

∫
ds1

ψ

∫
ds2

l K(r12), (35)

where dsµ
l =

√
1 + (∇l(xµ)2dxµ etc. and r12 =

√
|x12|2 + (ψ(x1)− l(x2))2 is the

distance between two points on the interface and wall. The last two terms

Ω2
1[l, ψ] =

∫
ds1

ψ

{∫
ds2

l K(r12)
}2

, Ω1
2[l, ψ] = Ω2

1[ψ, l] (36)

involve two tubes and may be viewed as a self-interaction between points on the
same interface or wall induced by the presence of a second surface. Figure 3 shows
a diagrammatic representation of such terms. The upper and lower lines repre-
sent typical non-planar configurations of the interface and wall, the undulated line
joining them represents the interaction function K(r12) whilst the solid dots imply
integration over the area of each surface.

For general wall and interfacial configurations all contributions to W [l, ψ]
are NL. However, if both the wall and interface are flat, ψ(x) = 0, l(x) = l, the

Ω2

Ω1

1
Ω 1

21

x

l(x)

Ψ(x)

Figure 3. Schematic illustration of the diagrams which represent the leading
order contributions to W [l, ψ].
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Hamiltonian per unit area W (l) = W [l, 0]/A reduces to the standard form of the
binding potential appearing in local models (eq. (16)) with b ≡ b1 + b2. For the
more general case of a non-planar interface near a planar wall, two contributions
to the binding potential functional are local since

Ω1
µ[l, 0] =

∫
ds1

l e
−µκl(x1), µ = 1, 2. (37)

However Ω2
1 remains NL and can be rewritten as a two-body repulsive interaction

Ω2
1[l, 0] =

∫ ∫
ds1

l ds2
l S(|x12|; l), (38)

where l = [l(x1) + l(x2)]/2 and

S(x; l) =
κ2

2π

∫ ∞

2κl

dt
e−
√

t2+κ2x2

√
t2 + κ2x2

≈ κ

4πl
e−2κl−κx2/4l (39)

valid for κl À 1. In the small gradient limit, |∇l| ¿ 1, the NL term can be
expanded and the model reduces to

H[l, 0] ≈
∫

dx
{

Σ(l)
2

(∇l)2 + W (l)
}

(40)

with stiffness coefficient

Σ(l) = Σ− ae−κl − 2b1κle−2κl + · · · (41)

precisely recovering the FJ model and uniquely identifying a, b1 and b2. In partic-
ular a measures the deviation from the MF critical wetting temperature, b2 ∝ a2

and the sign of b1 determines the order of the MF transition. Thus the origin of
the κle−2κl contribution, crucial in the FJ analysis, can be traced directly to a
perturbative treatment of the NL contribution Ω2

1.
Now consider fluid adsorption in a wedge geometry (ψ = tan α|x|). The NL

model satisfies the necessary requirement of classical wedge covariance (eq. (22)).
The reason for this can be traced to the structure of the NL binding potential.
Since filling precedes wetting (a 6= 0), the dominant term is Ω1

1. Now for a flat
interfacial configuration l(x) = l0, near a non-planar wall both Ω1

1 and Ω2
1 are local

with, for example

Ω[l, ψ]|l=l0 =
∫

dx
√

1 + (∇ψ)2e−κ(l0−ψ(x)) (42)

showing that the effective local interaction occurs via the vertical distance to the
surface. Near the filling phase boundary the interface is essentially flat in the filled
section of the wedge and the Ω1

1 contribution must be of the above form. This is
sufficient to ensure covariance. We also remark that for wetting at more general
non-planar walls the NL model reproduces the precise form of the stiffness matrix
appearing in approximate two-field models [28] valid for |∇l| ¿ 1 and |∇ψ| ¿ 1.
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This means that in application to complete wetting the NL theory satisfies exact
sum rules [29].

Our NL model shows unexpected behaviour when applied to the critical wetting
at a planar substrate. The standard CW model famously predicts non-universal
criticality dependent on the wetting parameter ω = kBTκ2/4πΣ [30]. However,
this strongly disagrees with Ising model simulation studies [31] which show only
minor deviations from MF-like critical wetting behaviour (for the experiments, see
ref. [32]). The more refined FJ model provides a possible explanation of this dis-
crepancy since the Σ(l) term drives the transition first order for physical values of
ω [18]. Here we show that the stiffness instability is not a robust mechanism since
the wetting transition described by the NL model remains continuous. A linear
RG theory can be constructed provided we first expand

√
1 + (∇l)2 to square gra-

dient order. The local terms Ω1
µ generate effective binding potential and position-

dependent stiffness contributions which renormalize as in refs [18,30]. We focus on
the renormalization of the NL potential S(x; l) which controls the order of the phase
transition since it is responsible for the −le−2κl term in the perturbative |∇l| ¿ 1
limit. After renormalizing up to a scale b = et the NL term Ω2

1 retains its two-body
form but with a modified potential St(x; l) satisfying the flow equation:

∂St

∂t
= 4St + x

∂St

∂x
+ ωκ−2

(
1 + J0(Λx)

2

)
∂2St

∂l
2 , (43)

where J0(x) is a Bessel function of the first kind and Λ is the momentum cut-off.
This equation has the formal solution:

St(x; l) = e4t

∫ ∞

−∞
dl

κS0(xet, l) exp
(

−(κl−κl)2

4ωΦ(Λxet,Λx)

)
√

4πωΦ(Λxet,Λx)
, (44)

where Φ(a, b) =
∫ a

b
dt[1+J0(t)]/2t. We choose S0(x, l) = Θ(l)S(x, l), with Θ(l) the

Heaviside step function and S(x, l) given by eq. (39). As t → ∞, St(x, l) becomes
increasingly localized around x = 0. Using a matching technique we renormalize
to a scale et∗ at which the curvature of the effective binding potential Wt(l) at its
global minimum is of order of Σκ2. Our Wt(l) has a local contribution due to the
Ω1

1 and Ω1
2 processes, and a NL contribution which is obtained from the expansion

of Ω2
1 in powers of ∇l:

WNL
t (l) = 2π

∫ ∞

0

dxxSt(x, l). (45)

Numerical integration of the RG flow equation shows that the wetting transition
is always second order, and quantitatively similar to the non-universality exhibited
by the CW model. This fact can be rationalized by noting that Φ(Λxet,Λx) ∼ t as
t →∞ and κx <∼ e−t, which is the range where S0(xet, l) is non-negligible. Conse-
quently, in our NL model there is no stiffness instability. The difference with the
RG predictions of the FJ model arises specifically from non-locality. Mathemati-
cally the FJ flow equations can be recovered from eq. (43) if we approximate the
Bessel function term by its quadratic expansion in x. However this is not valid at
large distances and invalidates the stiffness instability.
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In order to check the RG predictions, we have performed Monte Carlo simulations
of the CW, FJ and NL Hamiltonians (with the approximation

√
1 + (∇l)2 ≈ 1 +

(∇l)2/2). Following ref. [33] we discretize by introducing a L×L lattice of spacing
σ with periodic boundary conditions in the directions parallel to the surface, but
treating the interfacial position height as continuous variables. We chose σ =
3.1623κ−1 so that Λκ−1 ∼ π/κσ <∼ 1, and also set ω = 0.8 and b1 = 2.5κ2kBT
which are reasonable Ising-like parameters. We anticipate the critical wetting phase
boundary remains MF (a = 0) for the CW and NL theories [30], whilst the FJ
exhibits a first-order transition at higher temperatures [18]. Figure 4 describes the
behaviour of the mean wetting layer thickness 〈l〉 and the surface magnetization-
like operator ∆m1 = 〈e−κl〉 along the MF critical wetting isotherm a = 0, h → 0.
The FJ model clearly describes partial wetting in this limit which is consistent with
a fluctuation-induced first-order transition. On the other hand, the CW and NL
models are qualitatively similar, showing continuous wetting. The divergence of
the film thickness is well-described by the RG result κ〈l〉 ∼ −√2ω ln h even for

Figure 4. Plot of the mean wetting layer 〈l〉 and surface magnetization
operator ∆m1 vs. h obtained by computer simulations of the CW, FJ and
our NL model for ω = 0.8, a = b2 = 0 and b1/κ2kBT = 2.5.
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moderately thick wetting layers. However, the surface magnetization shows a much
larger pre-asymptotic critical regime. The asymptotic non-universal behaviour
∆m1 ∼ h1−1/2ν‖ , with ν‖ = (

√
2 − √ω)−2 is not observed until the wetting layer

κ〈l〉 ∼ 10 for very large lattice sizes (κL ∼ 300). This is strongly suggesting that
current Ising model simulations will not be able to observe significant deviation
from MF behaviour provided they focus on surface quantities.

5. Conclusions

In this paper we review some recent results regarding adsorption in the wedge geom-
etry. We show the existence of a classical wedge covariance relation between the
filling transition and the wetting transition for short-ranged forces, which becomes a
stringent test for effective interfacial models at the mesoscopic scale. We construct
a non-local model which fulfils this condition and we anticipate that it may be ap-
plied to more complex geometries such as adsorption in parabolic grooves or around
spherical or cylindrical objects. When applied to wetting of planar substrates, we
find that fluctuations does not drive the transition first-order (even when the model
presents an effective position-dependent stiffness term as in the FJ model).
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