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Chapter 1

Introduction

Supervised classification is a common task in big data. It seeks procedures for classifying
objects in a set Ω into a set C of classes, [7]. Supervised classification has been success-
fully applied in many different fields. Examples are found in text categorization, such as
document indexing, webpage classification and spam filtering; biology and medicine, such
as classification of gene expression data, homology detection, protein–protein interaction
prediction, abnormal brain activity classification and cancer diagnosis; machine vision;
agriculture; or chemistry, to cite a few fields.

Mathematical optimization has played a crucial role in supervised classification. Tech-
niques from very diverse fields within mathematical optimization have been shown to be
useful. Support Vector Machine (SVM) is one of the main exponents as application of the
mathematical optimization to supervised classification. SVM is a state of the art method
for supervised learning. For the two-class case, SVM aims at separating both classes by
means of a hyperplane which maximizes the margin, i.e., the width of the band separating
the two sets. This geometrical optimization problem can be written as a convex quadratic
optimization problem with linear constraints, in principle solvable by any nonlinear opti-
mization procedure.

In some applications the amount of features is huge and training SVM using the en-
tire feature set would be computationally very expensive, while its outcome would lack
from insight. This is, for instance, the case in gene expression and text categorization.
In this sense, we talk about the combinatorial problem of selecting a best-possible set of
features, discarding the remaining ones. It is called the feature selection problem.

In this work we analyze SVMs and how relevant features can be identified. In Chap-
ter 2, we describe the SVM, first in the case of a linear kernel and then for the more
interesting case of nonlinear kernels. We show how SVM can be handled in the statistical
programme R. Then, some issues related with feature selection are described in Chapter
3.
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Chapter 2

Support Vector Machine

2.1 Linear Support Vector Machine
Assume we have available a non-empty set of data Ω, where each ui ∈ Ω has two compo-
nents:

Ω ={ui=(xi, yi): i=1,2,...,n }

with xi ∈ Rr, vector of predictors variables, and yi ∈ {1,−1} two given classes of ui.
We now have a non-empty set I, which will be called the learning set. The learning set
is composed of ui = (xi, yi), where yi is given, ∀ i. The binary classification problem is
based on predicting, from the data of I, the yi class of a given ui ∈ Ω. It is used β ∈ Rr

y β0 ∈ R in order to construct a function f : Rr→R such that:

f(x) = βtx+ β0

This function is called separation function, [16]. It classifies as class 1 those xi ∈ Rr with
f(x) > 0 and as class -1 those xi ∈ Rr with f(x) < 0.

The goal is to have a function f such that all positive points in I, i.e. (yi = 1), are
assigned to class 1 and negative points in I, i.e. (yi = −1), to class -1. Points x with
f(x) = 0 must be classified according to a predeterminied rule. It is defined with the
system

yi(βtxi + β0) > 0 ∀i ∈ I

2.1.1 The Linearly Separable Case
First, consider the simplest case: suppose the positive points (yi = 1) and negative
(yi = −1) data points from the learning set I can be separated by a hyperplane:

{x : f(x) = βtx+ β0=0}

where β is the weight vector with norm ‖β‖, and β0 is the bias. If this hyperplane can
separate the learning set of data into the two given classes without error, the hyperplane
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is called a separating hyperplane.

If positive and negative data points can be separated by the hyperplane H0 := β0 +xtβ =
0, then

H+ = β0 + βtxi > 0, if yi = 1
H− = β0 + βtxi < 0, if yi = −1

For separable sets, we have an infinite number of such hyperplanes. Consider any sep-
arating hyperplane. Let d− be the shortest distance from the separating hyperplane to
the nearest negative data point, and let d+ be the shortest distance from the separating
hyperplane to the nearest positive data point. We say that the hyperplane is an optimal
separating hyperplane if we maximize the distance between the hyperplane and the closest
observation.

In order to find the best separating hyperplane, we use a norm ‖.‖ in Rr, and derive
the distances between the two given classes and the separating hyperplane. First, let us
consider the Euclidean case, with the Euclidean norm ‖x‖2 = xtx:

Property. Let ‖.‖ be the Euclidean distance, Then, given x, we have

(2.1) d− = d(x, {y : β0 + βty ≤ 0}) = max {β0 + βtx, 0}
‖β‖

(2.2) d+ = d(x, {y : β0 + βty ≥ 0}) = max {−(β0 + βtx), 0}
‖β‖

Proof. Let x be a fixed point, we have the following problem which formulates the dis-
tance between point x from the separating hyperplane:

(2.3) min ‖x− y‖
subject to: (β0 + βty) = 0

Equivalent to:

(2.4) min ‖x− y‖2

subject to: (β0 + βty) = 0

With the Euclidean distance we are in conditions to use the Karush-Kuhn-Tucker (KKT)
conditions. Then let L(y, λ) be the Lagrange function defined as follows:

L(y, λ)=‖y − x‖2 − λ(β0 + βty)

Proceeding as the method KKT says:
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∂
∂y
L(y, λ): 2(y − x)− λβ = 0

2βt(y − x)− λβtβ = 0 , (βty = −β0)

−2β0 − 2βtx = λβtβ

λ = −2β0−2βtx
βtβ

Replacing λ in equation of ∂
∂y
L(y, λ) and applying norm ‖.‖:

2(y − x) = λβ

‖y − x‖ = |λ|
2 ‖β‖

|−2β0−2βtx
βtβ

|‖β‖2 = |β0+βtx|
‖β‖2 ‖β‖ = |β0+βtx|

‖β‖

Summarizing, in the Euclidean case:

d(x, {y : β0 + βty = 0}) = |β0+βtx|
‖β‖

If β0 + βtx ≥ 0,

d(x, {y : β0 + βty ≥ 0}) = 0

d(x, {y : β0 + βty ≤ 0}) = |β0+βtx|
‖β‖ = β0+βtx

‖β‖

If β0 + βtx ≤ 0,

d(x, {y : β0 + βty ≤ 0}) = 0

d(x, {y : β0 + βty ≥ 0}) = |β0+βtx|
‖β‖ = −(β0+βtx)

‖β‖

In general:

d(x, {y : β0 + βty ≥ 0}) = max{0, −(β0+βtx)
‖β‖ }

d(x, {y : β0 + βty ≤ 0}) = max{0, β0+βtx
‖β‖ } �

For an arbitrary norm, we can use the following result, which extends property, [24]:

Theorem 1.1. For any norm ‖.‖ and any hyperplane H(β, β0) we have

d‖.‖(x,H(β, β0)) =


{β0−〈β;x〉}
‖β‖◦ , when 〈β;x〉 ≤ β0,

{〈β;x〉−β0}
‖β‖◦ , when 〈β;x〉 > β0.
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Here ‖β‖◦ denotes the dual norm of ‖β‖, defined as

(2.5) ‖β‖◦ = max utβ
subject to: ‖u‖ = 1.

We have in the previous theorem the formula of the distance from one point x to a halfs-
pace. Now, given (x1, · · · , xn) with labels (y1, · · · , yn), the distance of xi to the halfspace
of misclassification is given by:

di=
max{yi(β0+βtxi),0}

‖β‖0 ,∀ i ∈ I.

The minimum of this equation, dI=minui∈I di, is called margin.

Figure 2.1: Linear SVM with the margin

The goal is to maximize the margin. This is solving by the following optimization problem:

maxβ,β0 mini max{yi(β0+βtxi),0}
‖β‖◦ .

This problem is equivalent to,

maxβ,β0 mini {yi(β0+βtxi),0}
‖β‖◦ ,

which is equivalent to,
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minβ,β0 maxi ‖β‖◦
{yi(β0+βtxi),0} ,

or,

minβ,β0
‖β‖◦

mini{yi(β0+βtxi),0} .

The function (β0, β) 7−→ ‖β‖◦
mini yi(β0+βtxi) is homogeneus in R+, hence, we can assume with-

out loss of generality that the denominator equals 1. Then we have the following equivalent
representation:

(2.6)
minβ0,β ‖β‖◦
subject to: mini yi(β0 + βtxi) = 1

β ∈ Rr, β0 ∈ R

It is easily seen that this is equivalent to,

(2.7)
minβ0,β ‖β‖◦
subject to: mini yi(β0 + βtxi) ≥ 1

β ∈ Rr, β0 ∈ R

i.e.,

(2.8)
minβ0,β ‖β‖◦
subject to: yi(β0 + βtxi) ≥ 1, ∀ i ∈ I

β ∈ Rr, β0 ∈ R

In the Euclidean case we have:

(2.9)
minβ0,β βtβ
subject to: yi(β0 + βtxi) = 1, ∀ i ∈ I

β ∈ Rr, β0 ∈ R

which is an optimization problem with convex objective function and linear constraints.
Then the problem (2.9) is equivalent to:

(2.10)
minβ0,β βtβ
subject to: yi(β0 + βtxi) > 0, ∀ i ∈ I

β ∈ Rr, β0 ∈ R

For polyhedral norms, problem (2.8) can be written as a linear problem. Let us consider
the particular important cases ‖.‖ = ‖.‖1 and ‖.‖ = ‖.‖∞. To achieve the dual of those
norms we have the following property:

Property. Let ‖.‖p be a p − norm. Then, its dual norm is ‖.‖◦p = ‖.‖q, where p and q
satisfies the following:
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1
p

+ 1
q

= 1

If we have ‖.‖ = ‖.‖1, then its dual ‖.‖◦ is the infinity norm ‖.‖∞, and the problem (2.8)
can be expressed as follows:

(2.11)
minβ0,β ‖β‖∞
subject to: mini yi(β0 + βtxi) ≥ 1, ∀ i ∈ I

β ∈ Rr, β0 ∈ R.

This problem can be reformulated as a linear problem,

(2.12)

min z
subject to: yi(β0 + βtxi) ≥ 1, ∀ i ∈ I

z ≥ βi ≥ −z
β ∈ Rr, β0 ∈ R, z ≥ 0

On the other hand, if we have ‖.‖ = ‖.‖∞, then its dual ‖.‖◦ is the 1-norm ‖.‖1, and our
problem can be expressed as follows:

(2.13)
minβ0,β ‖β‖1
subject to: yi(β0 + βtxi) ≥ 1, ∀ i ∈ I

β ∈ Rr, β0 ∈ R

which can also be converted in a linear problem,

(2.14)

min ∑
j zj

subject to: yi(β0 + βtxi) ≥ 1, ∀ i ∈ I
zj ≥ βi ≥ −zj, j = 1, .., r
β ∈ Rr, β0 ∈ R, zj ≥ 0

2.1.2 The Linearly Nonseparable Case
In real applications, it is unlikely that there will be such a clear linear separation between
data drawn from two classes. More likely, there will be some overlap.

The overlap will cause problems for any classification rule, and depending upon the extent
of the overlap, the overlapping points could not be classified.

The nonseparable case occurs if either the two classes are separable, but not linearly so,
or that no clear separability exists between the two classes, linearly or nonlinearly.

In the previous section we assumed that I was linearly separable, if this is not so the
above problem is infeasible. Therefore, we must find other method.
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One such method to solve the nonseparable case is to create a more flexible formulation
of the problem, which leads to a soft-margin solution through maximization of this soft-
margin. Let ε be a perturbation. Starting from an infeasible problem, it is possible
to perturb the constraints in order to make it feasible. We must introduce a sum in
the objective function to control the perturbation. Hence, the following problem can be
formulated:

(2.15)

min βtβ + C(‖ε‖r)r
subject to: yi(β0 + βtxi) + εi ≥ 1,∀ i ∈ I.

β ∈ Rr, β0 ∈ R
εi ≥ 0, ∀ i ∈ I

where C > 0 is a regularization parameter. As an example, we can discuss the case of
`1 regularization. Then, the previous problem can be written as:

(2.16)

min βtβ + C
∑
i∈I εi

subject to: yi(β0 + βtxi) + εi ≥ 1,∀ i ∈ I.
β ∈ Rr, β0 ∈ R
εi ≥ 0, ∀ i ∈ I

equivalent to,

(2.17)

min 1
2β

tβ + C
∑
i∈I εi

subject to: yi(β0 + βtxi) + εi ≥ 1,∀ i ∈ I.
β ∈ Rr, β0 ∈ R
εi ≥ 0, ∀ i ∈ I

In the Euclidean case, we apply again the KKT method. So, fixed λ = (λ1, .., λn)t ≥ 0
and η = (η1, .., ηn)t ≥ 0, let L(β,β0, λ, η εi) be the Lagrange function, defined as follows:

L(β, β0, λ, η, εi)=1
2β

tβ + C
∑
i∈I εi −

∑
i∈I λi{yi(β0 + βtxi)− (1− εi)} −

∑
i∈I ηiεi

proceeding as the KKT method says,

∂
∂β
L(β, β0, λ,η, εi): β −∑i∈I λiyixi = 0

∂
∂β0
L(β, β0, λ,η, εi): −

∑
i∈I λiyi = 0

∂
∂εi
L(β, β0, λ,η, εi): C − λi − ηi

β = ∑
i∈I λiyiφ(xi)

λ = C − ηi
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Substituting in the equation L(β,β0, λ, η εi) we obtain the dual of the problem above
formulated. Hence:

(2.18)
max ∑

i∈I λi − 1
2
∑
i,j∈I λiλjyiyj(xi)txj

subject to: ∑
i∈I yiλi = 0, λi = C − ηi, ηi ≥ 0

λi ≥ 0, ∀ i ∈ I

We see that 0 ≤ λi ≤ C, with λi = C when εi>0 (which is when yi(β0 + βtxi) < 1).
Also when yi(β0 + βtxi) > 1, εi = 0 since no cost is incurred, and λi = 0. When
yi(β0 + βtxi) = 1, λi can lie between 0 and 1, [15].

2.2 Nonlinear Support Vector Machine
At the beginning, we have discussed methods for constructing a linear SVM classifier.
But if a linear classifier is not appropiate for the data learning set, can we extend the idea
of linear SVM to the nonlinear case?

The key to constructing a nonlinear SVM is to observe that the observations in Ω only
enter the dual optimization problem through the inner products 〈xi, xj〉 = xtixj, i, j =
1, 2, .., n.

In order to build a nonlinear SVM, we need some nonlinear tranformations, [16]. Let Φ be
a nonlinear map, called the feature map, and let H be an NH-dimensional feature space.
The space H may be very high-dimensional, possibly even infinite-dimensional. We will
generally assume that H is a Hilbert space of real-valued functions on R with inner prod-
uct 〈., .〉 and norm ‖.‖.

Suppose we transform each observation, xi ∈ Rr, in Ω using some nonlinear mapping
φ : Rr → H. Hence,

φ(xi) = (φ1(xi), .., φNH(xi))t ∈ H, ∀ i = 1, 2, .., n.

The transformed sample is then {φ(xi), yi}, where yi ∈ {−1,+1} identifies the two classes.
In this new space we must work with the learning set of data Î={(φ(xi), yi) : ∀ ui ∈ I},
which is linearly separable. If we substitute φ(xi) by xi in the development of the linear
SVM, then the data would only enter the optimization problem by way of the inner prod-
ucts 〈φ(xi), φ(xj)〉 = (φ(xi))tφ(xj).

The dificulty in using nonlinear transformations in this way is computing such inner
products in high-dimensional space H.

Now, we want to solve the nonlinear problem. We proceed as in the linearly separa-
ble case and seek β ∈ F and β0 ∈ R to classify data points according to the rule f :

f(x) = βtφ(x) + β0
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Rule f is linear on the data when we transforme it with the mapping φ, but f is not linear
on the original space Rr. Rule f assignes x to class 1 if f(x) > 0 and to class -1 if f(x) < 0.

The aboved-mentioned problem of maximizing the margin can be reformulated now as:

(2.19)
min ‖β‖◦
subject to: yi(β0 + βtφ(xi)) ≥ 1, ∀ i ∈ I

β ∈ F , β0 ∈ R

If we use the Euclidean norm to measure distances in the new transformed space, our
previous problem can be written as:

(2.20)
min βtβ
subject to: yi(β0 + βtφ(xi)) ≥ 1, ∀ i ∈ I

β ∈ F , β0 ∈ R.

This problem is equivalent to,

(2.21)
min 1

2β
tβ

subject to: yi(β0 + βtφ(xi)) ≥ 1, ∀ i ∈ I
β ∈ F , β0 ∈ R

We now build its dual. In order to do this, we need to use the KKT method. Fixed
λ = (λ1, .., λn)t ≥ 0, let L(β, λ) be the Lagrange function as the following:

L(β, β0, λ)=1
2β

tβ −∑i∈I λi{yi(β0 + βtφ(xi))− 1}

We proceed as the method says:

∂
∂β
L(β, β0, λ): β −∑i∈I λiyiφ(xi) = 0

∂
∂β0
L(β, β0, λ): −

∑
i∈I λiyi = 0

β = ∑
i∈I λiyiφ(xi)

Replacing results in L(β, β0, λ) we have its dual:

(2.22)
max ∑

i∈I λi − 1
2
∑
i,j∈I λiλjyiyjφ(xi)tφ(xj)

subject to: ∑
i∈I yiλi = 0

λi ≥ 0, ∀ i ∈ I
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2.2.1 The "Kernel Trick"
Remember that the idea behind nonlinear SVM is to find an optimal separating hyper-
plane in the high-dimensional feature space H, just as we did for the linear SVM in the
input space. The optimal separating hyperplane can be formulated with or without slack
variables, as appropiate.

At first, we would expect the dimensionality of H to be a huge impediment to construct-
ing an optimal separating hyperplane, and a classification rule, because of the course of
dimensionality. The fact that this does not become a problem in practice is due to the
"Kernel Trick", which was first applied to SVM by Cortes and Vapnik in 1995, [9].

The so-called kernel trick is an idea that is widely used in algorithms for computing
inner products of the form 〈φ(xi), φ(xj)〉 in feature space H. The trick is that in-
stead of computing these inner products in H, which would be computationally expen-
sive because of its high dimensionality, we compute using a nonlinear kernel function,
K(xi, xj) = 〈φ(xi), φ(xj)〉, in the input space, which helps us to speed up the computa-
tions. With this support, we just compute a linear SVM, but where the computations are
carried out in some other space.

2.2.2 Kernels and Their Properties
A kernel K is a function K : Rr × Rr −→ R, ∀ xi, zi ∈ Rr :

K(xi, zi) = 〈φ(xi), φ(zi)〉

The kernel function is designed to compute inner-products in H by using only the original
input data. Thus, wherever we see the inner product 〈φ(xi), φ(zi)〉, we substitute the
kernel function K(xi, zi). The choice of K implicitly determines both φ and H. As an
example, the problem (2.22) can be reformulated using the "Kernel Trick" as:

(2.23)
max ∑

i∈I λi − 1
2
∑
i,j∈I λiλjyiyjK(xi, xj)

subject to: ∑
i∈I yiλi = 0

λi ≥ 0, ∀ i ∈ I

The big advantage of using kernels as inner products is that, if we are given a kernel
function K, then we do not need to know the explicit form of φ. We are going to see some
kernels properties:

First, if K1(xi, yi) is a kernel and we have a positive real number a1, then

K(xi, zi) = a1K1(xi, zi)

is a kernel. Seeing the above result, if K1(xi, zi) and K2(xi, zi) are two kernels and a1, a2
are two positive real numbers, then

13



K(xi, zi) = a1K1(xi, zi) + a2K2(xi, zi)

is a kernel. This result implies that the family of kernels is a convex cone. The multipli-
cation of two kernels K1 and K2 yields a kernel

K(xi, zi) = K1(xi, zi)K2(xi, zi)

these above properties imply that any polynomial with possitive coefficients, pol+ =
{∑n

i=1 αix
i | n ∈ N, α1, .., αn ∈ R+}, evaluated at a kernel K1, yields a kernel

K(xi, zi) = pol+(K1(xi, zi))

In particular, we have that

K(xi, zi) = exp(K1(xi, zi))

is a kernel by taking the limit of the series expansion of the exponencial function. Next,
if g is a real-valued function on Rr, then

K(xi, zi) = g(xi)g(zi)

is a kernel. If ψ is a Rp-valued function on Rr, p < r, and K1 is a kernel on Rp×Rp, then

K(xi, zi) = K1(ψ(xi), ψ(zi))

is also a kernel. Finally, if A is a positive definite matrix of size r × r, then

K(xi, zi) = (xi)tAzi

is a kernel.

We require that the kernel function be symmetric, K(xi, zi) = K(zi, xi), and satisfy the
inequality, [K(xi, zi)]2 ≤ K(xi, xi)K(zi, zi), derived from the Cauchy-Schwarz inequality.
If K(xi, xi) = 1 ∀ xi ∈ Rr, this implies that ‖φ(xi)‖H = 1. A kernel K is said to have the
reproducing property if, for any f ∈ H,

〈f(.), K(xi, .)〉 = f(xi)

If K has this property, we say it is a reproducing kernel. K is also called the representer
of evaluation. In particular, if f(.) = K(., xi), then,

〈K(xi, .), K(zi, .)〉 = K(xi, zi)

14



Let {x1, .., xn} be any set of n points in Rr. Then, the (n × n)-matrix K = ((Kij)),
where Kij = K(xi, xj), i, j = 1, 2, .., n, is called the Gram matrix of K with respect to
{x1, .., xn}. If the Gram matrix K satisfies utKu ≥ 0, for any n-vector u, then it is said
to be nonnegative-definite with nonnegative eigen values, in which case we say that K is
a nonnegative-definite kernel or Mercer kernel.

If K is a specific Mercer kernel on Rr × Rr, we can always construct a unique Hilbert
space HK, say, of real-valued functions for which K is its reproducing kernel. We call
HK a real reproducing kernel Hilbert space (rkhs). We can write the inner product and
norm of HK by 〈., .〉HK and ‖.‖HK , respectively.

A kernel is called stationary, or traslation-invariant, if it has the general form K(xi, zi) =
k(xi − zi), where k : Rr −→ R. A kernel K(xi, zi) is isotropic if it depends only upon the
distance δ = ‖xi − zi‖, i.e., if K(xi, zi) = k(δ), scaled to have k(0) = 1.

2.2.3 Examples of Kernels
We have the following table with some kernel functions, K(xi, zi), where σ > 0 is a scale
parameter, a, b, c ≥ 0 and d is an integer. We are also using the Euclidean norm.

Kernel K(xi, zi)
Polynomial of degree d (〈xi, zi〉+ c)d

Gaussian radial basis function exp{−‖xi−zi‖2

2σ2 }
Laplacian exp{‖xi−zi‖

σ
}

Thin-plate spline (‖xi−zi‖
σ

)2loge{‖xi−zi‖
σ
}

Sigmoid tanh(a〈xi, zi〉+ b)

Table 2.1: Examples of Kernels

As an example of these kernels we have the inhomogeneous polynomial kernel of degree
d,

(〈xi, zi〉+ c)d, xi, zi ∈ Rr

where c and d are parameters. The homogeneous form of the kernel occurs when c = 0
in the expression above. If d = 1 and c = 0, the feature map reduces to the identity.
Usually, we take c > 0.

A simple nonlinear map is given by the case Rr = R2 and d = 2. If xi = (x1, x2)t
and zi = (z1, z2)t, then,

K(xi, zi) = (〈xi, zi〉+ c)2 = (x1z1 + x2z2 + c)2 = 〈φ(xi), φ(zi)〉
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where φ(xi) = (x2
1, x

2
2,
√

2x1x2,
√

2cx1,
√

2x2, c)t and similary for φ(zi). In this example,
the function φ(xi) consists of six features (H= R6), all monomials having degree at most
2. For this kernel, we see that c controls the magnitudes of the constant term and the
first-degree term.

In general, there will be dim(H) =
(
r + d
d

)
different features, consisting of all mono-

mials having degree at most d. The dimensionality of H can rapidly become very large:
for example, in visual recognition problems, data may consist of 16 × 16 pixel image, so
that image is turned into a vector of dimension r =256. If d = 2, then dim(H) = 33670,
whereas if d = 4, we have dim(H) = 186043585.

Other popular kernels are given by the Table 2.1. For example, the Gaussian RBF, Lapla-
cian, and thin-plate spline kernels are example or stationary, or translation-invariant,
kernels having the general form K(xi, zi) = k(xi − zi), how we explained above. The
polynomial kernel is an example of a nonstationary kernel.

Strictly speaking, the Sigmoid kernel is not a kernel. It satifies Mercer’s conditions only
for certain values of a and b. Despite this, it has become very popular in that role in
certain situations (e.g., two-layer neural networks).

It is not always obvious which kernel to choose in any given application. Prior knowledge
or a search through the literature can be hepful. If no such information is available, the
most popular approach is to try either a Gaussian RBF, which has only a single param-
eter, σ, to be determined, or a polynomial kernel of low degree (d = 1 or 2). If it is
necessary, more complicated kernels can be applied then to compare results.

2.2.4 Building the Optimal Path
The previous written problem (2.17) can be easily reformulated as:

(2.24)

min µ
2β

tβ +∑
i∈I εi

subject to: 1− yi(β0 + βtxi) ≥ εi,∀ i ∈ I.
β ∈ F , β0 ∈ R
εi ≥ 0

where µ = 1
C
. Its Lagrange primal function function is the same as in the problem (2.17):

L(β, β0, λ, η, εi)=µ
2β

tβ +∑
i∈I εi −

∑
i∈I λi{yi(β0 + βtxi)− (1− εi)} −

∑
i∈I ηiεi

Then, KKT constraints are the same too. We wish to find the entire solution path for
all values of µ ≥ 0. The basic idea of our algorithm is as follows. We start with µ large
and decrease it towards zero, keeping track of all the events that occur along the way. As
µ decreases, ‖β‖ increases, and hence the width of the margin decreases. As this width
decreases, points move from being inside to outside the margin. Their corresponding λi
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change from λi = 1 when they are inside the margin (yi(β0 + βtxi) < 1) to λi = 0 when
they are outside the margin (yi(β0 + βtxi) > 1).

By continuity, points must linger on the margin (yi(β0 + βtxi) = 1) while their λi de-
crease from 1 to 0. We will see that the λi(µ) trajectories are piecewise-linear in µ, which
affords a great computational saving: as long as we establish the break points, all values
in between can be found by simple linear intepolation. Note that points can return to the
margin, after having passed through it.

We can denote by H+ the set of indices corresponding to yi = 1 points, there being
n+ = |H+| in total. Likewise for H− and n−. This algorithm keeps track of the following
sets, [15]:

E = { i : yi(β0 + βtxi) = 1, 0 ≤ λi ≤ 1 }, for Elbow

L = { i : yi(β0 + βtxi) < 1, λi=1 }, left of the Elbow

R = { i : yi(β0 + βtxi) > 1, λi=0 }, right of the Elbow

We are going to start with the initialization process. We need to establish the initial
state of the sets defined above. When µ is very large, as ∞, from the KKT constraints
we have β = 0, and the initial values of β0 and the λi depend on whether n− = n+ or not.
If the classes are balanced, one can directly find the initial configuration by finding the
most extreme points in each class. We will see that when n− 6= n+, this is no longer the
case, and in order to satisfy the KKT constraints, a quadratic programming algorithm is
needed to obtain the initial configuration.

Case 1: n− = n+

Lemma 2.2.1 For µ sufficiently large, all the λi = 1. The initial β0 ∈ [−1, 1] (any value
gives the same loss ∑i∈I εi = n+ + n−).

Proof. This proof relies on the criterion and the KKT conditions in the problem (2.24).
Since β = 0, f(x) = β0. To minimize ∑i∈I εi, we should clearly restrict β0 to [-1,1], For
β0 ∈ [−1, 1], all the εi > 0, ηi = 0 in the KKT constraint λi = 1 − ηi, and hence λi = 1.
Picking one of the endpoints, say β0= -1, causes λi = 1, i ∈ H+, and hence also λi = 1,
i ∈ H−, for KKT constraint ∑i∈I yiλi = 0 to hold. �

We also have that for these early and large values of µ

β = 1
µ
β∗, where β∗ = ∑

i∈I yixi

Now in order that KKT constraints λi = 1−ηi remain satisfied, we need that one or more
positive and negative instances hit the Elbow simultaneously. Hence as µ decreases, is
required that ∀ i ∈ I, yi(β0 + βtxi) ≤ 1 or
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(2.25) yi[ (β∗)txi

µ
+ β0] ≤ 1

or

(2.26)
β0 ≤ 1− (β∗)txi

µ
,∀ i ∈ H+

β0 ≥ −1− (β∗)txi

µ
,∀ i ∈ H−

Pick i+ = argmaxi∈H+(β∗)txi and i− = argmini∈H−(β∗)txi. Then at this point of entry
and beyond for a while we have λi+ = λi− , and (β0 + βtxi+) = 1 and (β0 + βtxi−) = −1.
This gives us two equations to solve for the initial point of entry µ0 and β0, with solutions

(2.27) µ0 = (β∗)txi+−(β∗)txi−
2

(2.28) β0 = −( (β∗)txi+ +(β∗)txi−
(β∗)txi+−(β∗)txi−

)

Case 2: n+ > n−

In this case, when β = 0, the optimal choice for β0 is 1, and the loss is ∑i∈I εi = n−.
However, is also required that λi = 1− ηi holds.

Lemma 2.2.2 With β∗(λ) = ∑
i∈I yiλixi, let

(2.29)

{λ∗i } = argminλ ‖β∗(λ)‖2

s.t. λi ∈ [0, 1] ∀ i ∈ H+,
λi = 1 ∀ i ∈ H−,∑
i∈H+ λi = n−

Then for some µ0, we have that for all µ > µ0, λi = λ∗i , and β = β∗

µ
, with β∗ = ∑

i∈I yiλ
∗
ixi

Proof. The Lagrange dual corresponding to

LP=µ
2β

tβ +∑
i∈I εi −

∑
i∈I λi{yi(β0 + βtxi)− (1− εi)} −

∑
i∈I ηiεi

is obtained by substituting KKT constraints into this equation

LD = ∑
i∈I λi - 1

2µ
∑
i,j∈I λiλjyiyjxixj
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Since we start with β = 0, β0 = 1 all the H− points are misclassified, and hence we will
have λi = 1, ∀i ∈ H−, and hence, from∑

i∈I yiλi = 0, ∑i∈I λi = 2n−. This latter sum will
remain 2n− for a while as β grows away from zero. This means that during this phase,
the first term in the Lagrange dual is constant; the second term is equal to 1

2µ‖β
∗(λ)‖2,

and since we maximize the dual, this proves the result. �

We now establish the "starting point" µ0 and β0 when the λi start to change. Let β∗
be the fixed coefficient direction corresponding to λ∗i :

β∗ = ∑
i∈I λ

∗
i yixi

There are two possible scenarios:

1. There exist two or more elements in H+ with 0 < λ∗i < 1

2. λ∗i ∈ {0, 1}, ∀ i ∈ H+

Consider the first scenario, and suppose λ∗i ∈ (0, 1). Let i− = argmini∈H−(β∗)txi. Then
since the point i+ remains on the margin until an H− point reaches its margin, we can
find

µ0 = (β∗)txi+−(β∗)txi−
2

identical in form to (2.27), as is the corresponding β0 to (2.28). For the second scenario,
it is easy to see that we find ourselves in the same situation as in the case 1 (a point from
H− and one of the points in H+ with λ∗i = 1 must reach the margin simultaneously).
Hence we get an analogous situation, except with i+ = argmaxi∈H+

1
(β∗)txi, where H+

1 is
the subset of H+ with λ∗i = 1.

The Path.

The algorithm hinges on the set of points E sitting at the elbow of the loss function
(i.e. on the margin). These points have yi(β0 + βtxi) = 1 and λi ∈ [0,1]. These are
distinct from the points R to the right of the elbow, with yi(β0 + βtxi) > 1 and λi = 0,
and those points L to the left with yi(β0 + βtxi) < 1 and λi = 1. We consider this set at
the point that an event occurred. The event can be either:

1. The initial event, which means 2 or more points start at the elbow, with their ini-
tial values of λ ∈[0,1].

2. A point from L has just entered E , with its values of λi initially 1.

3. A point from R has reentered E , with its value of λi initially 0.

4. One or more points in E has left the set, to join either R or L.
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Whichever the case, for continuity reasons this set will stay stable until the next event
occurs, since to pass through E , a point λi must change from 0 to 1 or vice versa. Since
all points in E have yi(β0 + βtxi) = 1, we can establish a path for their λi.

Event 4 allows for the possibility that E becomes empty while L is not. If this occurs,
then the KKT condition ∑i∈I yiλi = 0 implies that L is balanced w.r.t. +1’s and -1’s,
and we resort to the initial condition as in case 1.

We use the subscript ` to index the sets above immediately after the `th event has oc-
curred. Suppose |E`| = m, and let λ`i , β`0 and µ` be the values of these parameters at
the point of entry. Likewise f ` is the function at this point. For convenience we define
λ0 = µβ0, and hence λ`0 = µ`β

`
0. Since

(2.30) f(x) = 1
µ
(∑j∈I yjλjK(x, xj) + λ0)

for µ` > µ > µ`+1 we can write

(2.31)
f(x) = [f(x)− µ`

µ
f `(x)] + µ`

µ
f `(x) =

= 1
µ
[∑j∈E`

(λj − λ`j)yjK(x, xj) + (λ0 − λ`0) + µ`f
`(x)]

The second line follows because all the observations in L` have their λi = 1, and those in
R` have their λi = 0, for this range of µ. Since each of the m points xi ∈ E` are to stay
at the elbow, we have that

(2.32) 1
µ
[∑j∈E`

(λj − λ`j)yiyjK(x, xj) + yi(λ0 − λ`0) + µ`] = 1, ∀ i ∈ E`

Writing δj = λ`j − λj, from the above equation we have

(2.33) ∑
j∈E`

δjyiyjK(xi, xj) + yiδ0 = µ` − µ, ∀ i ∈ E`

Futhermore, since at all times ∑j∈I yjδj = 0, we have that

(2.34) ∑
j∈E`

yjδj = 0

Equations (2.33) and (2.34) constitute m + 1 linear equations in m + 1 unknows δj, and
can be solved. Denoting by K∗` the m×m matrix with i jth entry yiyjK(xi, xj) for i and
j in E`, we have from (2.33) that

(2.35) K∗` δ + δ0y` = (µ` − µ)1

where y
`
is the m vector with entries yi, i ∈ E`. From (2.34) we have
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(2.36) (y
`
)tδ = 0

We can combine these two into one matrix equation as follows. Let

(2.37) A` =
(

0 (y
`
)t

y
`

K∗`

)
, δa =

(
δ0
δ

)
, 1a =

(
0
1

)
.

Then (2.35) and (2.36) can be written

(2.38) A`δ
a = (µ` − µ)1a

If A` has full rank, then we can write

(2.39) ba = (A`)−11a

and hence

(2.40) λj = λ`j − (µ` − µ)bj, j ∈ {0} ∪ E`

Hence for µ`+1 < µ < µ`, the λj for points at the elbow proceeds linearly in µ. From
(2.31) we have

(2.41) f(x) = µ`

µ
[f `(x)− h`(x)] + h`(x)

where

(2.42) h`(x) = ∑
j∈E`

yjbjK(x, xj) + b0

Thus the function itself changes in a piecewise-inverse manner in µ. If A` does not have
full rank, then the solution paths for some of the λi are not unique, and more care has
to be taken in solving the system (2.38). This occurs, for example, when two training
observations are identical. Other degeneracies can occur, but rarely in practice, such as
three different points on the same margin in R2.

Finding µ`+1

The paths (2.40) and (2.41) continue until one of the following events occur:

1. One of the λi for i ∈ E` reaches a boundary (0 or 1). For each i the value of µ
for which this occurs is easily established from (2.40).
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2. One of the points in L` or R` attains yi(β0 + βtxi) = 1. From (2.41) this occurs
for point i at

(2.43) µ = µ`(f
`(xi)−h`(xi)
yi−h`(xi) )

By examining these conditions, we can establish the largest µ < µ` for which an event
occurs, and hence establish µ`+1 and update the sets. One special case not addressed
above is when the set E becomes empty during the course of the algorithm. In this case,
we revert to an initialization setup using the points in L. It must be the case that these
points have an equal number of +1’s as -1’s, and so we are in the balanced situation as
in case 1: n+ = n−.

It is discussed in [15] that, by examining in detail the linear boundary in instances where
ρ = 2, several different types of behavior can be observed:

1. If |E| = 0, as µ decreases, the orientation of the decision boundary stays fixed, but the
margin width narrows as µ decreases.

2. If |E|=1 or |E|=2, but with the pair of points of opposite classes, then the orien-
tation typically rotates as the margin width gets narrower.

3. If |E|=2, with both points having the same class, then the orientation reamains fixed,
with the one margin stuck on the two points as the decision boundary gets shrunk toward
in it.

4. If |E| ≥3, then the margins and hence f(x) remains fixed, as the λi(µ) change. This
implies that h` = f ` in (2.41).

Termination.

In the separable case, we terminate when L becomes empty. At this point, all the εi
in (2.17) are zero, and futher movement increases the norm of β unnecessarily.

In the non-separable case, µ runs all the way down to zero. For this to happen with-
put f "blowing up" in (2.41), we must have f ` − h` =0, and hence the boundary and
margins remain fixed at a point where ∑i∈I εi is as small as possible, and the margin is
as wide as possible subject to this constraints.

Computational Complexity.

At any update event ` along the path of the algorithm, the main computational bur-
den is solving the system of equations of size m` = |E`|. While this normally involves
O(m3

`) computations, since E`+∞ differs from E` by typically one observation, inverse up-
dating/downdating can reduce the computations to O(m2

`). The computation of h`(xi)
in (2.42) requires O(nm`) computations. Beyond that, several checks of cost O(n) are
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needed to evaluate the next move.

2.3 SVM in R
We need to talk about some R libraries which help us to implement SVM in R. To begin
with, we expose the library "e1071". In order to implement SVM in R, this library has
three different commands, which do differents things, but related. When we explain these
commands we will work with the Breast Cancer Wisconsin (BCW) dataset, [1]. This
dataset has 569 instances and 32 attributes (ID, diagnosis and 30 real-valued input fea-
tures). ID is the ID number and diagnosis has two classes: B-bening or M-malign. Ten
real-valued features are computed for each cell nucleus:

a) radius (mean of distances from center to points on the perimeter)

b) texture (standard deviation of gray-scale values)

c) perimeter

d) area

e) smoothness (local variation in radius lengths)

f) compactness (perimeter2 / area - 1.0)

g) concavity (severity of concave portions of the contour)

h) concave points (number of concave portions of the contour)

i) symmetry

j) fractal dimension ("coastline approximation" - 1)

The mean, standard error, and worst or largest (mean of the three largest values) of
these features were computed for each image, resulting in 30 features. For instance, field
3 is Mean Radius, field 13 is Radius SE, field 23 is Worst Radius. This dataset does not
have missing attribute values and his class distribution is: 357 benign and 212 malign. As
a result of a principal components analysis we have the following image, with the benign
and malign cases:

23



B

M

B

M

B

M

B

M
B

M

B

M

B

M

B

M

B

M

B

M
B

M

B

M

B

M B

M

B

M
B

M

B

M

B
M

B

M

B

M

B

MB
M

BM

B
M

B
M BM

B
M

B

M

B

M

B

MBMB M

B
M

B

M

B

M

B

M

B
M

B
M

B
M

B

M

B
M

B

M B

M

B

M

BM

B
M

B

M

B

M

B
M

BM

B

M

B

MB

M

B

M

B M

BM

B M B

M

B

M
B

M

B

M

B

M
B

M
B

M

B

M

B

MB M
B

MBM
B M

B

M

B
M

B

M
B

M

B

M

B

M

B

M
B

MB

M

B M

B

M
B

M

B

M

B

MB M

B

M

B M

B
M

B

M

B

M

B

M

B

M

B

M

B

M
B
M

B

M B

M
B

M

B

MB

M B

M

B

M

B

M

B

M

B

M
B

M

B

M B M B
M

B

M

B
M

B

M

BM

B
M B

M

B
MB

M

B

M

B M

B
M

B M

B

M
B

M

B

M

BM

B

M
B

M
B

M

B

M
B

M

B M

B

M
B

M

B

M
B

M

B

M

B

M

B

M
B

M
B

MB
M

B

M
B

M

B

M

B

M

B

M

B

MB
M

BM

B

M

B

MB
M

BM
B

M

BM

B

M

B M

B

MBM

B

M

B

M

BM
BM
B M

B

M

B

M B

MB
M

B

M

B

M

B

M
B

M

B

M

B
M

B
M

B

M

B

M B
M

B

M

B
M

B

M
B

M
B

M

B
M

B

M

B

MB

M

B
M

B

M

B

M

B

M
B

M

BM

B

M

B

M
B

M

B

M
B

M

B
M BM

B

M
BM

B

M

B

M

B
M B

M
B

M

B

M

B

M BM
B

M

B
M

B

M

B

M
B

M

B M

BM
B

M
B
M

BM

B

M
B

M

B

M

B
M
B

M

B

M

BM
B

M

B

MB

M
B

M

B

M

B

M

B
MB

M

B

M
B M

B

M
B

M

B
M

B

M

B

M
B

M

B
M

B

M

B

M

B
MBM

B

MB
M

B

M

B

M

B
M

B

M

B

M
B

M

B

MB

M

BM

B M

B

M

B

M
B

M

B
M

B
MBM

B

M

B

M

B

M
B

M

B
M

B M

B
M

B

M

BM
B

M

B

M

B

M B
MB

M

B

M

B

M

B M

B

M

B

−15 −10 −5 0 5

−
5

0
5

10

BCW Cases

Comp.1

C
om

p.
2

B
M

Figure 2.2: Representation of cases

In this image we can see that there are bening and malign cases with a wrong prediction.
In the image, blue cases are the cases that are benign as predicted, and red cases are
cases that according to prediction are malign. The cases with a B in the image are truly
benign and the cases with an M in the image are truly malign. We are going to proceed
to see the commands, used in R:

Support Vector Machines:

The command is called "svm". We are going to see the use of this command "svm":

## S3 method for class ’formula’
svm(formula, data = NULL, ..., subset, na.action =
na.omit, scale = TRUE)

## Default S3 method:
svm(x, y = NULL, scale = TRUE, type = NULL, kernel =
"radial", degree = 3, gamma = if (is.vector(x)) 1 else 1 / ncol(x),
coef0 = 0, cost = 1, nu = 0.5,
class.weights = NULL, cachesize = 40, tolerance = 0.001, epsilon = 0.1,
shrinking = TRUE, cross = 0, probability = FALSE, fitted = TRUE,
..., subset, na.action = na.omit)
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This command is used to train a support vector machine. It can be used to carry out
general regression and classification, as well as density-estimation. A formula interface
is provided. If the predictor variable include factors, the formula interface must be used
to get a correct model matrix. The probability model for classification fits a logistic dis-
tribution using maximum likelihood to the decision values of all binary classifiers, and
computes the a-posteriori class probabilities for the multiclass problem using quadratic
optimization. The probabilistic regression model assumes laplace-distributed errors for
the predictors, and estimates the scale parameter using maximum likelihood.

An object of class "svm" contains the fitted model, including:

SV → the resulting support vectors

index → the index of the resulting support vectors in the data matrix. This index
refers to the preprocessed data.

coefs→ the corresponding coefficients times the training labels.

rho→ the negative intercept.

sigma → in case of a probabilistic regression model, the scale parameter of the hy-
pothesized laplace distribution estimated by maximum likelihood.

probA, probB → numeric vectors of length k(k−1)
2 , k number of classes, containing the

parameters of the logistic distributions fitted to the decision values of the binary classi-
fiers ( 1

(1+exp(ax+b)).

We can see an example with the Breast Cancer Wisconsin (BCW) dataset. First, we
install the package ’e1071’ and download this library:

install.packages(’e1071’,dependencies=TRUE)
library(e1071)

After that, we download the dataset and delete the first column, which indicates the
patient’s ID number:

dataset <- read.csv(’http://archive.ics.uci.edu/ml/machine-learning-databases/
breast-cancer-wisconsin/wdbc.data’,head=FALSE)
datos <- dataset[,2:32]

Define index as the datos’ number of rows. Then, we divide the information between
testset and trainset. Test set has the 30 % of the information and train set has the 70 %:

index <- 1:nrow(datos)
testindex <- sample(index, trunc(length(index)*30/100))
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testset <- datos[testindex,]
trainset <- datos[-testindex,]

We can use a generic function called "tune.svm". This function tunes hyperparameters of
svm method using a grid search over supplied parameter ranges:

tuned <- tune.svm(V2v., data = trainset, gamma = 10∧(-6:-1), cost = 10∧(-1:1))
summary(tuned)

which output is as follows:

tuning of "svm":

- sampling method: 10-fold cross validation

- best parameters:
gamma cost
0.001 10

- best performance: 0.02269231

- Detailed performance results:

gamma cost error dispersion

1 1e-06 0.1 0.38064103 0.06718161
2 1e-05 0.1 0.38064103 0.06718161
3 1e-04 0.1 0.38064103 0.06718161
4 1e-03 0.1 0.28801282 0.05210964
5 1e-02 0.1 0.06025641 0.04768070
6 1e-01 0.1 0.07275641 0.04340948
7 1e-06 1.0 0.38064103 0.06718161
8 1e-05 1.0 0.38064103 0.06718161
9 1e-04 1.0 0.27051282 0.04288968
10 1e-03 1.0 0.05275641 0.04354054
11 1e-02 1.0 0.02769231 0.02527300
12 1e-01 1.0 0.05525641 0.04857604
13 1e-06 10.0 0.38064103 0.06718161
14 1e-05 10.0 0.27051282 0.04288968
15 1e-04 10.0 0.05525641 0.04407908
16 1e-03 10.0 0.03769231 0.03198968
17 1e-02 10.0 0.02269231 0.02240474
18 1e-01 10.0 0.06275641 0.04773855

Names of the variables can be seen with names(datos):

26



[1] "V2" "V3" "V4" "V5" "V6" "V7" "V8" "V9" "V10" "V11" "V12" "V13"
[13] "V14" "V15" "V16" "V17" "V18" "V19" "V20" "V21" "V22" "V23" "V24" "V25"
[25] "V26" "V27" "V28" "V29" "V30" "V31" "V32"

As we said, variable V1 was named ID and was deleted. To conclude, we implement
the svm model with the radial kernel:

model <- svm(V2v., data = trainset, kernel="radial", gamma=0.001, cost=10)
print(model)
summary(model)

Its output is the following:

Call:

svm(formula = V2v., data = trainset, kernel = "radial", gamma = 0.001,
cost = 10)

Parameters:

SVM-Type: C-classification
SVM-Kernel: radial
cost: 10
gamma: 0.001

Number of Support Vectors: 82

( 41 41 )

Number of Classes: 2

Levels:
B M

Predict Method for Support Vector Machine:

In order to do this, the command is called "predict.svm". As the previous command,
we apply this command "predict" on an object of class "svm":

## S3 method for class ’svm’:
predict((object, newdata, decision.values = FALSE,
probability = FALSE, ..., na.action = na.omit))

This function predicts values based upon a model trained by "svm". The output of
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command "predict.svm" is a vector of predicted values (for classification a vector of la-
bels, for density estimation a logical vector). If decision.value is TRUE, the vector gets
a "decision.value" attribute containing an n× c matrix of all c classifiers decision values.
There are k(k−1)

2 classifiers, where k is the number of classes. The names of the columns
of the matrix indicate the labels of the two classes. If probability is TRUE, the vector
gets "probabilities" attribute containing a n× k matrix of the class probabilities.

Some tools are used on the command:

object → describes an object of class "svm", created by command "svm".

newdata → is an object containing the new input data: either a matrix or a sparse
matrix. A vector will be transformed to a n× 1 matrix.

decision.values → is a logical value controlling whether the decision values of al bi-
nary classifiers computed in multiclass classification shall be computed and returned.

probability → is a logical value indicating whether class probabilities should be com-
puted and returned. Only possible if the model was fitted with the probability option
enabled.

na.action → is a function to specify the action to be taken if NA’s are found. The
default action is "na.omit", which leads to rejection of cases with missing values on any
require variable.

We go on using the example before used in order to implement a example of "predict.svm"
command. Now we run the model again with the test set in order to predict classes:

prediction <- predict(model, testset[,-1])

The -1 is because the label column to intance classes, V2, is in the first column. To
produce the confusion matrix type:

tab <- table(pred = prediction, true = testset[,1])

The confusion matrix is:

true
pred B M
B 110 5
M 0 55

This means that there are 110 benign instances in test set and all of them were predicted
as benign instances. On the other hand, there are 60 malign instances in test set, 55 were
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predicted rightly and 5 as benign instances.

Let:

TP : true positive, i.e. malign instances predicted rightly
FP : false positive, i.e. benign instances predicted as malign
TN : true negative, i.e. benign instances predicted rightly
|N |: total of benign instances
|P |: total of malign instances

Sensitivity=TP
|P |

Specificity=TN
|N |

Precision= TP
TP+FP

For this problem we have:

Sensitivity=55
60 = 0.916

Specificity=110
110 = 1

Precision= 55
55+0 = 1

Plot SVM Objects:

In order to do this, the command is called "plot.svm", where we simply apply the com-
mand "plot" on a class "svm":

## S3 method for class ’svm’
plot(x, data, formula, fill = TRUE, grid = 50, slice = list(),
symbolPalette = palette(), svSymbol = "x", dataSymbol = "o", ...)

It is the use of the command "plot.svm", which have the following arguments:

x → object of class "svm".

data → the data which we will visualize. Should be the same used for fitting.

formula → the formula selects the visualized two dimensions.

fill → a switch which indicates whether a contour plot for the class regions should
be added.

slice → only is needed if more than two variables are used. Is a list of named val-
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ues for the dimension held constant.

symbolPalette → the color palette used for the class the data points and support vectors
belong to.

svSymbol → symbols used for support vectors.

dataSymbol → symbols used for data points.

We can use additional graphics parameters. Command "plot.svm" generates a scatter
plot of the input data of a svm fit for classification models by highlighting the classes and
support vectors. Optionally, draws a filled contour plot of the class regions. We can see
some examples:

## a simple example
data(cats, package = "MASS")
m <- svm(Sex ., data = cats)
plot(m, cats)

## more than two variables: fix 2 dimensions
data(iris)
m2 <- svm(Species ., data = iris)
plot(m2, iris, Petal.Width Petal.Length,
slice = list(Sepal.Width = 3, Sepal.Length = 4))

## plot with custom symbols and colors
plot(m, cats, svSymbol = 1, dataSymbol = 2, symbolPalette = rainbow(4),
color.palette = terrain.colors)

Another library is called "SvmPath". Related with the above section, the "SvmPath"
algorithm can be started at any intermediate solution of the SVM optimization problem
(i.e. the solution for any µ), since the values of λi and f(xi) determinate the sets L, E
and R. We are going to see some commands of the library "SvmPath":

Fit the entire regularization path for a 2-class SVM:

The command is called "svmpath". A "svmpath" object is returned, for which there
are print, summary, coef and predict methods. The SVM has a regularization or cost
parameter C, which controls the amount by which points overlap their soft margins. Typ-
ically either a default large value for C is chosen (allowing minimal overlap), or else a few
values are compared using a validation set. This algorithm computes the entire regular-
ization path (i.e. for all possible values of C for which the solution changes), with a cost
a small (∼3) multiple of the cost of fitting a single model. The command is used as follows:

svmpath(x, y, K, kernel.function = poly.kernel, param.kernel = 1, trace,
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plot.it, eps = 1e-10, Nmoves)

Some arguments are used:

x → the data matrix (n× p) with n rows (observations) on p variables (columns)

y → the "{-1,+1}" valued response variable

K → an n× n kernel matrix, with default value K= kernel.function(x, x)

kernel.function → this is a user-defined function. Provided are poly.kernel (the de-
fault, with parameter set to default to a linear kernel) and radial.kernel

param.kernel → parameter(s) of the kernels

trace → if TRUE, a progress report is printed as the algorithm runs; default is FALSE

plot.it → a flag which indicates whether a plot should be produced (default FALSE;
only usable with p=2

eps → a small machine number which is used to identify minimal step sizes

Nmoves → the maximum number of moves

Additional arguments to some of the functions called by "svmpath" can be used. One
such argument that can be passed is ridge. This is used to produce stable solutions to
linear equations. The algorithm used in svmpath() is described in detail in "The Entire
Regularization Path for the Support Vector Machine" by Hastie, Rosset, Tibshirani and
Zhu, [15]. It exploits the fact that the hinge loss-function is piecewise linear, and the
penalty term is quadratic. This means that in the dual space, the lagrange multipliers
will be piecewise linear.

Recursive Feature Elimination (RFE):

Another package can be useful: "pathClass". This package contains an implementa-
tion of the Recursive Feature Elimination (RFE), which we will see in the Chapter 3. The
used command is the "fit.rfe" command. The command is used as follows:

fit.rfe(x, y, DEBUG = FALSE,
scale = c("center", "scale"), Cs = 10∧c(-3:3), stepsize = 0.1)

This command has different type of arguments:

x → a p× n matrix of expression measurements with p samples and n genes.
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y → a factor of length p comprising the class labels.

DEBUG → debugs the information which has to be plotted.

scale → a character vector which defines if the data should be centered and/or scaled.
Possible values are center and/or scale. Defaults to c(!center!, !scale!).

Cs → soft-margin tuning parameter of the SVM. Defaults to 10∧c(-3:3).

stepsize → amount of features that are discarded in each step of the feature elimi-
nation. Defaults to 10%.

The output of this command is a RFE fit object. features= selected features, error.bound=
span bound of the model and fit = fitted SVM model. In the Chapter 3 we will see an
example of the application of the RFE algorithm to the Breast Cancer Wisconsin dataset
in R.

2.4 Ramp Loss SVM
Traditional SVM with the linear kernel is often used but performance is diminished with
the presence of outliers. Carrizosa and Romero Morales, [7], provide an extensive review
of the relationship between mathematical optimization and classification, including many
approches for SVM. Below we review some results relating to ramp loss SVM.

Ramp loss SVM, [25, 27, 2, 6], presents a solution to the outlier problem with formu-
lations of SVM that gives less weight to problematic training points and therefore better
generalizability as compared to traditional SVM. Although performance is greatly im-
proved, these formulations are computationally intractable with this approach. To date,
computational studies of the robustness of ramp loss SVM are limited. Error measurement
for SVM with ramp loss differs from traditional SVM in that all misclassified observations
falling outside of the margin add a loss of 2 to the objective function while the error for
observations falling in the margin is between 0 and 2, and depends on the distance to the
margin boundary, [6]. Shen at al.,[25], Wang et al., [27], and Collobert et al., [8], suggest
algorithms for ramp loss SVM that converge to locally optimal solutions.

Related efforts to increase robustness to outlier observations include discrete SVM (DSVM),
[20, 21, 22], that implements SVM with the hard margin loss and the linear kernel. The
hard margin loss assigns an error of one to observations between the margin boundaries
and those outside the margin boundaries and misclassified, and zero otherwise. DSVM
is formulated as a mixed integer linear program (MILP). Utsun et al., [26], formulate an
optimization-based linear classification method that penalizes the number of misclassifica-
tions and both the `1 and the number of nonzero coefficients of the discriminant via MILP.

Traditional SVM uses regularization to avoid overfitting noise by introducing a quadratic
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term in the objective function of the corresponding optimization formulation. Finding
an optimal SVM hyperplane for a given training problem dataset requires the solution
of a quadratic problem. By linearizing the regularization term, the training problem be-
comes a linear program (LP). Robust LP formulations for finding optimal hyperplanes
for discrimination of linearly inseparable sets were studied in the early 1990’s. Bennett
and Mangasarian, [3], proposed a single LP formulation which generates a plane that
minimizates the average errors of misclassified points belonging to two disjointed sets of
observations in n-dimensional real space. Mangasarian, [19], introduced a generalized
SVM formulation that could be used for both quadratic and LP formulations. Hadzic,
[14], and Kecman, [17], provide a formulation that utilizes the `1-norm of the separat-
ing hyperplane for maximizing the margin. It performed well in several empirical tests,
[17, 14]. Zhou et al., [29], introduce a LP SVM formulation in which the margin is defined
as the right hand side of the constraint, yi(β0 + βtxi) ≥ 1, with an unknown in place of
1. This is unique because the right hand side of these constraints is representative of the
margin width of the separating hyperplanes.

We assume training data are given consisting, as we saw, of observations xi ∈ Rr, i =
1, · · · , n each having an associated class label yi ∈ {−1, 1}.

To produce a ramp loss function the errors are weighted as follows:

R(xi, f(yi, f(xi))) =



0, yif(xi) > 1,

1− yif(xi), −1 ≤ yi(xi) ≤ 1,

2, yif(xi) ≤ 1.

Brooks, [6], presents MIQP formulations for SVM with ramp loss error terms. The for-
mulation called SVMIP1-RL can be used to find a hyperplane that maximizes the margin
while minimizing the ramp loss:

(2.44)

(SVMIP1-RL) minβ,β0,ε,z {1
2‖β‖

2 + C
∑
i∈I(εi + 2zi)}

subject to: yi(β0 + βtxi) = 1− εi if zi = 0, ∀ i ∈ I,
0 ≤ εi ≤ 2, ∀ i ∈ I,
zi ∈ {0, 1}, ∀ i ∈ I.

Just like traditional SVM, this ramp loss model can generate nonlinear discriminants by
substituting primal variables with dual variables; i.e., β = ∑n

i=1 λiyixi, and replacing xi
with φ(xi). Replacement of these variables, as well as application of the kernel trick, i.e.
xi.xj → φ(xi).φ(xj) = K(xi, xj) gives rise to the following model:

(2.45)
(SVMIP2-RL) minλ,β0,ε,z {1

2
∑
i,j∈I λiλjyiyjK(xi, xj) + C

∑
i∈I(εi + 2zi)}

subject to: yi(β0 +∑
j∈I λjyjK(xi, xj)) = 1− εi if zi = 0, ∀ i ∈ I,

0 ≤ λi ≤ C, ∀ i ∈ I,
0 ≤ εi ≤ 2, ∀ i ∈ I,
zi ∈ {0, 1}, ∀ i ∈ I.
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The conditional constraints can be used in a branch and bound solver directly via "indica-
tor constraints". Alternatively, one can linearize the conditional constraints by replacing
the right hand side with 1− εi−Mzi for all training vectors. The choice of the parameter
M is important because making it too small may bias the resulting discriminant towards
outliers. On the other hand making M too large may lead to numerical instability. An
option for controlling the size ofM may be to solve the linear problem for the magnitudes
of the ε’s, and adjusting M as necessary.

Now we are going to combine ideas for `1-norm regularization with ramp loss SVM to
produce four formulations, recently proposed in [6], that may be solved as MILPs. For
each formulation for `1-norm regularization, incorporating the ramp loss amounts to ei-
ther using conditional "indicator" constraints or adding a binary integer variable to each
soft margin constraint.

Mangasarian, [18], introduced a generalized SVM formulation that considers functions
for regularization that lead to quadratic programming and LP formulations for SVM and
also allows for weighting the misclassification of observations. Two different options for
an LP SVM are given. The first is the `1-norm of the dual variables, λ. This formulation
can incorporate the ramp loss as follows:

(2.46)
(GSVM1-RL) minλ,s,β0,ε,z {

∑
i∈I si + C

∑
i∈I(εi + 2zi)}

subject to: yi(β0 +∑
j∈I λjyjK(xi, xj)) ≥ 1− εi +Mzi, ∀ i ∈ I,

si ≤ λi ≤ −si, ∀ i ∈ I,
εi ≥ 0, ∀ i ∈ I,
zi ∈ {0, 1}, ∀ i ∈ I.

The variable si is the absolute value of λi. The second LP SVM uses absolute value of∑
j∈I λjyjK(xi, xj). The extension to incorporate the ramp loss is given in the following

formulation:

(2.47)
(GSVM2-RL) minλ,s,β0,ε,z {

∑
i∈I si + C

∑
i∈I(εi + 2zi)}

subject to: yi(β0 +∑
j∈I λjyjK(xi, xj)) ≥ 1− εi +Mzi, ∀ i ∈ I,

si ≤
∑
j∈I λjyjK(xi, xj) ≤ −si, ∀ i ∈ I,

εi ≥ 0, ∀ i ∈ I,
zi ∈ {0, 1}, ∀ i ∈ I.

In examining (2.47), the first set of constraints can be seen as generalizing the soft margin
constraints on each training observation in traditional SVM. The second set of constraints
ensures that each si is the absolute value of the each regularization term. If the kernel
is linear then it is interesting to note that the regularization term we are minimizing is∑
i∈I |(βxi)|. In this way, the function that we are minimizing is perhaps more similar to

traditional SVM than (2.46).

Hadzic, [14], and Kecman, [17], provide a formulation that utilizes the `1-norm of the
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separating hyperplane for maximizing the margin. The first formulation is derived from
classical SVM with the only exception being that the `1-norm is used as a regularization
term, instead of the `2-norm of the discriminant coefficients. Kecman and Hadzic’s LP
classifier can be modified to accommodate the ramp loss as follows:

(2.48)
(MILPSVM-RL) minβ+,β−,β0,ε {

∑
i∈I(β+

i + β−i ) +∑
i∈I(εi + 2zi)}

subject to: yi(β0 + xiβ
+ − xiβ−) ≥ 1− εi +Mzi, ∀ i ∈ I,

εi ≥ 0, ∀ i ∈ I,
zi ∈ {0, 1}, ∀ i ∈ I,
β+, β− ≥ 0 .

In this formulation, the attribute vector β is split into positive β+ and negative β− parts
so that the generalization terms in the objective function are linear instead of quadratic.
This new measure is the `1-norm because the sum of β+ and β− equates to the sum of the
absolute value of all parts of the vector β. This formulation is the closest literal transition
from the traditional `2-norm regularization of SVM to `1-norm with ramp loss error term.
However, it is not clear how the formulation can be used with the "kernel trick", and so
only linear discriminants can be learned.

The fourth and last formulation for ramp loss SVM with `1 regularization is an extension
of a LP formulation due to Zhou et al.[29]. They introduce a LP SVM formulation by
considering the `∞-norm for regularizaion. Their formulation replaces the metric repre-
senting the magnitude, of the classifier margin in the objective function with a variable r
in the equation for the margin, d = 2r

‖β‖∞ . By replacing the right hand side of the bound-
ing constraints in traditional SVM with r (in place of 1), we allow for the substitution of
terms in the objective function:

(2.49)
(rSVM2-RL) minλ,r,β0,ε {−r + C

∑
i∈I(εi + 2zi)}

subject to: yi(β0 +∑
j∈I λjyjK(xi, xj)) ≥ r − εi +Mzi, ∀ i ∈ I,

−1 ≤ λi ≤ 1, ∀ i ∈ I,
0 ≤ εi ≤ 2, ∀ i ∈ I,
zi ∈ {0, 1}, ∀ i ∈ I,
r ≥ 0 .

Bounds are placed on λ, so that the absolute value of each variable is at most 1. Even
with these constraints, however, the original LP formulation is unbounded when C <
max{ 1

n+ ,
1
n−
}, where n+ and n− represent the number of observations in each class. Also,

setting all variables to zero always provides a feasible solution. Therefore, non-trivial
solutions occur only when a feasible solution exists where the objective function value is
negative. Therefore, C must be large enough to avoid an unbounded problem but small
enough to avoid a rule that places all observations in one class. With the incorporation
of the ramp loss, (2.49) is no longer unbounded. However, setting all variables to zero
remains feasible with a zero objective function value.
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Chapter 3

Feature Selection in SVM

As of 1997, when a special issue on relevance including several on variable and feature
selection was published (Blum and Langley, 1997, Kohavi and John, 1997), few domains
explored more than 40 features. The situation has changed since then, many papers ex-
plore domains with hundreds to tens of thousands of variables or features. New techniques
are proposed to address these challenging tasks involving many irrelevant and redundant
variables.

One example is typical of the new application domains and serves us as illustration about
this problem. This one is gene selection from microarray data. In this problem, [11], the
variables are gene expression coefficients corresponding to the abundance of mRNA in a
sample, for a number of patients.

A typical classification task is to separate healthy patients from cancer patients, based
on their gene expression profile. Usually fewer than 100 patients are available altogether
for training and testing. But, the number of variables in the raw data ranges from 6000
to 60000. Some initial filtering usually brings the number of variables to a few thousand.
Because the abundance of mRNA varies by several orders of magnitude depending on the
gene, the variables are usually standardized.

Pattern classification, especially in the context of regularization that enforces sparsity
of the weight vector, is deeply connected to the problem of feature selection. In the fea-
ture selection problem one would like to select a subset of features while preserving or
improving the discriminative ability of a classifier. In many supervised learning problems
feature selection is important for a variety of reasons: generalization performance, running
time requirements, and constraints and interpretational issues imposed by the problem
itself.

Some methods put more emphasis on one aspect than another. Some papers about this
problem focus mainly on constructing and selection subsets of features that are useful to
build a good predictor.

This contrasts with the problem of finding and ranking all potentially relevant variables.
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Selecting the most relevant variables is usually suboptimal for building a predictor, partic-
ulary if the variables are redundant. Conversely, a subset of useful variables may exclude
many redundant, but relevant, variables.

We need to talk about the three principal approaches of feature selection: Filters, Wrap-
pers and Embedded methods, [12]:

Filters:Filter type methods select variables regardless of the model. They are based
only on general features like the correlation with the variable to predict. Filter methods
suppress the least interesting variables. The others variables will be part of the model
classification, regression is used to classify the data prediction. These methods are par-
ticularly effective in computation time and robust to overfitting. However, filter methods
tend to select redundant variables because they does not consider the relationships be-
tween variables. Therefore, they are mainly used as a pre-process method.

Wrappers: Wrappers methods evaluate subsets of variables which allows, unlike fil-
ter approaches, to detect the possible interactions between variables. This method have
two disadvantages:

1. The increasing overfitting risk when the number of observations is insufficient.

2. The significant computation time when the number of variables is large.

Filters and wrappers differ mostly by the evaluation criterion, but both methods can
make use of search strategies to explore the space of all possible feature combinations,
that is usually too large to be explored exhaustively. It is usually understood that filters
use criteria not involving any learning machine, e.g., a relevance index based on corre-
lation coefficients or test stadistics, whereas wrappers use the performance of a learning
machine trained using a given feature subset.

We need to talk about the Recursive Feature Elimination (RFE), [28]. RFE is a fea-
ture selection algorithm described by Guyon et al., [13]. The method, given that one
wishes to employ only r < n input dimensions in the final decision rule, attempts to find
the best subset r. The method operates by trying to choose the r features which lead to
the largest margin of class separation, using SVM classifier.

This combinatorial problem is solved in a greedy fashion as each iteration of training
by removing the input dimension that decreases the margin the least until only r input
dimensions remain, this is known as backward selection.

For SVMs, W 2(λ) = ∑
λiλjyiyjK(xi, xj) is a measure of predictive ability, and is in-

versely proportionate to the margin. The algorithm is thus to remove features which keep
this quantity small. This can be done with the following iterative procedure:

→ Given solution λ, calculate for each feature p:
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W 2
(−p)(λ) = ∑

λiλjyiyjK(x−pi , x−pj )

where x−pi means training point i with feature p removed.

→ Remove the feature with smallest value of |W 2(λ)−W 2
(−p)(λ)|.

If the classifier is a linear one (of type f(x) = βtx + β0), this algorithm corresponds to
removing the smallest corresponding value of |βi| in each iteration. To speed up computa-
tions, when the number of features is large the author, [13], suggests to remove half of the
features each iteration. Note that RFE has been designed for two-class problems although
a multi-class version can be derived easily for a one-againts-the-rest approach. The idea is
then to remove the features that lead to the smallest value of ∑Q

i=1 |W 2
k (λk)−W 2

k,(−p)(λk)|
where W 2

k (λ) is the corresponding margin based value W 2(λk) for the machine discrimi-
nating class k from all the others.

SVM-RFE is an application of RFE using the weight magnitude as ranking criterion.
We present below an outline algorithm in the linear case. The algorithm can be general-
ized to remove more than one feature per step for speed reasons.

Algorithm SVM-RFE:
Inputs
Training examples

X0 = [x1, x2, · · · , xk, · · · , x`]t

Class labels

y = [y1, y2, · · · , yk, · · · , y`]t

Initialize:
Subset of surviving features

s = [1, 2, · · · , n]

Feature ranked list

r = [ ]

Repeat until s = [ ]
Restrict training examples to good feature indices

X = X0(:, s)

Train a classifier

α = SVM − train(X, y)

Compute the weight vector of dimension length (s)

w = ∑
k αkykxk
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Compute the ranking criteria

ci = (wi)2, ∀ i

Find the feature with smallest ranking criterion

f = argmin(c)

Update feature ranked list

r = [s(f), r]

Eliminate the feature with the smallest ranking criterion

s = s(1 : f − 1, f + 1 : length(s))

Output:
Feature ranked list r.

In R we can run an explicit example of the SVM-RFE application. We use the Breast
Cancer Wisconsin dataset. With the followings commands we obtain explicitly the SVM-
RFE algorithm, with the help of the "svm" command:

svmrfeFeatureRanking = function(x,y){
n = ncol(x)

survivingFeaturesIndexes = seq(1:n)
featureRankedList = vector(length=n)
rankedFeatureIndex = n

while(length(survivingFeaturesIndexes)>0){
#train the support vector machine
svmModel = svm(x[, survivingFeaturesIndexes], y, cost = 10, cachesize=500,
scale=F, type="C-classification", kernel="linear" )

#compute the weight vector
w = t(svmModel$coefs)%*%svmModel$SV

#compute ranking criteria
rankingCriteria = w * w

#rank the features
ranking = sort(rankingCriteria, index.return = TRUE)$ix

#update feature ranked list
featureRankedList[rankedFeatureIndex] = survivingFeaturesIndexes[ranking[1]]
rankedFeatureIndex = rankedFeatureIndex - 1
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#eliminate the feature with smallest ranking criterion
(survivingFeaturesIndexes = survivingFeaturesIndexes[-ranking[1]])

}

return (featureRankedList)
}

With this algorithm, now we can run the example of Breast Cancer Wisconsin dataset.
We are using all the commands that we saw in the section 2.3:

x<-datos[,-1]
y<-datos[,1]
featureRankedList = svmrfeFeatureRanking(x,y)

featureRankedList

The command output is the set of features arranged in order of importance:

[1] 28 8 17 16 27 5 29 25 12 21 7 26 1 15 9 18 13 22 20 3 2 14 30 10 6

[26] 19 4 11 24 23

So, it is possible to select a specific number, less than the number of variables, of the
most relevant features in order to train a better SVM model.

Embedded methods: The third approach, embedded methods, performs feature se-
lection in the process of model building. For example, adds an extra term that penalizes
the size of the selected feature subset to the standard cost function of SVM, and optimizes
the new objective function to select features. These approaches are, however, limited to
linear kernels.

Embedded methods have been proposed to reduce the classification of learning. They
try to combine the advantages of both previous methods. The learning algorithm takes
advantage of its own variable selection algorithm. So, it needs to know preliminary what
a good selection is, which limits their exploitation.

Many generalizations of the original work of Boser, Guyon and Vapnik have been proposed.
For instance, Bradley and Mangasarian, [5], describe the following general procedure. It
is given to discriminate linearly separable data, like the problem (2.8):
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(3.1)

minβ0,β ‖β‖p + C
∑
i∈I εi

subject to: yi(β0 + βtxi) ≥ 1− εi, ∀ i ∈ I
β ∈ Rr, β0 ∈ R
εi ≥ 0, ∀ i ∈ I

where ‖β‖p = (∑n
j=1 β

p
j )

1
p is the `p−norm of β. When p = 2, this procedure is the

same as the euclidean case above defined. The generalization capabilities of such linear
models have been studied by many researchers who have shown that, roughly speaking,
minimizing the `p−norm of β is good for generalization. We are going to study the case
that is obtained when, in the previous problem, we apply the extreme case p→ 0, which
in a slight abuse of terminology, the minimization of the zero-norm of β the latter being
defined as:

‖β‖0 = card{βi|βi 6= 0}

where card is set cardinality. Note that ‖.‖0 is not a norm because, unlike `p-norms with
p ≥ 1, the triangle inequality does not hold. Minimization of the zero-norm provides a
natural way of directly addressing the feature selection and pattern classification objec-
tives in a single optimization. However, this is achieved at the cost of having to solve a
very difficult optimization problem which will not necessarily generalize well.

An approximation of the step function can be done, [28]:

‖β‖0 = card{βi|βi 6= 0} ≈ ∑i 1− e−α|βi|

where α is a parameter that must be chosen. Bradley and Mangasarian, [4], suggest to set
the value of α to 5, although it is also proposed (but in practice not attempted) to slowly
increase the value of α in order to improve the aproximation. The authors showed that
minimizing the above expression can be achieved by solving a sequence of linear programs
of the following form:

(3.2)

minv
∑
i∈I αe

−αv∗i (vi−v∗i ) + C
∑
i∈I εi

subject to: yi(β0 + βtxi) ≥ 1− εi, ∀ i ∈ I
−v ≤ β ≤ v
β ∈ Rr, β0 ∈ R
εi ≥ 0, ∀ i ∈ I

where v∗ is the solution v from the last iteration. Note that each of these iterations finds
the steepest descent diection of the objective ∑i∈I 1 − e−α|βi| while keeping consistency
with the constraints. It is proved that if α is sufficiently large then an optimal solution
of problem (3.2) is also an optimal solution of the problem (3.1).

In Weston (2003), [28], is proposed a method called Approximation of the zero-norm
Minimization (AROM):
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1.Set z = (1, · · · , 1)

2.Solve:

(3.3)

minβ
∑n
j |βj|+ C

∑
i∈I εi

subject to: yi(β0 + βt(xi ∗ z)) ≥ 1− εi, ∀ i ∈ I
β ∈ Rr, β0 ∈ R
εi ≥ 0, ∀ i ∈ I

3.Let β be the solution of the previous problem. Set z ← z ∗ β.

4.Go back to 2 until convergence.

It is simply a succession of linear programs combined with a multiplicative update. Some-
times, it can be adventageous to consider fast approximations of this algorithm. For in-
stance, one could take a suboptimal descent direction by using the `2-norm instead of
the `1-norm in step 2. The `2-norm has the advantage that it leads to a simple dual
formulation which then becomes equivalent to training a SVM:

1.Set z = (1, · · · , 1)

2.Solve:

(3.4) maxλi

∑
i∈I λi − 1

2
∑
i,j∈I λiλjyiyj((z ∗ xi)(z ∗ xj))

subject to: ∑
i∈I λiyi = 0, C ≥ λi ≥ 0, ∀ i ∈ I

3.Let β the solution of the previous problem. Set z ← z ∗ β.

4.Go back to 2 until convergence.

It is possible to extend the proposed algorithm to also trade off the training error with
the number of feature selected, which is necessary in the linearly nonseparable case. For
simplicity, let us again consider the case of two-class linear models. Introducing slack
variables εi for each training point we can in general solve:

(3.5)

minβ ‖β‖p + C‖ε‖q
subject to: yi(β0 + βtxi) ≥ 1− εi, ∀ i ∈ I

β ∈ Rr, β0 ∈ R
εi ≥ 0, ∀i ∈ I

Let us consider the case p = 0 and q = 0. Using this approach, it is possible to solve this
problem by rewriting the training data xi ← (xi, 1

α
δi) where δi ∈ {0, 1}n and (δi)j=1 if

i = j and 0 otherwise.
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Note that is also possible to derive a system to minimize the training error of SVMs,
i.e. using p = 2 and q = 0. This is a kind of minimization that researchers have been
interested in solving but have rarely in practice been able to solve, although Fung et al.,
[10], and Pérez-Cruz et al.,[23] , also propose solutions to this problem.

The method of approximately minimizing the zero-norm chooses a small number of fea-
tures and can therefore be used as a feature selection algorithm. Features selection can
be implemented usig this method in the following way:

(3.6)

minβ ‖β‖p + C‖ε‖q
subject to: yi(β0 + βtxi) ≥ 1, ∀ i ∈ I

‖β‖0 ≤ r − εi, ∀ i ∈ I
β ∈ Rr, β0 ∈ R
εi ≥ 0, ∀i ∈ I

for p = {1, 2} and the desired number of features r. This method can be approximated
by minimizing the zero-norm using the `2-AROM or `1-AROM methods, stopping the
step-wise minimization when the constraint ‖β‖0 ≤ r is met. One can then re-train a
p-norm classifier on the features which are the nonzero elements of β. In this way one is
free to choose the parameter r which dictates how many features the classifier will use.
This should thus be differentiated from a zero-norm classifier which would try to use the
minimum number of features possible, which is not always the optimum choice in terms
of generalization.
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