
Computer Standards & Interfaces xxx (2012) xxx–xxx

CSI-02844; No of Pages 8

Contents lists available at SciVerse ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla
Analysis of embedded CORBA middleware performance on urban distributed
transportation equipments

S.L. Toral ⁎, F. Barrero, F. Cortés, D. Gregor
Departamento de Ingeniería Electrónica, Universidad de Sevilla, Avda. Camino de los Descurbimientos s/n, 41092, Seville, Spain
⁎ Corresponding author at: Dept. Ingeniería Electróni
ino de los Descubrimientos s/n, 41092, Seville, Spain. Te
954487373.

E-mail address: toral@esi.us.es (S.L. Toral).

0920-5489/$ – see front matter © 2012 Published by El
doi:10.1016/j.csi.2012.06.004

Please cite this article as: S.L. Toral, et al., An
ments, Comput. Stand. Interfaces (2012), d
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 21 September 2009
Received in revised form 21 February 2012
Accepted 28 June 2012
Available online xxxx

Keywords:
Middleware
Embedded systems
Intelligent Transportation Systems (ITS)
The increasing number of ITS (Intelligent Transportation Systems) equipment spread across cities offers tre-
mendous possibilities in the development of distributed smart environments. A middleware layer located be-
tween the operating system and the final application can be used for the communication among the
equipment to spontaneously act and cooperate among themselves. However, this middleware layer has
also a computational cost that should be quantified as it can affect the main application. This paper defines
a methodology for such quantification using as case example a modern ITS equipment related to vehicle
tracking using artificial vision. Experimental results illustrate the proposed methodology.

© 2012 Published by Elsevier B.V.
1. Introduction

Today, a public infrastructure is distributed through the city and
consists of hundreds of cameras for surveillance purposes, traffic
light regulators, panels and systems for traffic parameters estimation,
usually connected to an urban data network, capable of disseminating
comprehensive information, including real-time data and video [1].
Transportation equipments have quickly evolved during the last
years as a result of the continuing progress of embedded devices
and multimedia processors. Modern Intelligent Transportation Sys-
tems (ITS) equipments are based on embedded processors able to
run complex computational tasks and provided with multithreading
and networking capabilities. Consequently, they can expand their
typical functionality to offer distributed services both to the traffic
control centers and to citizens [2]. The final aim consists of trans-
forming urban environments into smart urban environments, that
is, “a small world where all kinds of smart devices are continuously
working to make inhabitants' lives more comfortable” [1]. Smart cam-
eras constitute today a clear example of this innovation. They are
equipped with a high-performance onboard computing and commu-
nication infrastructure, combining video sensing, processing, and
communications in a single embedded device [4,3]. Consequently,
they can make use of urban data networks and, by including software
for distributed services, they can potentially support more complex
ca, E. S. Ingenieros, Avda. Cam-
l.: +34 954481293; fax: +34

sevier B.V.

alysis of embedded CORBA m
oi:10.1016/j.csi.2012.06.004
and challenging applications, such as smart rooms, surveillance,
tracking, and motion analysis [5].

Middleware is system's software that resides between the applica-
tions and the underlying operating systems and networks to provide re-
usable services that can be composed, configured, and deployed to
create distributed real-time and embedded (DRE) applications rapidly
and robustly [6]. Middleware provides critical capabilities for such dis-
tributed systems like encapsulating native OS communications and
concurrency mechanisms, avoiding hardware and software dependen-
cies or allowing the management of distributed services. However,
middleware has also several drawbacks like resource consumption.
Evaluation of thesemiddleware technologies has often reached the con-
clusion that middleware is a large and complex system, requiring care-
ful coupling to, and tuning for, the specified application domain. In this
sense, The Middleware Technology Evaluation (MTE) project has de-
fined a procedure for evaluating middleware components and technol-
ogies [7]. They consider a laboratory-based generic product evaluation
and they evaluate load-balancing mechanism for client requests as
one of the key middleware components. The aim of this paper consists
of defining a method for analyzing and quantifying embedded mid-
dleware performance in terms of transactions processed per second.
The obtained results have important implications on the performance
of the main functionality of embedded processors. The outline of this
paper is as follows: Section 2will provide an overview about embedded
middleware. Then, a genericmethod for themeasurement of embedded
middleware performance is proposed. Section 4 describes the imple-
mentation of the embedded middleware layer responsible of the effi-
cient deployment of distributed services and its application to urban
scenarios. Two open source middleware software have been chosen as
the layer between the operating system and the final applications. The
proposed methodology is applied to this case study in Section 5,
iddleware performance on urban distributed transportation equip-

https://core.ac.uk/display/51403424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.csi.2012.06.004
mailto:toral@esi.us.es
http://dx.doi.org/10.1016/j.csi.2012.06.004
http://www.sciencedirect.com/science/journal/09205489
http://dx.doi.org/10.1016/j.csi.2012.06.004


2 S.L. Toral et al. / Computer Standards & Interfaces xxx (2012) xxx–xxx
obtaining experimental results about middleware performance. Con-
clusions are finally detailed in Section 6.

2. Embedded middleware

During the last years, CORBA has become more and more popular
as a reference middleware for distributed computation [8,9]. CORBA
is a framework of standards and concepts for open systems defined
by the OMG [10]. In this architecture, methods of remote objects
can be invoked transparently in a distributed and heterogeneous
environment through an ORB (Object Request Broker). The ORB is re-
sponsible for all of the mechanisms required to find the object imple-
mentation for the request, to prepare the object implementation to
receive the request, and to communicate the data making up the re-
quest [11,12].

CORBA can be considered as an open distributed object computing
infrastructure with the objective of automating many common net-
work programming tasks such as object registration, location, and
activation; request demultiplexing; framing and error-handling; pa-
rameter marshalling and un-marshalling; and operation dispatching
[13]. One of the most important advantages of CORBA is its ability to
support heterogeneous environments, different vendors' products,
and several popular programming languages. This feature justifies
the use of CORBA for urban environments where many different
embedded systems were installed by different vendors through the
time.

Several implementations of the CORBA specification exist today,
both in the commercial and the open source domain. A detailed com-
parison of several CORBA implementations can be found in Puder
[14]. When choosing a CORBA implementation, several consider-
ations must be taken into account:

2.1. Supported platforms

When working with heterogeneous embedded systems, it is im-
portant to choose a CORBA implementation able to work properly in
the majority of them. This is particularly true for urban environments,
where ITS equipments from different vendors have been installed
during a long period of time. In particular, System-on-Chip (SoC) ar-
chitectures support is very interesting as they have been popularized
for multimedia processors typically used in surveillance and monitor-
ing applications.

2.2. Supported programming languages and prerequisites

The supported programming languages and prerequisites to suc-
cessfully compile the CORBA implementation must be also taken
into account. This is particularly true for ITS equipments usually
based on a great variety of processors and operating systems. In this
case, the heterogeneity of installed equipments requires the software
to be adapted to the existing software.

2.3. Supported features

Depending on the final application, additional features like objects
passed by value, asynchronous messaging, CORBA component model,
etc.

2.4. Licenses

Commercial and open source CORBA implementations can be
found nowadays, and the licenses under which they are released
can affect the development of the project. In the case of urban envi-
ronments, open source licenses are preferred by public authorities
to achieve vendor independence.
Please cite this article as: S.L. Toral, et al., Analysis of embedded CORBA m
ments, Comput. Stand. Interfaces (2012), doi:10.1016/j.csi.2012.06.004
MICO (www.mico.org) and TAO (http://www.theaceorb.com/)
are fully standard-compliant implementation of CORBA that satisfies
the previous detailed criteria. Both of them are completely written
in C++, and supports the most widely used platforms, including
SoC architectures based on ARM and MIPS processors. They are avail-
able under the “open source software” model. That means the source
is freely downloadable, open for inspection, review and comment. Fi-
nally, they include most of the novel features of CORBA [14].

3. Performance evaluation

The following method was used to quantify the effects of a mid-
dleware service on an embedded system running a heavy application
which demands most of processor's resources. The method takes ad-
vantage of the proc files available in GNU/Linux systems to retrieve
data about CPU time assigned to the processes by the scheduler.

At first sight, the solution might be to measure the CPU load using
the top command. This alternative could be enough in some simple
cases, but in many others it could distort the measurements as a con-
sequence of its features and its own CPU load. Some examples of situa-
tions where the top command does not offer accurate measurements
are described below:

• When it is needed to synchronize the beginning and the end of the
measuring period. This is very important in tests where the client
requests are simulated with bursts. Since top cannot be synchro-
nized to these bursts, it can consider a measuring period wider or
narrower leading to false results.

• Some servers usually replicate themselves in order to process many
client requests simultaneously. These replications are carried out by
creating child processes which, of course, have their own PIDs and
their own associated file in /proc. If the number of child processes is
high, top has to read many files each time it refreshes and the infor-
mation shown becomes complex to analyze since the actual CPU
load is the sum of all the children's CPU loads. There are other cases
where this problem appears although the servers do not create child
processes. In old versions of GNU/Linux systems, multi-thread pro-
grams often appear as different processes since the kernel assigns a
PID for each thread although it treats them in a different way. For
our purposes, the servermust be considered as a multi-process appli-
cation in these cases. This problem is solved in recent kernel versions
and a multi-thread server can be seen as a single process.

• When the refresh rate is high or when there are many processes
being monitored, top may demand a significant amount of CPU
time and this can produce unrealistic measurements.

When the use of top is not possible due to its limitations, a slighter
and more selective method is required. A suitable method for mea-
suring the average CPU load of middleware services has been devel-
oped for systems meeting these conditions:

• The middleware server may create many child processes.
• The Linux kernel version considers multi‐threads programs as
processes.

• The client requests can be modeled as bursts.
• The measuring period can be configured and must be synchronized
to the burst.

To measure the effects of middleware on the main application
running in an embedded system, we should compare the average
CPU load in two cases: without and with the middleware server.

Measurements in the first case can be done directly with the top
command by watching the percentage of CPU time the scheduler is
assigning to the main application. The undesirable effects of top com-
mand load can beminimized forcing top to retrieve only themain appli-
cation CPU time. Fig. 1 shows the average and the actual accumulated
CPU time assigned to the main application without the middleware.
This main application usually gets most processor's resources, so its
iddleware performance on urban distributed transportation equip-

http://www.mico.org
http://www.theaceorb.com/
http://dx.doi.org/10.1016/j.csi.2012.06.004


Fig. 2. Accumulated CPU time with middleware server.

3S.L. Toral et al. / Computer Standards & Interfaces xxx (2012) xxx–xxx
curve is very close to the total accumulated CPU time. Note that all these
curves have always a slope between 0º and 45º. The steeper the curve,
the higher the percentage of CPU use.

In the second case, top cannot be used due to the problems men-
tioned before but, since all the information gathered by top is avail-
able in the special files inside the /proc folder, we can insert some
lightweight code in our middleware server in order to read these
files and extract only the relevant information at certain moments.
When there are only a few processes to consider, this solution may
be suitable and its effects on the measurement (in terms of extra
CPU load) are insignificant. For example, if both the main application
and the middleware server are executed by single processes, the mea-
surement code would only open three files: the one regarding the
main application, the one regarding the middleware layer and the
one that contains the total CPU time. Unfortunately, this is not always
true as some middleware servers, such as Mico, create multiple
threads on demand and the number of PIDs may be quite long, thus
taking a significant time to read all the associated files.

To solve this problem we took advantage of the fact that the mid-
dleware server hardly consumes CPU time when the server is not re-
ceiving client requests. Then we can assume its CPU time curve is flat
in these periods, as depicted in Fig. 2. Since the values contained in
the proc files associated to the server do not change during the inac-
tivity periods (before and after the burst of client requests) we can
take the measurements within these periods (tm1, tm2) despite their
long delays and we will get the same values as if we would have
taken the measurements at the beginning and at the end of the burst.

TCPUsrv tm1ð Þ ¼ TCPUsrv tsð Þ

TCPUsrv tm2ð Þ ¼ TCPUsrv teð Þ
ð1Þ

These lengthy measurements should be taken at any time before
and after the burst by a simple application. This application has to
get first the list of PIDs related to the server and then retrieve the ac-
cumulated CPU times for each proc file related to the list of PIDs. The
server's total accumulated CPU time is the sum of all these values.
This task can be accomplished easily by a bash script.

In order to calculate the main process' load we only need to take
the measurements at the beginning and at the end of the burst. This
can be done by inserting some code in the service routine so that it re-
trieves information from the proc files related to the main process
and the systemwhen the server receives the first and the last request.
But this solution has two problems:

1. How to determine the first and the last request.
2. Even though the code could determine the first and the last re-

quest, the server process may beworking before and after executing
time

CPU
time

Actual CPU time
(Main process)

Average CPU time
(Main process)

Fig. 1. Average and actual accumulated CPU time without middleware server.

Please cite this article as: S.L. Toral, et al., Analysis of embedded CORBA m
ments, Comput. Stand. Interfaces (2012), doi:10.1016/j.csi.2012.06.004
the measurement code, thus consuming a little more time than
estimated.

A straightforward way to solve the first problem is to mark the
first and the last request from the client side but this may fail in
some circumstances. This is particularly true when the request rate
(requests per minute) is high and the server launches several child
processes or threadswhich do not share anymemory space. The sched-
uler at the server side might hold the thread serving the first request so
that the actual request being first served would not be the marked one.
One simple solution when communication between processes/threads
is not possible is to mark the first and the last n requests, being n a
small number, and, after finishing the burst, keeping only the lower
and the higher values.

The second problem is difficult to be avoided, but it can bemitigat-
ed if the burst is long enough. Since we are interested in the average
behavior, we can make the burst as long as we need provided the av-
erage request rate remains the same. The longer the burst, the smaller
the effect. The following expressions show this from a mathematical
point of view. The average CPU load of the main process (in %) is de-
fined as:

LMAIN ¼ 100
TCPUMAIN teð Þ− TCPUMAIN tsð Þ
TCPUSYS teð Þ− TCPUSYS tsð Þ

� �
¼

¼ 100
TCPUMAIN teð Þ− TCPUMAIN tsð Þ

te−ts

� � ð2Þ

Assuming t1 and tn as the time of the first and the last measure-
ment, respectively, the average CPU load of the main process
according to the proposed method is:

L0MAIN ¼ 100
TCPUMAIN tnð Þ− TCPUMAIN t1ð Þ
TCPUSYS tnð Þ− TCPUSYS t1ð Þ

� �
¼

¼ 100
TCPUMAIN tnð Þ− TCPUMAIN t1ð Þ

tn−t1

� � ð3Þ

The differences between the expected and the actual measure-
ment times are:

Δts ¼ t1−ts;Δte ¼ te−tn ð4Þ

The errors in the measurements due to the problem explained be-
fore can be defined as:

eMs ¼ TCPUMAIN t1ð Þ−TCPUMAIN tsð Þ

eMe ¼ TCPUMAIN tnð Þ− TCPUMAIN teð Þ
ð5Þ
iddleware performance on urban distributed transportation equip-

http://dx.doi.org/10.1016/j.csi.2012.06.004


4 S.L. Toral et al. / Computer Standards & Interfaces xxx (2012) xxx–xxx
Substituting the previous definitions in the expression of the esti-
mated average CPU load the result is given by Eq. (6).

L0MAIN ¼ 100
TCPUMAIN teð Þ þ eMe− TCPUMAIN tsð Þ−eMs

te−ts− Δts þ Δteð Þ
� �

ð6Þ

Δte and Δts do not depend from the burst's length, so if the burst is
long enough we can assume the following hypotheses:

te−ts >> Δts þ Δte ð7Þ

L0MAIN ≈ 100
TCPUMAIN teð Þ þ eMe− TCPUMAIN tsð Þ−eMs

te−ts

� �

Since the CPU load of any running process is always under 100%,
eMe and eMs are lower or equal to Δte and Δts, respectively. These er-
rors are also independent from the burst's length, so:

L0MAIN ≈ 100
TCPUMAIN teð Þ−TCPUMAIN tsð Þ

te−ts

� �
¼ LMAIN ð8Þ

since te− ts>>eMe−eMs.

The CPU load of the middleware server can be estimated using
Eq. (9).

LSRN ¼ 100
TCPUSRV teð Þ−TCPUSRV tsð Þ
TCPUSYS teð Þ−TCPUSYS tsð Þ

� �
¼

TCPUSRV tm2ð Þ−TCPUSRV tm1ð Þ
te−ts

� � ð9Þ

In addition to CPU load measurements, some useful information,
such as memory consumption can also be extracted from the proc
files without a significant additional load.

The proposedmethod takes advantage of some standards to accom-
plish themeasurements. Particularly, it uses some shell utilities and sys-
tem calls defined in the POSIX family of Standards (IEEE 1003). POSIX
standards cover a wide range of aspects regarding the operating sys-
tems behavior, such as inter-process communication, multi-threading,
exceptions, etc. From these standardized group of functions and utili-
ties, the method uses those related to process management.

In order to retrieve detailed process information in a fast way, the
method uses the procfs (proc filesystem). This pseudo-filesystem
standardizes the way to access some important information about
the operating system state, including a detailed report for every pro-
cess running in the machine, which contains useful data for the meth-
od, such as the CPU time assigned to the process or the memory
consumption. Although the procfs is not covered by a official stan-
dard, it is widely used in several UNIX-like operating systems such
as GNU/Linux, BSD, Solaris, QNX, etc. Therefore, the proposed method
can be easily ported to other embedded systems running operating
systems which use these standard features.

4. Smart urban environment application

Smart environments and ambient intelligence can be considered
today one of the possible instantiations of the emerging Information
Society. New initiatives like ARTEMIS (Advanced Research & Technol-
ogy for Embedded Intelligence and Systems, http://www.artemis-
office.org/) are focused on making ambient intelligence a reality, to
improve competitiveness, and to create opportunities for a new in-
dustry to flourish [16,17]. One of the fields highlighted by ARTEMIS
is the traffic and transport application area, which is related to public
infrastructure application context. Urban traffic management systems
have evolved in recent years into a fully integrated architecture of
Please cite this article as: S.L. Toral, et al., Analysis of embedded CORBA m
ments, Comput. Stand. Interfaces (2012), doi:10.1016/j.csi.2012.06.004
Intelligent Transportation Systems (ITS) interconnected through a
data network with the traffic control center. The ITS equipments
themselves have also evolved from simple equipments with basic
functionalities to modern equipments provided with high processing
and connection capabilities. As they have developed a local intelligence,
they can also provide local services to other equipments or citizens.

Urban traffic equipments are usually based on embedded comput-
er platforms running an embedded operating system [18,15]. Among
the different possibilities of available operating systems, Linux is
firmly in first place as the operating system of choice for smart gad-
gets and embedded systems [19,20]. Several commercial ITS equip-
ments have been used to implement a middleware layer able to
offer services to citizens and traffic control centers (www.visioway.
com). These equipments are used for traffic parameter estimation
using artificial vision [5,21]. Fig. 3 is a picture of the main board. It in-
cludes the Freescale i.MX21 video processor based on an ARM926EJ-S
core, memory cards and USB controllers, CMOS sensor interfaces, and
an Ethernet interface [22].

The processor is running under ARM Linux (kernel 2.4.20), which
provides access to a wide variety of open source software modules as
well as the support of a large community of developers. MICO and
TAO were cross compiled using arm-linux gcc-3.3.2. The size of the
resulting library files after compilation is below 7.2 MB. Although this
size could be large for certain embedded systems, this is not the case
of ITS equipments related to artificial vision,which need a great amount
of memory to deal with this kind of applications.

Fig. 4 shows the structure of the object request interface. The Ob-
ject Request Broker (ORB) is responsible for all of the mechanisms re-
quired to find the object implementation for the request, to prepare
the object implementation to receive the request, and to communi-
cate the data making up the request. The interface the client sees is
completely independent of where the object is located, what pro-
gramming language it is implemented in, or any other aspect that is
not reflected in the object's interface.

Object invocations in CORBA are based on the client server para-
digm. The client is the entity that wishes to perform an operation
on the object and the server is the code and data that actually imple-
ment the object. CORBA objects are defined as interfaces in Interface
Definition Language (IDL). This language defines the types of objects
according to the operations that may be performed on them and the
parameters to those operations.

A client application may invoke a method of a CORBA object
through the IDL compiler‐generated client stub, which is the local
representation of a CORBA server. This local representation makes
the invocations location transparent, as stubs may be representing
co-located objects or remote objects. To make an invocation a client
needs to get an object reference to the server, the process of binding
the client to a reference creates the stub, which becomes object's
entry point to the ORB. Client stub is responsible for marshalling re-
quests to server, and demarshalling replies back to the client. Receiv-
ing requests and preparing replies in the server side are similar to the
client side, with the request/reply marshalling and demarshalling
taking place through the IDL compiler‐generated server skeletons.
However, the server process is responsible for implementing the in-
terface as a servant object and activating the servant, if idle, upon re-
ceiving requests for the implemented interface. The ORB operations
and policies needed to control and manage server behavior are aggre-
gated in a Portable Object Adaptor (POA) interface.

CORBA assigns each object a unique IOR (Interoperable Object Ref-
erence) for the client application to find the remote object. An IOR
contains a string of characters used to locate and identify remote ob-
jects. Although the OMG defines the Naming Service as the preferred
way for a client to obtain an IOR of a remote object, many CORBA
implementations pass the IOR of the server's object to the client in a
common file that will be read by the client during initialization. This al-
ternative facilitates services registration and the possibility of obtaining
iddleware performance on urban distributed transportation equip-

http://www.artemis-office.org/
http://www.artemis-office.org/
http://www.visioway.com
http://www.visioway.com
http://dx.doi.org/10.1016/j.csi.2012.06.004


Fig. 3. Main board of ITS equipment for traffic parameter estimation using artificial vision.

5S.L. Toral et al. / Computer Standards & Interfaces xxx (2012) xxx–xxx
a directory of services. Clients may also use a dynamic invocation in the
case that the server is not running.

The idea of an urban smart environment is illustrated in Fig. 5.
Several embedded systems interconnected through an Ethernet net-
work spread over the city are located at the physical layer. Each one is
developing a particular task, for instance, detecting the queue length
in front of a traffic light (scenario 1), counting vehicles using artificial vi-
sion techniques (scenario 2) or just controlling a traffic panel (scenario
3). The CORBA specifications define the General Inter-ORB Protocol
(GIOP) as its basic interoperability framework. GIOP realization over
TCP/IP is Internet-IOP (IIOP) and for an ORB to be CORBA compliant,
IIOP must be supported. This is the case of the two selected CORBA
implementations, MICO and TAO.

The implemented ORB is responsible of connecting services provid-
ed by these equipments to local users (citizens) or the traffic control
center. The client for the available services is a web server containing
a directory that is continuously updated, as different equipments start
or finish their operations. This web service can be remotely accessed
by citizens or driver assistance systems. The detailed list of services in-
cluded in the proposed platform is the following:

• Vehicle queue detector. The equipment detects whenever the queue of
vehicles in front of a traffic light goes beyond a fixed threshold. The
Fig. 4. Structure of the MICO object request interfaces.

Please cite this article as: S.L. Toral, et al., Analysis of embedded CORBA m
ments, Comput. Stand. Interfaces (2012), doi:10.1016/j.csi.2012.06.004
limits of the queue region can be remotely configured by drawing vir-
tual detectors on the image of the scene, as shown in Fig. 5, scenario 1.
The blue and red regions in front of the traffic light delimit the queue
detection regions. The service consists of delivering the current state
of the queue of vehicles in the selected traffic light [21].

• Traffic density estimator. The equipment is based on a vehicle detec-
tor system using artificial vision techniques (Fig. 5, scenario 2). The
service provides data about traffic flow and incident detection [5].

• Panel messages. Panels can be automatically updated using services
provided by other equipments connected to the urban network. For
instance, a traffic panel can automatically show an incident detec-
tion or traffic delay requiring services like the ones provided by pre-
vious equipments.

The first two considered equipments have to deal with several
computer vision algorithms. The most prominent among those
implemented are the background subtraction and the shadow remov-
al algorithms. Both of them require rather complex heuristics and in-
tensive floating-point computation.

The background subtraction technique allows extracting a moving
object from an image sequence obtained using a static camera. This
should be accomplished even with objects permanently moving
around in the scene. It is based on the estimation of the so called
background-model of the scene. This model is used to obtain a refer-
ence image which is compared to each recorded image. Consequently,
the background-model must be a representation of the scene after re-
moving all the non-stationary elements, and must be permanently
updated to take into account the changing lighting conditions or
any change in the background texture [5,21]. Surveys and compari-
sons of different algorithms for background subtraction can be
found in Jacques et al. [23]. Shadow removal is a main concern
when dealing with images in outdoor or unstructured environments,
like traffic scenes where the shadows of vehicles are cast over neigh-
bor regions. Shadows have some particular properties that can be
exploited in order to eliminate them or, at least, to reduce its pres-
ence in the image [24,25]. The adopted solution for shadow detection
and removal is inspired by the work described in [26].

5. Experimental results

In this section we have applied the proposed method for quantify-
ing the computational cost of including a middleware layer like MICO
iddleware performance on urban distributed transportation equip-

http://dx.doi.org/10.1016/j.csi.2012.06.004


Fig. 5. Urban smart environment scheme.

6 S.L. Toral et al. / Computer Standards & Interfaces xxx (2012) xxx–xxx
and TAO from the point of view of transaction processed per second.
This computational cost can be important when dealing with compu-
tational intensive equipments like vision‐based ITS equipments. We
Fig. 6. CPU time and memory requirements of concurrent

Please cite this article as: S.L. Toral, et al., Analysis of embedded CORBA m
ments, Comput. Stand. Interfaces (2012), doi:10.1016/j.csi.2012.06.004
have focused on one of this artificial vision‐based equipments to
test how its functionality is affected by the embedded middleware
implementation. In particular, the traffic density estimator of Fig. 5,
processes executed in the selected traffic equipment.

iddleware performance on urban distributed transportation equip-

http://dx.doi.org/10.1016/j.csi.2012.06.004


7S.L. Toral et al. / Computer Standards & Interfaces xxx (2012) xxx–xxx
scenario 2 has been employed. Fig. 6 details the running processes on
the equipment and their CPU time and memory requirements.

The running processes correspond to the video processing algo-
rithms (epi.out) and the SSH server for remote logging. In particular,
the first one consumes the majority of the CPU time (98,8%), but just a
small amount of memory (4,1%). Notice that the equipment is provid-
ed with a large amount of memory (64 MB) to deal with video
applications.

Whenever several clients request the provided service, the mid-
dleware application creates several threads on the server side to
achieve load balancing. Fig. 7 illustrates a situation where up to
seven threads have been released to process several clients request.
As a Linux kernel 2.4.20 is being used, the server threads are identi-
fied like processes with PIDs. Notice that the main process epi.out is
still using the majority of the CPU time as all the servers are sleeping.
But when the clients are attended, the performance of the main pro-
cess is affected.

The proposed methodology has been applied to evaluate load-
balancing mechanism for client requests. In particular, Fig. 8 details
how the main process is affected when the implemented middleware
is attending external demands. From the client side, the number of
clients for 1 min is specified as an input parameter. From the server
side, an estimation of the CPU load due to themain application (epi.out)
and the server (MICO and TAO) can be obtained following the proposed
methodology. Experiments have been repeated to average the variabil-
ity of results due to the fact that the video processing algorithms are not
Fig. 7. CPU time and memory requiremen

Please cite this article as: S.L. Toral, et al., Analysis of embedded CORBA m
ments, Comput. Stand. Interfaces (2012), doi:10.1016/j.csi.2012.06.004
always demanding exactly the same amount of CPU time in each indi-
vidual experiment. As expected, the obtained results show that the
CPU time remaining for the epi.out process decreases,while the number
of server threads increases with the number of clients. It can be ob-
served that the CPU load of the main process remains always above
the 80% in the case of MICO, even in those cases with more than 1000
clients demanding services. The behavior of TAO is slightly better. The
obtained results can help to determine how the selected processor
must be oversized to support its normal operation as well as the mid-
dleware layer. A 20% is enough for the illustrated case examples.
6. Conclusions

An embedded middleware platform of smart urban environments
has been presented. The possibility of connecting spread urban equip-
ments using a middleware layer can contribute to offer new added‐
value services integrated in a smart environment. However, this pos-
sibility has also a cost in terms of the computational consumption due
to the embedded software necessary to implement the middleware
layer. A methodology for measuring the impact of a middleware
layer in normal processor operation has been proposed and two
open source middleware like MICO and TAO have been selected to
measure its performance in video‐based urban equipments. The pro-
posed method can provide useful hints for optimizing a middleware
service and minimizing its impact on the main application.
ts including several server processes.

iddleware performance on urban distributed transportation equip-

http://dx.doi.org/10.1016/j.csi.2012.06.004


60 150 250 450 500 750 900 1000

Number of Clients

%
 C

P
U

TAO Epi.out TAO Server

MICO Epi.out MICO Server

0

10

20

30

40

50

60

70

80

90

100

Fig. 8. Evolution of the CPU load with the number of clients.

8 S.L. Toral et al. / Computer Standards & Interfaces xxx (2012) xxx–xxx
Acknowledgments

This work has been supported by the Spanish Ministry of Educa-
tion and Science (Research Project with reference DPI2007-60128)
and the Consejería de Innovación, Ciencia y Empresa (Research Pro-
ject with reference P07-TIC-02621).

References

[1] D. Cook, S. Das, Smart Environments: Technology, Protocols and Applications,
Wiley-Interscience, 2004..

[2] K. Plößl, H. Federrath, A privacy aware and efficient security infrastructure for vehic-
ular ad hoc networks, Computer Standards & Interfaces 30 (6) (2008) 390–397.

[3] F. Barrero, S.L. Toral, S. Gallardo, EDSPLAB: remote laboratory for experiments on
DSP applications, Internet Research 18 (1) (2009) 79–92.

[4] M. Bramberger, A. Doblander, A.Maier, B. Rinner, H. Schwabach, Distributed embed-
ded smart cameras for surveillance applications, Computer 39 (2) (2006) 68–75.

[5] S.L. Toral, M. Vargas, F. Barrero, Embedded multimedia processors for road-traffic
parameter estimation, Computer 42 (12) (2009) 61–68.

[6] R. Schantz, D. Schmidt, Middleware for Distrib-uted Systems: Evolving the Com-
mon Structure for Network-centric Applications, Encyclopedia of Software Engi-
neering, Wiley and Sons, 2002.

[7] I. Gorton, A. Liu, P. Brebner, Rigorous evaluation of COTS middleware technology,
Computer 36 (3) (2003) 50–55.

[8] M. Henning, A new approach to object-oriented middleware, IEEE Internet Com-
puting Magazine 1 (2004) 66–75.

[9] A. Tripathi, Challenges designing next-generation middleware systems, Commu-
nications of the ACM 6 (2002) 39–42.

[10] OMG, Common Object Request Broker Architecture: Core Specifications, version 3.0.3,
http://www.omg.org/technology/documents/formal/corba_iiop.htm Dec. 2006.

[11] U. Mutlu, R. Edwards, P. Coulton, QoS aware CORBA Middleware for Bluetooth, In:
2006 IEEE Tenth International Symposium on Consumer Electronics, ISCE '06,
2006, pp. 1–7.

[12] K.-C. Liang, D. Chyan, Y.-S. Chang, W.-T. Lo, S.-M. Yuan, Integration of CORBA and
object relational databases, Computer Standards & Interfaces 25 (4) (2003)
373–389.

[13] Z. Tari, O. Bukhres, Fundamentals of Distributed Object Systems: The CORBA Per-
spective, John Wiley & Sons, Inc., 2001.

[14] A. Puder, MICO: an open source CORBA implementation, IEEE Software 21 (4)
(2004) 17–19.

[15] T.-L. Tseng, W.-Y. Liang, C.-C. Huang, T.-Y. Chian, Applying genetic algorithm for
the development of the components-based embedded system, Computer Stan-
dards & Interfaces 27 (6) (2005) 621–635.

[16] C. Gill, V. Subrarnonian, J. Parsons, H.M. Huang, S. Torri, D. Niehaus, D. Stuart, ORB
middleware evolution for networked embedded systems, In: Proceedings of the
Eighth International Workshop on Object-Oriented Real-Time Dependable Sys-
tems, 2003. (WORDS 2003), Vol. 15–17, 2003, pp. 169–176.

[17] ARTEMIS Strategic Research Agenda Working Group, Strategic Research Agenda,
First Edition Ideo Ltd., 2006.

[18] C. Arth, H. Bischof, C. Leistner, TRICam—An Embedded Platform for Remote Traffic
Surveillance, In: 2006 Conference on Computer Vision and Pattern Recognition
Workshop, Vol. 17–22, 2006.

[19] S.L. Toral, M.R. Martínez-Torres, F. Barrero, Virtual communities as a resource for
the development of OSS projects: the case of Linux ports to embedded processors,
Behavior and Information Technology 28 (5) (2009) 405–419.
Please cite this article as: S.L. Toral, et al., Analysis of embedded CORBA m
ments, Comput. Stand. Interfaces (2012), doi:10.1016/j.csi.2012.06.004
[20] S.L. Toral, M.R. Martínez-Torres, F. Barrero, F. Cortés, An empirical study of the
driving forces behind online communities, Internet Research 19 (4) (2009)
378–392.

[21] S. Toral, M. Vargas, F. Barrero, M.G. Ortega, Improved Sigma-Delta background es-
timation for vehicle detection, Electronics Letters 45 (1) (2009) 32–34.

[22] M. Vargas, J.M. Milla, S.L. Toral, F. Barrero, An enhanced background estimation
algorithm for vehicle detection in urban traffic scenes, IEEE Transactions on Ve-
hicular Technology 59 (8) (2010) 3694–3709.

[23] M. Piccardi, Background Subtraction Techniques: A Review, In: IEEE International
Conference on. Systems, Man and Cybernetics, 2004, Vol. 4, 2004, pp. 3099–3104.

[24] A. Prati, I. Mikic, M.M. Trivedi, R. Cucchiara, Detecting moving shadows: algo-
rithms and evaluation, Transactions on Pattern Analysis and Machine Intelligence
25 (7) (2003) 918–923.

[25] R. Cucchiara, C. Grana, M. Piccardi, A. Prati, Detecting moving objects, ghosts, and
shadows in video streams, Transactions on Pattern Analysis and Machine Intelli-
gence 25 (10) (2003) 1337–1342.

[26] J.C.S. Jacques Jr., C.R. Jung, S.R. Musse, Background subtraction and shadow detec-
tion in grayscale video sequences, In: Proc. of the XVIII Brazilian Symposium on
Computer Graphics and Image Processing (SIBGRAPI'05), 2005, pp. 189–196.

S. L. Toral received the M.Sc. and Ph.D. degrees in Electrical
and Electronic Engineering from the University of Seville,
Spain, in 1995 and 1999, respectively. He is currently a Full
Professor of the Department of Electronic Engineering, Uni-
versity of Seville. His research interests include embedded
systems, distributed systems and ad hoc networks.
F. Barrero received the M.Sc. and Ph.D. degrees in Electri-
cal and Electronic Engineering from the University of Se-
ville, Spain, in 1992 and 1998, respectively. In 1992, he
joined the Electronic Engineering Department at the Uni-
versity of Seville, where he is currently an Associate Pro-
fessor.
F. Cortés received the M.Sc. and Ph.D. degrees in Electrical
and Electronic Engineering from the University of Seville,
Spain, in 2007 and 2011, respectively. He is currently an As-
sistant Professor of the Department of Electronic Engineer-
ing, University of Seville.
D. Gregor received the M.Sc. degree in Electrical and Elec-
tronic Engineering from the University of Seville, Spain, in
2009. He is currently a researcher of the Department of Elec-
tronic Engineering, University of Seville.
iddleware performance on urban distributed transportation equip-

http://www.omg.org/technology/documents/formal/corba_iiop.htm
http://dx.doi.org/10.1016/j.csi.2012.06.004

	Analysis of embedded CORBA middleware performance on urban distributed transportation equipments
	1. Introduction
	2. Embedded middleware
	2.1. Supported platforms
	2.2. Supported programming languages and prerequisites
	2.3. Supported features
	2.4. Licenses

	3. Performance evaluation
	4. Smart urban environment application
	5. Experimental results
	6. Conclusions
	Acknowledgments
	References


