
AN EVOLUTIONARY ALGORITHM FOR THE  
DESIGN OF HYBRID FIBER OPTIC-COAXIAL 

CABLE NETWORKS IN SMALL URBAN AREAS

Pablo Cortés1g, Fernando Guerrero1, David Canca1 and José M García1

1Dpto. Ingeniería de Organización, Universidad de Sevilla
gpca@esi.us.es

Abstract. Telecommunication is one of the fastest growing business sectors. 
Future networks will need to integrate a wide variety of services demanding 
different qualities and capacities from the network. In this paper, network 
architecture based on hybrid fiber optic-coaxial cable (HFC) is proposed to 
develop cable integrated telematic services. An evolutionary algorithm is 
presented to solve the problem in suitable computation times when dealing with 
real times civil works problems. Finally we present the results over both 
problem library and real life scenarios.

1. Problem Description

Telecommunication is one of the fastest growing business sectors of modern 
Information Technologies. In the past it was enough to get telephone access, but today 
telecommunications include a vast variety of modern technologies and services. 
Future networks will need to integrate a wide variety of services demanding different 
qualities and capacities from the network.  In this paper, network architecture based 
on hybrid fiber optic-coaxial cable (HFC) is proposed to develop cable integrated 
telematic services.

Nowadays architectures exclusively based on fiber optic, as FTTH (fiber to the 
home), even its more reduced version FTTC (fiber to the curb), are not profitable 
because of the amount of investment required. However the fiber optic allows 
reaching longer distances without regenerating the signal at the same time as 
transporting great volumes of data at high speed. In this context, fiber optic is 
specially indicated to constitute backbone links, as well as trunk and distribution links 
inside the metropolitan network where it substitutes with advantage the coaxial cable. 
Finally, the coaxial is indicated for the latest network stage correspondent tothe 
subscriber access.

Telecommunication backbones connect with the urban node through the headend, 
where other analog and digital flows are received and inserted in the metropolitan 
network. After that a partially meshed fiber optic trunk network connects the head 
with the primary optical nodes over synchronous digital hierarchy (SDH), attending to 
the European transmission standard. The distribution network is constructed over 
fiber optic also, and connects the primary optical nodes with the optical network units 
(ONU) constituting the latest optic stage. Previously to the ONUs could be located 
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secondary nodes acting as splitters with the aim of dividing the downstream signal 
from one fiber into several fibers. Finally, the feeder network corresponding tothe 
subscriber access stage will be done by means of short length coaxial and lower 
quality than fiber.

Most of the bibliography based on telecommunication networks attends to large 
urban areas or inter-municipality communication backbones. Here, we deal with the 
problem of HFC network deployment in small urban areas. In this context we will 
have to balance profitability investment with survivability level, and for the smallest 
urban areas we will have to substitute survivability level to get profitabilityallowing 
the network deployment. For this situation small network deployment can be 
indicated such as star-star architectures, as figure 1 depicts.

Fig. 1. Simple star architecture

The case can be well suited by the Steiner problem, as we will see in next section.
The rest of the paper deals with the problem formulation in section 2. Section 3 

presents an evolutionary algorithm to solve the problem adaptively. Section 4 
evaluates the utility of the approach into a problem library and shows the results for a 
real case corresponding to a municipality in the south of Spain. Finally section 5 
summarizes the main results and conclusions.

2. Problem Formulation

The problem we have to deal with try to minimize the HFC network deployment cost 
in a small urban area. We suppose a set of nodes representing the headend and ONUs 
as known data. The problem of headend and ONUs location has been extensively 
dealt in the bibliography, examples are [1] and [2]. The potential network where the 
fibers will be placed is represented by a graph constructed from the urban street 
network

This situation is depicted by the next figure 2, where headend and ONUs 
correspond to terminal nodes and the rest of nodes (simple intersections in the urban 
street network) correspondto Steiner nodes attending to the Steiner problem 
nomenclature. The arcs represent feasible options where a conduit could be placed.



The fiber optic placement over the physical network gives place to the logical 
network displayed in figure 2, in which each of the own fiber optic cables, 
communicating the headend with the ONU, is laid inside the shared conduits.

Fig. 2. Logical star network

As the conduit construction is the most relevant part of the telecommunication 
network setting up, costs can be directly approached by means of the arc lengths. As 
we have noted, this problem is stated as the Steiner problem in networks that can be 
summarized as [3]:

��Given: A non-directed graph G = (N,A)with |N| nodes and |A| arcs with costs 
cij, for all (i,j)∈A, and a subset I⊆ N with |I| nodes called terminals (in our case headend 
and ONUs). The rest of the nodes are called Steiner nodes.

��Find: A network GI ⊆ G joining all the terminal nodes in I at minimum cost. 
This network can include some of the Steiner nodes but has not to include all the Steiner 
nodes.

The network GI will link the entire ONUs with the headend while the arcs will 
represent the facilities to place the conduits and lay the cables.

To formulate the problem we make use of the following notation:

Parameters:
• N set of nodes in the graph
• A set of arcs in the graph. We will separate the set A into the subsets A+ for 

increasing arcs, i.e., if i<j ⇒ (i,j)⊂A+, and A- for decreasing arcs, i.e., if i>j ⇒ (i,j)⊂A-

.
• I set of terminal nodes in the network, i.e., the headend and ONUs. So |I |

represents the number of terminals
• J set of Steiner nodes in the network. So, |J| represents the number of Steiner 

nodes.

Variables:



• yij binary variable taking value equal to one if there exits flow through the arc 
(i,j), zero otherwise.

• xij flow variable, representing the amount of flow through the arc (i,j) in the 
direction i→j.

• xie flow variable, representing the amount of flow between the node i and the 
headend, e. 

Data:
• cij fixed cost due to the conduit construction between nodes i and j.

To model the problem we make use of the multi-injection formulation [4]. This 
formulation can be analyzed as a weak form of the Steiner problem as different from 
formulation in [5] that represents an equivalent but stronger form more useful when a 
branching method have to be implemented.

Model:

Constraint (1) is the flow balance equation. In the upper part, one unit of flow is 
sent from each of the ONUs, i∈I. In the medium part shows how the inflow equates 
the outflow at each node Steiner of the network. Finally, the total amount of flow 
homing into the headende must be equal to the total amount of flow injected into the 
network, i.e., the number of ONUs. In the summations, the set I(k) indicates all the 
incident nodes into the node i. Constraint (2) is used to set to one the value of the 
binary variable yij whenthere exists positive flow through the arc (i,j) .

The model uses the xij variables to obtain a completely connected graph and the yij

variables to evaluate the cost function. The dimension of the final model are |N|+½|A|
constraints, ½|A| integer variables and |A| continuous variables.

3. Evolutionary Algorithm

One of the most popular approaches to deal with the Steiner problem is the tree 
heuristic known to have a worst-case analysis [6]. This approach involves an error not 
upper than 100%. This is one of the better known bounded heuristic approaches.



We present here an evolutionary algorithm that makes use of the tree heuristic to 
present a new algorithm that beats it, guaranteeing the worst case deviation and 
capable of adapting to the any kind of urban network. This algorithm constructs sub-
networks by means of neighborhoods of size/radius α containing, at least, one 
terminal node. Applying the tree heuristic internally inside the sub-network, a feasible 
solution is obtained for the local Steiner problem. After that, the method is applied, 
again, among the different neighborhoods, shaping a Steiner super-tree. The 
neighborhood size term, characterized in the parameter α, turns to critical when an 
universal application is intended, and when managing with bounded computation 
times. Here the evolutionary algorithm fits the α parameter allowing the convergence 
to a good solution.

This new approachmakes use of three clear ideas. First, when the number of 
terminals and the size of the problem are reduced, the local tree heuristic solution will 
be nearer to the local optimum solution (the heuristic works better with small 
problems). Second, when the separate sets have to be linked across one only arc, the 
solution so obtained will express better one of the principal Steiner ideas, a big flow 
over one arc cost the same that a small flow over the same arc. Finally, as the sum of 
minimums is always loweror equal than the minimum of the sum, and if the 
minimums are feasible the sum of minimums is feasible too, then it can be concluded 
that the worst-case deviation is maintained.

In this context we set as the population individuals any feasible •-value 
charactering a neighborhood. So the genetic encoding is defined by each •-value 
implying a different Steiner problem solution. The characteristics for the evolutionary 
algorithm are as follows.
� Uniform crossover operators. Calculated as the arithmetic average between 

each pair of •-parameters.
� Mutation operator. A mutation process will modify one of the •-parameters in 

the population by setting it to  random value between the maximum arc length 
and the minimum arc length. 

� Random parents selection. All the individuals from the size N population are 
randomly selected. This will enrich the population genetic variety.

� Ranking based replacement. We propose the use of a hypergeometric function 
to let more probability of replacement to the individuals withworse fitness and 
less probability of replacement to the individuals with better fitness. So, the 
individual in ranking position-i, have a replacement probability given by q(1-
q)i, being q the replacement probability of the worst individual.

� Based on population entropy stop criterion. We follow [7] as a good 
procedure to control the convergence in genetic algorithms. The maximum 

entropy limitation is given by: ( )S i
i

N

i= ⋅
=

∑ α α
1

ln

4. Results

All the tests have been run on a 200 MHz PC Pentium MMX workstation. The 
OR-library available in [8] was used to test the heuristics computationally. Our 
algorithm was put in competition with the tree heuristic and was compared with 



the available optimum values. Table 1 summarizes the results as well as the error 
percentage with respect to the optimum solution. The referred parameters in the 
table (nodes, terminals and arcs) are relative to the results after preprocessing the 
Winter rules [3], so nodes and arcs are specified with respect to the reduced 
graph corresponding to each ID problem. Keys tree and eval have been used to 
refer the tree heuristic and theevolutionary algorithm respectively.

Table 1. Problem library computational results
ID Nodes % terms arcs Optimum tree % error eval . % error

Steinb1 13 61,5 19 82 82 0 0 82 2-12 0 0
Steinb2 15 73,3 21 83 85 2,4 89 8 7,2
Steinb3 20 75,0 25 138 138 0,0 138 1-8 0,0
Steinb4 40 22,5 80 59 62 5,1 62 1-3 5,1
Steinb5 39 30,8 80 61 61 0,0 62 8-10 1,6
Steinb6 45 55,6 87 122 126 3,3 124 4-6 1,6
Steinb7 22 50,0 33 111 112 0,9 112 4 0,9
Steinb8 26 57,7 38 104 105 1,0 105 4 1,0
Steinb9 27 85,2 35 220 221 0,5 220 2-4 0,0
Steinb1 55 23,6 121 86 91 5,8 90 4 4,7
Steinb1 63 30,2 129 88 90 2,3 90 1-10 2,3
Steinb1 63 57,1 125 174 174 0,0 174 5-10 0,0
Steinb1 36 38,9 56 165 172 4,2 172 5-14 4,2
Steinb1 42 50,0 65 235 238 1,3 238 2 1,3
Steinb1 47 80,9 67 318 321 0,9 321 5-12 0,9
Steinb1 77 22,1 166 127 137 7,9 137 1-2:5-10 7,9
Steinb1 74 31,1 153 131 133 1,5 133 2 1,5
Steinb1 82 54,9 165 218 222 1,8 222 5:7-10 1,8
Steinc1 143 3,5 260 85 85 0,0 85 6-9 0,0
Steinc2 128 7,8 234 144 144 0,0 150 8 4,2
Steinc3 178 42,1 295 754 774 2,7 775 4 2,8
Steinc4 193 52,8 314 1079 1096 1,6 1086 7 0,6
Steinc5 223 80,7 341 1579 1582 0,2 1581 8 0,1
Steinc6 366 1,4 837 55 60 9,1 55 4 0,0
Steinc7 383 2,6 866 102 114 11,8 103 7:10 1,0
Steinc8 387 20,4 867 509 532 4,5 529 8 3,9
Steinc9 418 29,7 903 707 728 3,0 724 7 2,4
Steinc1 427 56,7 891 1093 1116 2,1 1114 8-10 1,9
Steinc1 499 1,0 2005 32 37 15,6 33 7-8 3,1
Steinc1 499 2,0 2065 46 48 4,3 46 2:6-8 0,0
Steinc1 498 16,7 2026 258 273 5,8 277 3 7,4
Steinc1 499 25,1 1968 323 342 5,9 339 8 5,0
Steinc1 500 50,0 1814 556 572 2,9 565 3 1,6
Steinc1 500 1,0 3517 11 13 18,2 12 2-4 9,1
Steinc1 500 2,0 3463 18 20 11,1 20 1-2 11,1
Steinc1 500 16,6 3495 113 126 11,5 126 1 11,5
Steinc1 500 25,0 3349 146 159 8,9 159 2-4 8,9
Steinc2 500 50,0 3099 267 268 0,4 269 1:4 0,7
Steind1 272 1,8 504 106 107 0,9 107 5-15 0,9
Steind2 283 3,5 519 220 235 6,8 228 1-3:8- 3,6
Steind3 350 42,3 585 1565 1612 3,0 1600 10-14 2,2
Steind4 359 57,7 590 1935 1970 1,8 1969 10-14 1,8
Steind5 470 80,2 708 3250 3269 0,6 3268 4 0,6
Steind6 759 0,7 1730 67 74 10,4 71 9-10 6,0
Steind7 749 1,3 1722 103 105 1,9 103 5 0,0
Steind8 802 20,7 1778 1072 1144 6,7 1140 5-6 6,3
Steind9 802 30,7 1769 1448 1534 5,9 1528 2 5,5
Steind1 836 58,0 1781 2110 2165 2,6 2163 1 2,5
Steind1 993 0,5 4442 29 31 6,9 29 6-10 0,0
Steind1 1000 1,0 4437 42 52 23,8 43 8-10 2,4
Steind1 998 16,7 4354 500 554 10,8 549 2 9,8
Steind1 998 25,1 4309 667 723 8,4 723 1 8,4
Steind1 996 50,0 3916 1116 1150 3,0 1152 4-5 3,2
Steind1 1000 0,5 8048 13 15 15,4 13 2-4 0,0
Steind1 1000 1,0 8061 23 30 30,4 25 2 8,7
Steind1 1000 16,7 7755 223 257 15,2 254 2-3 13,9
Steind1 1000 25,0 7552 310 348 12,3 347 2-4 11,9
Steind2 1000 50,0 6887 537 546 1,7 545 1-4 1,5

We have to note at the respect of the results the following considerations in relation 
with the problem of designing HFC telecommunication networks. Firstly, errors low 



than 5% have to be considered as successes when we are dealing with conduit 
installation costs, because of upper deviations in real time civil works will certainly 
take place. Secondly, for small urban areas graphs upper than 1,000 nodes will not be 
common, so we can consider the library quite representative in relation with our 
problem

The average error was estimated in5.6 % for treeand 3.6 % for eval. Eval reached 
a total of 10 optimums (42 successes) for 6 optimums (34 successes) in treecase. The 
maximum error was calculated in 30.4% for treeand 13.9% for eval.

We have evaluated our algorithm in real life scenarios also. Here is represented a 
case study in which the model and algorithm are applied to the Montequinto area. 
Montequinto is a residential urban area sited near the metropolitan area of Seville, the 
largest city in the south of Spain, where advanced telecommunication services will 
probably be welcomed. Montequinto has a population around 25,000 inhabitants.

Figure 3 shows the HFC network solution for the Montequinto area. As primary 
design decision a simple star architecture was selected to distribute 
telecommunication services. The figure reveals the conduit physical network, and its 
equivalent logical star representation.

Fig. 3. HFC network in Montequinto urban area

The figure depicts the tree topology corresponding to the conduit network. This 
tree topology corresponds to a logical simple star when we represent the fiber 
network. In this small urban area context, a sub-headend, smaller than typical 
headends and dependent on the Seville headend, has been located near the motorway 
to provide easy connection between the trunk network and the inter-urban backbone. 
To distribute the telecommunication services six ONUs are displayed over the 
municipality. The connection among the sub-headend and the ONUs depicts the 
optical trunk-distribution network.



5. Conclusions

Most of the bibliography based on distributing telecommunication networks attends to 
large urban areas or inter-municipality communication backbones. Here, we deal with 
a small urban area where network deployment has to be not too large trying to 
maximize the profitability investment. In this context simple star architectures are 
indicated to broach the situation. Steiner problem is accurate to model the trunk and 
optical distribution network deployment. A multi-injection formulation is introduced 
to model the problem as a single commodity flow problem instead of a 
multicommodity flow problem, reducing the number of constraints and variables. An 
evolutionary algorithm has been presented showing a good behavior beating 
traditional generally accepted approaches. The evolutionary algorithm is used to set 
the neighborhood parameter allowing a universal and adaptive application. Finally, 
we test the model and algorithm within problem library and illustrate a real life 
application by means of a case study relative to a residential urban area near to 
Seville.
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