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73376 Le-Bourget-du-Lac Cedex, France.

wend-woaga.zabsonre@univ-savoie.fr
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In this paper we consider a two dimensional viscous sedimentation model which is a
viscous Shallow-Water system coupled with a diffusive equation that describes the evo-
lution of the bottom. For this model, we prove the stability of weak solutions for periodic
domains and give some numerical experiments. We also discuss around various discharge
quantity choices.
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1. Introduction.

Phenomena related to sediment transport have a huge interest as they affect human

life and earthly morphology in a determinant way. Indeed, the geomorphological evo-

lution of the rivers under the effect of the hydrodynamic transport of the sediments

which compose their beds constitutes a fundamental problem for the management
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of the rivers, the mastery of the environmental risks and the fight against the floods.

The analysis of sediment transport is then important to predict and prevent natural

disasters.

For this purpose, many physical and mathematical models are proposed in the lit-

erature in order to predict the bed evolution and the changes in water regime when

such unsteady flows occur. Physical experiments are particularly used to calculate

local scouring phenomena, such as the local erosion around the bridge pier or the

scour hole due to a jet issued from a underflow gate. However, when problems with

large space or times scales have to be solved, a mathematical model is generally

required.

Among the mathematical models, the most often used is based on the Saint-Venant-

Exner equations. This model, studied numerically in Ref. 10 and Ref. 19 for exam-

ple, couples an hydrodynamic Saint-Venant (Shallow-Water) system to a morpho-

dynamic bed-load transport sediment equation (similar to the one introduced in

Ref. 21) as follows:

∂th+ divq = 0, (1.1)

∂tq + div

(

q ⊗ q

h

)

+
1

Fr2
h∇(h+ zb) = 0, (1.2)

and

∂tzb + ξdiv(qb(h, q)) = 0 (1.3)

where Fr is the Froude number (ratio between the characteristic velocity of the fluid

and the square root of the product of the gravity and the characteristic height), zb

is the movable bed thickness, ξ = 1/(1 − ψ0) with ψ0 the porosity of the sediment

layer and qb denotes the solid transport flux or sediment discharge. It depends on

the height h of the fluid and the water discharge q = hu, where u is the velocity

(see Figure 1).

u(t, x): velocity

z

x

zb(t, x): movable bed thickness

h(t, x): water height

Fig. 1. Sediment and water heights

For the solid transport flux qb, there exists several formulas in the literature:

the Grass equation,11 the Meyer-Peter and Muller equation,16 or the formulas of
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Fernández Luque and Van Beek, of Van Rijn, or of Nielsen10,19. All of them are

obtained using empirical methods. The most basic sediment model is the Grass

equation, where the sediment movement begins at the same time as the fluid mo-

tion. In this case, the solid transport flux is given by

qb(h, q) = Ag
q

h

∣

∣

∣

q

h

∣

∣

∣

mg

= Ag |u|mgu, 0 ≤ mg ≤ 3, (1.4)

where the constant Ag includes the effects due to grain size and kinematic viscosity.

However, System (1.1)-(1.3) does not take the viscosity into account. In the

viscous case, we have to consider the viscous version of the Shallow-Water sys-

tem. Several choices have been considered in the literature for the viscous term14:

in Ref. 17, the author chose the laplacian and obtained an existence result, but

this system is not energetically consistent. In Ref. 1 and 2, the viscous terms are

div(h∇u) or div(hD(u)), which gives an energetically consistent system. In this

case, the authors proved the existence of global weak solutions. The key point in

those papers is to show that the structure of the diffusion term provides some

extra regularity for the density thanks to a new mathematical entropy inequality

named BD entropy. But note that the stability result is obtained using drag and

turbulence terms or capillarity. Recently, keeping this choice of viscous terms but

without any additional regularizing terms, Mellet and Vasseur15 proved the sta-

bility of a class of barotropic compressible Navier-Stokes equations, which includes

the case of the viscous energetically consistent Shallow-Water system. This paper

also uses the new BD entropy with an extra key point which gives bounds on hu2 in

a better space than L∞(0, T ;L1(Ω)), thanks to new multipliers, namely |u|ku and

u+ u log(1 + |u|2).
Let us recall now the existing results on the viscous sedimentation models, that

are a viscous Shallow-Water system coupled with an evolution equation for the

bottom. A recent work21 has been done on a model that couples the Shallow-Water

system studied by Orenga

∂th+ div(hu) = 0 (1.5)

∂tu+ u · ∇u+
1

Fr2
∇(h+ zb) − ∆u = f, (1.6)

with a Grass equation (1.4) satisfying

ξqb = hu. (1.7)

As the authors assume small variations of the free surface around a fixed level

(z = cst), they replace h by −zb in (1.7). Then they follow the lines given by

Ref. 17: thanks to a Brower fixed point on the finite dimensional problem, they get

global existence results assuming the data to be small enough.

In this article, we propose a new viscous sedimentation model, stable and en-

ergetically consistent. It consists in coupling a viscous Shallow-Water system with

a sediment diffusive equation in a bounded domain with periodic boundary con-

ditions, that is Ω = T 2. More precisely, if we denote by ν the non-dimensional
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viscosity (ν = 2/Re, where Re is the Reynolds number) and A a positive constant,

we consider the following system

∂th+ div(hu) = 0, (1.8)

∂t(hu) + div(hu⊗ u) +
h∇(h+ zb)

Fr2
− νdiv(hD(u)) = 0, (1.9)

∂tzb +Adiv
(

h|u|ku
)

− ν

2
∆zb = 0, (1.10)

with the initial conditions

h|t=0 = h0 ≥ 0, zb|t=0 = zb0 , hu|t=0 = m0, (1.11)

where D(u) is the symmetric part of the gradient, D(u) = (∇u + t∇u)/2, Fr > 0

denotes the Froude number, k is a positive real number satisfying 0 < k < 1/2. The

initial data are taken in such a way that

h0 ∈ L2(Ω), zb0 ∈ L2(Ω),
|q0|2
h0

∈ L1(Ω), ∇
√

h0 ∈ (L2(Ω))2.
(1.12)

After stating the main results in Section 2, we establish, in Section 3 some energy

and entropy relations that give us a priori estimates. These estimates are then used

in Section 4 to prove the announced theorem. We also propose numerical experi-

ments on this new model in Section 6, and conclude, in Section 5, with two other

models of sedimentation, inspired by the works mentioned above. More precisely,

we first study the model considered in Ref. 21 but with the viscous Shallow-Water

system (1.8)-(1.9) and, in a second part, we introduce one of the multipliers used

by Mellet and Vasseur in the sediment equation.

2. Main results.

In this part, we first recall the definition that will be used in the following. We then

give the main theorem of this paper that will be proved in Section 4.

2.1. Notion of weak solutions.

We shall say (h, u, zb) is a weak solution of (1.8)-(1.10) on (0, T )×Ω with initial

conditions (1.11) if

• System (1.8)-(1.10) holds in (D′((0, T )× Ω))4,

• Eq. (1.11) (on initial conditions) holds in D′(Ω) with h ≥ 0 a.e.,

• The Energy inequality (3.1) is satisfied for a.e. non negative t and the

following regularity properties are satisfied
√
hu ∈ L∞(0, T ; (L2(Ω))2),

√
h∇u ∈ L2(0, T ; (L2(Ω))4),

h1/(k+2)u ∈ L∞(0, T ; (Lk+2(Ω))2), h+ zb ∈ L∞(0, T ;L2(Ω)),

∇h+ ∇zb ∈ L2(0, T ; (L2(Ω))2), ∇
√
h ∈ L∞(0, T ; (L2(Ω))2),

h1/kD(u)2/ku ∈ Lk(0, T ; (Lk(Ω))2).
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2.2. Main theorem.

The main result of this paper is the following:

Theorem 2.1. Let (hn, un, zbn
) be a sequence of weak solutions of (1.8)-(1.10)

satisfying entropy inequalities (3.1), (3.4), with initial data

hn|t=0
= hn

0 (x), hnun|t=0
= qn

0 (x) and zbn |t=0
= zn

b0(x),

where hn
0 , zn

b0
and un

0 verify

hn
0 ≥ 0, hn

0 → h0 in L1(Ω), zn
b0 → zb0 in L1(Ω), qn

0 → q0 in L1(Ω), (2.1)

and satisfy the following bounds:

∫

Ω

hn
0

|un
0 |2
2

+
|hn

0 + zn
b0
|2

2
+ hn

0

|un
0 |k+2

k + 2
< C,

∫

Ω

∣

∣

∣∇
√

hn
0

∣

∣

∣

2

< C and

∫

Ω

|hn
0 | < C. (2.2)

Then, up to a subsequence, (hn, un, zbn
) converges strongly to a weak solution of

(1.8)-(1.10) satisfying entropy inequalities (3.1) and (3.4).

3. Energy estimates and BD entropy.

In this section, we give some energy and entropy inequalities. These relations will

be used in Section 4 where we prove Theorem 2.1. But let us first recall the energy

inequality in the inviscid case, for System (1.1)-(1.3).

3.1. The case without viscosity.

Lemma 3.1. Let (h, u, zb) be a smooth solution of the system

∂th+ divq = 0,

∂tq + div (hu⊗ u) +
1

Fr2
h∇(h+ zb) = 0,

∂tzb +Adiv
(

h|u|ku
)

= 0.

Then the following identity holds:

1

2

d

dt

∫

Ω

h|u|2 +
A

k + 2

d

dt

∫

Ω

h|u|k+2 +
1

2Fr2
d

dt

∫

Ω

|h+ zb|2 = 0.

The proof of this lemma will be included in the viscous case.

3.2. The viscous case.

From now on, we consider the viscous system (1.8)-(1.10).
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Proposition 3.1. Let (h, u, zb) be a smooth solution of (1.8)-(1.10). Then the fol-

lowing energy inequality holds:

1

2

d

dt

∫

Ω

h|u|2 +
1

2Fr2
d

dt

∫

Ω

|zb + h|2 +
A

k + 2

d

dt

∫

Ω

h|u|k+2

+
ν

2Fr2

∫

Ω

∇h · ∇zb +
ν

2Fr2

∫

Ω

|∇zb|2 +
ν

4

∫

Ω

h
∣

∣∇u+ t∇u
∣

∣

2

+
1 − 2k

4
Aν

∫

Ω

h
∣

∣∇u+ t∇u
∣

∣

2 |u|k ≤ 0. (3.1)

Proof. We multiply Eq. (1.9) by u, and integrate on Ω. This gives, using (1.8):

∫

Ω

h∂tu · u+

∫

Ω

(hu · ∇)u · u+
1

Fr2

∫

Ω

h∇(h+ zb) · u− ν

∫

Ω

div (hD(u)) · u = 0.

Now let us simplify each term:

•
∫

Ω

h∂tu · u+

∫

Ω

(hu · ∇)u · u =
1

2

d

dt

∫

Ω

h|u|2,

•
∫

Ω

h∇(h+ zb) · u =

∫

Ω

(h+ zb) ∂th =
1

2

d

dt

∫

Ω

h2 +

∫

Ω

zb ∂th ,

•
∫

Ω

div (hD(u)) · u = −
∫

Ω

hD(u) : ∇u = −1

4

∫

Ω

h
∣

∣∇u+ t∇u
∣

∣

2
.

Substituting all these terms, we get:

1

2

d

dt

∫

Ω

h|u|2 +
1

2Fr2
d

dt

∫

Ω

h2 +
1

Fr2

∫

Ω

zb ∂th+
ν

4

∫

Ω

h
∣

∣∇u+ t∇u
∣

∣

2
= 0. (3.2)

Contrary to the study of the classical Shallow Water system, we cannot make any

assumption on the regularity of the bottom zb: we have to use the energy relations

to get such properties. That is the reason why we are led to carry on the calculation.

We multiply Eq. (1.9) by |u|ku and we integrate on Ω:

∫

Ω

h∂tu · |u|ku+

∫

Ω

(hu · ∇)u · |u|ku+
1

Fr2

∫

Ω

h∇(h+ zb) · |u|ku

− ν

∫

Ω

div (hD(u)) · |u|ku = 0.

Here again, we study separately each term:

•
∫

Ω

h∂tu · |u|ku+

∫

Ω

(hu · ∇)u · |u|ku =
1

k + 2

d

dt

∫

Ω

h|u|k+2,

• 1

Fr2

∫

Ω

h∇(h+ zb) · |u|ku = − 1

Fr2

∫

Ω

(h+ zb)div
(

h|u|ku
)

.
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Then we use Eq. (1.10) to write:

1

Fr2

∫

Ω

h∇(h+ zb) · |u|ku

= − ν

2AFr2

∫

Ω

(h+ zb)∆zb +
1

AFr2

∫

Ω

(h+ zb)∂tzb

=
ν

2AFr2

∫

Ω

∇h · ∇zb +
ν

2AFr2

∫

Ω

|∇zb|2 +
1

AFr2

∫

Ω

h∂tzb

+
1

2AFr2
d

dt

∫

Ω

zb
2,

•
∫

Ω

div (hD(u)) · |u|ku = −1

4

∫

Ω

h
∣

∣∇u+ t∇u
∣

∣

2 |u|k
−k
∫

Ω

(hD(u)u · ∇)u · u|u|k−2 ,

and

∣

∣

∣

∣

∫

Ω

(hD(u)u · ∇) u · u|u|k−2

∣

∣

∣

∣

≤ 2

∫

Ω

h|D(u)|2|u|k.

Gathering all these results, we are led to:

1

k + 2

d

dt

∫

Ω

h|u|k+2 +
ν

2AFr2

∫

Ω

∇h · ∇zb +
ν

2AFr2

∫

Ω

|∇zb|2 +
1

AFr2

∫

Ω

h∂tzb

+
1

2AFr2
d

dt

∫

Ω

zb
2 +

1 − 2k

4
ν

∫

Ω

h
∣

∣∇u+ t∇u
∣

∣

2 |u|k ≤ 0. (3.3)

Now we multiply Eq. (3.3) by A and we add Equality (3.2): we find the proclaimed

inequality.

However, we still do not know the sign of the integral of ∇h · ∇zb. To get more

information, we study the BD entropy.

Proposition 3.2. For (h, u, zb) solution of the model (1.8)-(1.10), we show the

following relation:

1

2

d

dt

∫

Ω

h|u+ ν∇ logh|2 +
1

Fr2
d

dt

∫

Ω

|zb + h|2 +
2A

k + 2

d

dt

∫

Ω

h|u|k+2

+
1

2

d

dt

∫

Ω

h|u|2 +
ν

Fr2

∫

Ω

|∇(h+ zb)|2 +
ν

4

∫

Ω

h
∣

∣∇u+ t∇u
∣

∣

2

+
ν

4

∫

Ω

h
∣

∣∇u− t∇u
∣

∣

2
+

1 − 2k

4
Aν

∫

Ω

h
∣

∣∇u+ t∇u
∣

∣

2 |u|k ≤ 0. (3.4)

The proof relies on the following lemma:

Lemma 3.2. If (h, u, zb) is a solution of the model (1.8)-(1.10), we have the equal-

ity:

ν2

2

d

dt

∫

Ω

h|∇ logh|2 +
ν

Fr2

∫

Ω

|∇h|2

= −ν d
dt

∫

Ω

u · ∇h+ ν

∫

Ω

h∇u : t∇u− ν

Fr2

∫

Ω

∇h · ∇zb. (3.5)
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Proof. If we derive the mass equation (1.8) with respect to xi and multiply it by

h∂i logh, when we compute the sum over i and integrate on Ω (see Ref. 1), we get:

1

2

d

dt

∫

Ω

h|∇logh|2 +

∫

Ω

h∇div u · ∇ log h

+

∫

Ω

h∇u : ∇ log h⊗∇ log h = 0. (3.6)

This relation will be used in the following.

We multiply the momentum equation (1.9) by (ν/2)∇ logh:

ν

2

∫

Ω

(∂tu+ (u · ∇)u) · ∇h+
ν2

2

∫

Ω

D(u) :

(

∇∇h− ∇h⊗∇h
h

)

+
ν

2Fr2

∫

Ω

|∇h|2 = − ν

2Fr2

∫

Ω

∇zb · ∇h.

We simplify this expression using the following relations:

∫

Ω

h∇u : ∇ logh⊗∇ logh =

∫

Ω

D(u) :
∇h⊗∇h

h
,

∫

Ω

D(u) : ∇∇h+

∫

Ω

∇div u · ∇h = 0,

and add Eq. (3.6) multiplied by ν2/2. We get:

ν2

4

d

dt

∫

Ω

h|∇ logh|2 +
ν

2Fr2

∫

Ω

|∇h|2

= −ν
2

∫

Ω

(∂tu+ (u · ∇)u) · ∇h− ν

2Fr2

∫

Ω

∇zb · ∇h,

= −ν
2

d

dt

∫

Ω

u · ∇h+
ν

2

∫

Ω

h∇u : t∇u− ν

2Fr2

∫

Ω

∇zb · ∇h,

which ends the proof of Lemma 3.2.

Proof. We come back to the proof of Proposition 3.2.

Eq. (3.5) gives us:

1

2

d

dt

∫

Ω

h|u+ ν∇ logh|2 +
ν

Fr2

∫

Ω

|∇h|2

=
1

2

d

dt

∫

Ω

h|u|2 + ν

∫

Ω

h∇u : t∇u− ν

Fr2

∫

Ω

∇h · ∇zb.
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We add to this equality the energy inequality (3.1) multiplied by 2:

1

2

d

dt

∫

Ω

h|u+ ν∇ logh|2 +
1

Fr2
d

dt

∫

Ω

|zb + h|2 +
2A

k + 2

d

dt

∫

Ω

h|u|k+2

+
1

2

d

dt

∫

Ω

h|u|2 +
ν

Fr2

∫

Ω

|∇(h+ zb)|2 +
ν

2

∫

Ω

h
∣

∣∇u+ t∇u
∣

∣

2

+
1 − 2k

4
Aν

∫

Ω

h
∣

∣∇u+ t∇u
∣

∣

2 |u|k ≤ ν

∫

Ω

h∇u : t∇u,

which proves the proposition.

We then know that our system is dissipative. In addition, we can give a priori

estimates:

Corollary 3.1. If (h, u, zb) is solution of the model (1.8)-(1.10), then, thanks to

Proposition 3.2, we have:

‖
√
hu‖L∞(0,T ;(L2(Ω))2) ≤ c ∈ R+, ‖∇

√
h‖L∞(0,T ;(L2(Ω))2) ≤ c,

‖zb + h‖L∞(0,T ;L2(Ω)) ≤ c, ‖
√
h|u|(k+2)/2‖L∞(0,T ;(L2(Ω))2) ≤ c,

‖∇(h+ zb)‖L2(0,T ;(L2(Ω))2) ≤ c, ‖
√
h∇u‖L2(0,T ;(L2(Ω))2) ≤ c,

‖
√
hD(u) |u|k/2‖L2(0,T ;(L2(Ω))2) ≤ c.

4. Convergence theorem.

This section is devoted to the proof of Theorem 2.1, in four steps. Thanks to the

previous estimates, we show the convergence of the different terms that compose

the equation.

4.1. First step: Convergence of the sequences
(√

hn

)

n≥1

(√

hn

)

n≥1

(√

hn

)

n≥1
, (hn)

n≥1
(hn)

n≥1
(hn)

n≥1

and (zbn
)
n≥1

(zbn
)
n≥1

(zbn
)
n≥1

.

First, we give the spaces in which (
√
hn)n is bounded.

If we integrate the mass equation, we directly get (
√
hn)n in L∞(0, T ;L2(Ω)). Corol-

lary 3.1 gives us ‖∇
√
h‖L∞(0,T ;(L2(Ω))2) ≤ c, so we obtain:

(
√

hn)n is bounded in L∞(0, T ;H1(Ω)). (4.1)

Moreover, thanks to the mass equation again, we have the following equality:

∂t

√

hn =
1

2

√

hn div un − div
(

√

hnun

)

,

which gives that (∂t

√
hn)n is bounded in L2(0, T ;H−1(Ω)).

Applying Aubin-Simon lemma, we can extract a subsequence, still denoted (hn)n≥1,

such that
√
hn strongly converges to

√
h in C0(0, T ;L2(Ω)).

Let us study now the subsequence (hn)n. According to the property (4.1) and

Sobolev embeddings, we know that, for all finite p, (
√
hn)n is bounded in
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L∞(0, T ;Lp(Ω)). In the following, we will suppose p ≥ 4 in order to simplify our

expressions and ensure that (hn)n is in L∞(0, T ;L2(Ω)).

The equality ∇hn = 2
√
hn ∇

√
hn enables us to bound the sequence (∇hn)n

in L∞(0, T ; (L2p/(2+p)(Ω))2) and consequently the sequence (hn)n is bounded in

L∞(0, T ;W 1,2p/(2+p)(Ω)).

Moreover, we have some properties on the time derivative of hn; actually the

mass equation reads: ∂thn = −div(hnun). Splitting the product hnun into

hnun =
√
hn

√
hnun, we get (hnun)n in L∞(0, T ; (L2p/(2+p)(Ω))2) and (∂thn)n in

L∞(0, T ;W−1,2p/(2+p)(Ω)).

Thanks to Aubin-Simon lemma again, we find:

hn → h in C0(0, T ;L2p/(2+p)(Ω)).

Last, we consider the bottom term (zbn
)n: with Corollary 3.1 and the bound on

(
√
hn)n in L∞(0, T ;Lp(Ω)), we know that the sequence (∇zbn

)n is bounded in

L2(0, T ; (L2p/(2+p)(Ω))2), which gives

(zbn
)n is bounded in L∞(0, T ;W 1,2p/(2+p)(Ω)).

For the time derivative of zbn
, we restart from Eq. (1.10). We have just shown that

(∆zbn
)n is in L∞(0, T ;W−1,2p/(2+p)(Ω)). Let us come to the divergence term:

hn|un|kun = h(1−k)/2
n

(

h1/2
n |un|

)k

h1/2
n un (4.2)

where

•
(

h
(1−k)/2
n

)

n
is bounded in L∞(0, T ;Lp/(1−k)(Ω)),

•
(

(

h
1/2
n |un|

)k
)

n

is bounded in L∞(0, T ;L2/k(Ω)),

•
(

h
1/2
n un

)

n
is bounded in L∞(0, T ; (L2(Ω))2),

that is to say (hn|un|kun)n is bounded in L∞(0, T ; (L2p/(2−2k+kp+p)(Ω))2). As

0 < k < 1/2 and we supposed p ≥ 4, it leads us to: (hn|un|kun)n is bounded

in L∞(0, T ;L4p/(2+3p)(Ω)).

Since in our case 4p/(2 + 3p) ≤ 2p/(2 + p), we obtain:

(∂tzbn
)n is bounded in L∞(0, T ;W−1,4p/(2+3p)(Ω)).

As we have the relations W 1,2p/(2+p)(Ω) ⊂⊂ L2p/(2+p)(Ω) ⊂ W−1,4p/(2+3p)(Ω),

with Aubin-Simon lemma we are able to assert that zbn
strongly converges to zb in

L2(0, T ;L2p/(2+p)(Ω)). Note that we could also prove the continuity in time with a

weaker result in space.
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4.2. Second step: Convergence of the water discharge

(qn)n≥1 = (hnun)n≥1(qn)n≥1 = (hnun)n≥1(qn)n≥1 = (hnun)n≥1.

In the previous part, we proved that the sequence (hnun)n is bounded in

L∞(0, T ; (L2p/(2+p)(Ω))2) where p is an integer greater that 4. Writing the gradient

as follow:

∇(hnun) = 2
√

hnun∇
√

hn +
√

hn

√

hn∇un,

since the first term is in L∞(0, T ;L1(Ω)) and the second one belongs to

L2(0, T ;L2p/(2+p)(Ω)), we have:

(hnun)n bounded in L2(0, T ;W 1,1(Ω)).

Moreover, the momentum equation (1.9) enables us to write the time derivative of

the water discharge:

∂t(hnun) = −div(hnun ⊗ un) − 1

Fr2
hn∇(hn + zbn

) + ν div (hnD(un)) .

We then study each term:

• div(hnun ⊗ un) = div
(√

hnun ⊗
√
hnun

)

which is in L∞(0, T ;W−1,1(Ω)),

• as hn is in L∞(0, T ;W 1,2p/(2+p)(Ω)), it is also in L∞(0, T ;Lp(Ω)) and we

can write the following relation:

hn∇(hn + zbn
) is in L2(0, T ;L2p/(2+p)(Ω)) ⊂ L2(0, T ;W−1,2p/(2+p)(Ω)),

• remark that

hk∇uk = ∇(hkuk) − uk ⊗∇hk

= ∇
(

√

hk

√

hkuk

)

− 2
√

hkuk∇
√

hk ; (4.3)

we know that the first term is in L∞(0, T ;W−1,2p/(2+p)(Ω)) and the second

one in L∞(0, T ;L1(Ω)).

So we have hnD(un) bounded in L2(0, T ;W−1,2p/(2+p)(Ω)).

Finally, note that these three terms are included in L2(0, T ;W−2,2p/(2+p)(Ω)), which

means that ∂t(hnun) is also in this space for all n ≥ 1.

Then, applying Aubin-Simon lemma, we obtain:

(hnun)n strongly converges to q in L2(0, T ;L2p/(2+p)(Ω)).

4.3. Third step: Convergence of
(√

hnun

)

n≥1

(√

hnun

)

n≥1

(√

hnun

)

n≥1
.

The product
√
hnun is nothing else than the ratio qn/

√
hn. For this term, we also

want to prove a strong convergence. Compared with 15, the bound on
√
hu(k+2)/2

simplifies the computation.

Before studying the convergence, let us develop some properties of the limit water
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discharge. We know that (qn/
√
hn)n is bounded in L∞(0, T ;L2(Ω)); consequently

Fatou lemma reads:
∫

Ω

lim inf
q2n
hn

≤ lim inf

∫

Ω

q2n
hn

< +∞.

In particular, q(t, x) is equal to zero for almost every x where h(t, x) vanishes. Then

we can define the limit velocity taking u(t, x) = q(t, x)/h(t, x) if h(t, x) 6= 0 or else

u(t, x) = 0. So we have a link between the limits q(t, x) = h(t, x)u(t, x) and:
∫

Ω

q2

h
=

∫

Ω

h|u|2 < +∞.

Moreover, we can use Fatou lemma again to write
∫

Ω

h|u|k+2 ≤
∫

Ω

lim inf hn|un|k+2 ≤ lim inf

∫

Ω

hn|un|k+2,

which gives
√
h|u|(k+2)/2 in L2(0, T ;L2(Ω)).

As (qn)n and (hn)n converge almost everywhere, the sequence of
√
hnun = qn/

√
hn

converges almost everywhere to
√
hu = q/

√
h when h does not vanish. Moreover, for

all M positive, (
√
hnun111|un|≤M )n converges almost everywhere to

√
hu111|u≤M (still

assuming that h does not vanish). If h vanishes, we can write
√
hnun111|un|≤M ≤

M
√
hn and then have convergence towards zero. Then, almost everywhere, we ob-

tain the convergence of (
√
hnun111|un|≤M )n.

Finally, let us consider the following norm:
∫

Ω

∣

∣

∣

√

hkuk −
√
hu
∣

∣

∣

2

≤
∫

Ω

(∣

∣

∣

√

hkuk111|uk |≤M −
√
hu111|u|≤M

∣

∣

∣
+
∣

∣

∣

√

hkuk111|uk|>M

∣

∣

∣

+
∣

∣

∣

√
hu111|u|>M

∣

∣

∣

)2

≤ 3

∫

Ω

∣

∣

∣

√

hkuk111|uk|≤M −
√
hu111|u|≤M

∣

∣

∣

2

+ 3

∫

Ω

∣

∣

∣

√

hkuk111|uk|>M

∣

∣

∣

2

+3

∫

Ω

∣

∣

∣

√
hu111|u|>M

∣

∣

∣

2

.

Since (
√
hn)n is in L∞ (0, T ;Lp(Ω)), (

√
hnun111|un|≤M )n is bounded in this space.

So, as we have seen previously, the first integral tends to zero. Let us study the

other two terms:
∫

Ω

∣

∣

∣

√

hnun111|un|>M

∣

∣

∣

2

≤ 1

Mk

∫

Ω

hn|un|k+2 ≤ c

Mk
,

∫

Ω

∣

∣

∣

√
Hu111|u|>M

∣

∣

∣

2

≤ 1

Mk

∫

Ω

h|u|k+2 ≤ c′

Mk
,

for all M > 0. When M tends to the infinity, our two integrals tend to zero. Then

(
√

hnun)n strongly converges to
√
hu in L2(0, T ;L2(Ω)).
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4.4. Fourth step: Convergence of the diffusion terms, the pressure

and the solid transport flux.

Concerning the diffusion term, (∇(hnun))n converges to ∇(hu) in the sense of the

distributions, in (D′ ((0, T ) × Ω))
4
. Since the sequence (∇

√
hn)n weakly converges in

L2(0, T ;(L2(Ω))2) and (
√
hnun)n strongly converges in this space, then (un⊗∇hn)n

weakly converges in L1(0, T ; (L1(Ω))4). So, using the relation (4.3) to write the

product hn∇un, we have (hn∇un)n that converges to h∇u in (D′((0, T ) × Ω))4.

This gives the convergence of the complete diffusion term.

From Corollary 3.1, we know that ∇(hn + zbn
))n weakly converges to ∇(h +

b) in L2(0, T ; (L2(Ω))2). In addition, the sequence (hn)n strongly converges

in C0(0, T ;L2p/(2+p)(Ω)) so the product weakly converges to h∇(h + zb) in

L2(0, T ; (Lp/(1+p)(Ω))2).

The last term is the term of solid transport flux: (h
(1−k)/2
n )n strongly converges

to h(1−k)/2 in C0(0, T ;L2/(1−k)(Ω)) and (
√
hnun)n strongly converges to

√
hu

in L2(0, T ; (L2(Ω))2). Moreover, (h
k/2
n |un|k)n strongly converges to hk/2|u|k in

L2/k(0, T ;L2/k(Ω)). Using Eq. (4.2), we obtain that the sequence (hn|un|kun)n

strongly converges to h|u|ku in the space L2/(k+1)(0, T ; (L1(Ω))2).

This ends the proof of Theorem 2.1.

5. Others sediment discharge choices.

5.1. Model coming from those studied above.

Let us consider the bed-load transport model

∂tzb + div(hu) = 0. (5.1)

This model of sediment has been studied in Ref. 21 but, in this article, the Shallow-

Water system is taken as in Ref. 17, that is to say the viscous term is a laplacian.

Here, we couple Eq. (5.1) with the Shallow-Water system used above, given by (1.8)-

(1.9). We prove that this model can be studied as an usual Shallow-Water system.

Indeed, combining (1.8) and (5.1) we get

∂t(zb − h) = 0,

and, by an integration with respect to t, we obtain

zb(t, x) = h(t, x) − zb0(x) + h0(x).

Setting b(x) = h0(x) − zb0(x), the expression of zb becomes

zb(x, t) = h(x, t) − b(x). (5.2)

If we replace zb by this value in (1.9), we get:

∂t(hu) + div(hu⊗ u) +
h∇(2h− b(x))

Fr2
−Adiv(hD(u)) = 0. (5.3)
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Hence, the problem becomes no-coupled, which means we can determine h using Eq.

(1.8) and (5.3) and then use the relation (5.2) to deduce the value of zb, since b is

given. The Shallow-Water system (1.8)-(5.3) is studied in Ref. 5 where the authors

proved an existence result, under the assumption b ≥ c > 0 and some assumptions

on the regularity.

5.2. Another viscous sediment transport.

We propose here another viscous system. More precisely, we consider the Shallow-

Water system

∂th+ div(hu) = 0 (5.4)

∂t(hu) + div(hu⊗ u) +
h∇(h+ zb)

Fr2
− νdiv(hD(u)) = 0 (5.5)

with the bed-load equation

∂tzb +Adiv
(

h
(

1 + log(1 + |u|2)u
))

− ν

2
∆zb = 0. (5.6)

As mentioned in the introduction, we have modified the sediment equation. We deal

here with the term 1 + log(1 + |u|2)u used in Ref. 15 to obtain a better bound on

hu2. As for the previous model, multiplying the diffusion term by 1+ log(1+ |u|2)u
gives some terms which are controllable. We get the existence of dissipative energy

for this system.

Lemma 5.1. Let (h, u, zb) be a smooth solution of (5.4) − (5.6). The following

estimate holds

1

2

d

dt

∫

Ω

h|u|2 +A
d

dt

∫

Ω

h
1 + |u|2

2
log(1 + |u|2) +

1

2Fr2
d

dt

∫

Ω

|zb + h|2

+ν(1 − 3A)

∫

Ω

h(D(u) : D(u)) +
ν

2Fr2

∫

Ω

∇h · ∇zb

+Aν

∫

Ω

h(D(u) : D(u)) log(1 + |u|2) +
ν

2Fr2

∫

Ω

|∇zb|2 ≤ 0.

(5.7)

Lemma 5.2. Let (h, u, zb) be a smooth solution of (5.4) − (5.6). We have

1

2

d

dt

∫

Ω

h|u+ ν logh|2 +A
d

dt

∫

Ω

h
1 + |u|2

2
log(1 + |u|2)

+
1

2Fr2
d

dt

∫

Ω

|zb + h|2 +Aν

∫

Ω

h(D(u) : D(u)) + ν

∫

Ω

h(W (u) : W (u))

+Aν

∫

Ω

h(D(u) : D(u)) log(1 + |u|2) +
ν

Fr2

∫

Ω

|∇h|2

+
ν

2Fr2

∫

Ω

|∇zb|2 +
3ν

2Fr2

∫

Ω

∇h · ∇zb ≤ 4Aν

∫

Ω

h(D(u) : D(u))

(5.8)

where W (u) is the skew-symmetric part of the gradient: W (u) =
∇u− t∇u

2
.
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As in section 3, if we sum the two estimates (5.7) and (5.8), we deduce some

bounds on h, u and zb with the condition 0 < A < 1/6. These bounds allow us to

prove the stability of the system (5.4)-(5.6).

6. Numerical experiments

6.1. Numerical scheme

The proposed model can be written under the structure of a 2D hyperbolic system

with non-conservative terms plus the diffusion terms:

∂tW + div(F(W )) +B1(W )∂xW +B2(W )∂yW − ν div(D(W )) = 0,

where

W =









h

hu1

hu2

zb









, F = (F1, F2), with

F1(W ) =









hu1

hu2
1 + h2/(2Fr2)

hu1u2

Ah|u|ku1









, F2(W ) =









hu2

hu1u2

hu2
2 + h2/(2Fr2)

Ah|u|ku2









,

B1(W ) =









0 0 0 0

0 0 0 h/Fr2

0 0 0 0

0 0 0 0









, B2(W ) =









0 0 0 0

0 0 0 0

0 0 0 h/Fr2

0 0 0 0









D(W ) =

(

hD(u)

∇zb/2

)

.

The discretization of the model has been done with a high order finite volume

method for the hyperbolic system and a centered second order discretization of the

diffusion terms.

The following notation is considered (see Figure 2): We decompose the spatial

domain in a mesh of cells, finite volumes, Vi ⊂ R2 for i = 1..NV . The area of the

volume Vi is denoted by |Vi| and the center of the cell by xi. We consider that Vi

is a closed polygon and the boundary of Vi is defined by the union of the segments

Eij , where Eij is the common edge between the volumes Vi and Vj . The normal

unit vector to Eij pointing towards Vj is denoted by ηij . The length of the segment

Eij is |Eij |. The middle point of Eij is cij . By bij we denote the baricenter of Vij ,

where Vij is the triangle defined by Eij and xi. Its area is denoted by |Vij |. Ki is

the set of indexes j such that Vj is a neighbor of Vi.

We use a second order finite volume method for 2D non-conservative hyperbolic

systems,6 with a second order state reconstruction operator10,7.
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V V

E

c

x

i ij

ij

bij

η ij

Vj

i

ij

Fig. 2. Finite volume mesh

By Wi(t) we denote the average value of W (x, t) over the volume Vi. And

we consider a state reconstruction operator over each volume Pi(x, t), x ∈ Vi,

(Pi(x, t) ≈ W (x, t) ∀x ∈ Vi); concretely we use a MUSCL second order recon-

struction operator7. We denote W+
ij (t) = Pj(cij , t) and W−

ij (t) = Pi(cij , t).

We obtain the following numerical scheme,

W ′
i (t) = − 1

|Vi|

[

∑

j∈Ki

(

|Eij |
(

Gij −Bij(W
+
ij −W−

ij )

))

+
∑

j∈Ki

|Vij |
(

B1(Pi(bij))∂xPi(bij) +B2(Pi(bij))∂yPi(bij)

)

+
∑

j∈Ki

|Eij |Dijηij

]

,

where Gij = G(W−
ij (t),W+

ij (t), ηij) is a numerical flux function, for example for Roe

method18:

G(U, V, η) =
Fη(V ) + Fη(U)

2
− 1

2
|Aη(U, V )|(V − U)

where Fη = F1η1 + F2η2. |Aη(U, V )| is the absolute value of matrix Aη(U, V ) and

Aη(U, V ) = Aη(U, V ) +B1(
U + V

2
)η1 +B2(

U + V

2
)η2,

where Aη(U, V ) verifies

Fη(V ) −Fη(U) = Aη(U, V )(V − U).

Moreover,

Bij = (B1ηij,1 +B2ηij,2)

(

W+
ij +W−

ij

2

)

.
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By Dij we denote a second order approximation of D(W (cij)). The MUSCL operator

reconstruction7,10 uses a second order approximation of the derivatives of the vector

of unknowns, so the same computations can be used to define Dij .

The discretization in time is done with a second order TVD Runge-Kutta

method20.

6.2. Numerical test

In this subsection we perform a test where we study the evolution of a sand conical

dune in a channel. We compare the results for models defined by (1.8)-(1.9) and

one of the considered sediment transport models:

(1) Grass model, defined by (1.4).

(2) The first proposed model, defined by (1.10). In what follows we denote it by

MS1.

(3) The last proposed model defined by (5.6). In what follows we denote it by MS2.

In this section first we study the results obtained with model MS1, with and

without viscosity and for two different values of the constant of interaction between

the fluid and the sediment. After we compare with Grass model and model MS2.

In this test the sediment layer is deformed gradually towards a star shape,

expanding along time with a certain angle10,7,12.

De Vriend8,9 determined a formula that relates the solid transport formula of

the model with the spread angle.

Consider a given transport equation defined by

∂tzb + ∂xSx + ∂ySy = 0 (6.1)

where the solid transport discharges Sx, Sy verifies

Sx =
u1

utot
Stot, Sy =

u2

utot
Stot,

where utot = |u|, and u = (u1, u2). We denote by α the expansion angle of spread.

Under the hypothesis of a weak interaction between the fluid and the sediment

layer, De Vriend8,9 deduces that the angle of spread can be approximated by the

following formula

tanα =
3Tu

√
3

9Tu − 8Th
, (6.2)

where

Tu =
utot

Stot

∂Stot

∂utot
− 1, Th =

h

Stot

∂Stot

∂h
− 1.

The proposed model MS1, defined by (1.8)-(1.10), without viscosity, corresponds

to set

Stot = Ah |u|k+1 = Ahuk+1
tot .
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k 0.25 1 2 3 4 5 10

α 7.22o 16.99o 21.78o 24o 25.28o 26.11o 27.93o

Table 1. Values of α for different values of k for Grass model

So,

∂Stot

∂utot
= Ah (k + 1)uk

tot,
∂Stot

∂h
= Auk+1

tot .

Then,

Tu =
Ah (k + 1)uk+1

tot

Stot
− 1 = k, Th =

Ahuk+1
tot

Stot
− 1 = 0.

Then,

tanα =

√
3

3

We obtain that the angle of spread is independent of the definition of the parameter

k; α = 30o for all values of k. For the numerical results presented in this section we

have set k = 0.25.

Model MS2 correspond to

Stot = qhutot(1 + log(1 + u2
tot)).

Applying (6.2), we also obtain for this model α = 30o.

Remark 6.1. Observe that for model MS1 we obtain that the angle of spread is

independent of the value of k because Stot is not independent of h. Otherwise, if

Stot is independent of h, we obtain ∂hStot = 0, then Th = −1, thus

tanα =
3 k

√
3

9 k
√

3 + 8
.

If we omit in our model the dependency of h we obtain the solid transport formula

defined by

Stot = A|u|k+1,

and this definition of Stot corresponds to the definition obtained for Grass model

(1.4). Nevertheless we remark that in our model the dependency of Stot with respect

to h is crucial for the proof of the theorical results.

We present in Table 1 the different values obtained for α in function of different

values of k for Grass model. The angle of spread of Grass model converge to 30o

with respect to k. That is, the angle of spread predicted for the proposed model

(1.8)-(1.10) is the limit angle for Grass model.

The classical value of k used with Grass model is k = 2 (see for example Ref. 12),

corresponding to α = 21.78o. We observe in the numerical results that this angle

corresponds to the angle of spread of internal level curves of the sand dune.
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For the definition of the constant of interaction between the fluid and the sedi-

ment, A, observe that it depends on the porosity of the sediment layer,

A = ξĀ, ξ =
1

1− ψ0

where ψ0 is the porosity. In this test we consider ψ0 = 0.4 and two different values

of Ā: Ā = 0.001 and Ā = 0.01. For Ā = 0.001 corresponding to a very weak

interaction between the fluid and the sediment we simulate until t = 360000 s. For

Ā = 0.01, that can be considered as the limit of a weak interaction, we simulate

until t = 36000 s.

We use an explicit finite volume method, then we impose a CFL condition.

We set for this test the CFL condition to 0.8. We use a mesh of 7600 control

volumes of edge type (see Figure 3(a)). We impose a discharge q = (10, 0) and

sediment layer thickness zb = 0.1 in boundary-line corresponding to x = 0 and

free condition boundary-line corresponding to x = 1000. At lateral walls we impose

sliding condition q · η = 0, if by η we denote the outward normal vector.

(a) Zoom on the bump in the sediment
layer and finite volume mesh

(b) Water surface

Fig. 3. Initial condition.

Initial conditions are (see Figure 3),

h(x, y, 0) = 10.1− zb(x, y, 0), qx(x, y, 0) = 10, qy(x, y, 0) = 0;

and the initial sediment layer is a sand dune with a conical form,

zb(x, y, 0) =







0.1 + sin2
(

π(x−300)
200

)

sin2
(

π(y−400)
200

)

if
300 ≤ x ≤ 500,

400 ≤ y ≤ 600,

0.1 other case.
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In Figure 4 we present the evolution of the sand dune for Ā = 0.001. We super-

pose the level curves for t = 0, t = 180000 and t = 360000 s. Figure 4(a) corresponds

to the model without viscosity and Figure 4(b) to the model with viscosity.

In Figure 5 we present the evolution of the sand dune for Ā = 0.01. We superpose

the level cuves for t = 0, t = 18000 and t = 36000 s. Figure 5(a) correspond to the

model without viscosity and Figure 5(b) to the model with viscosity.

In these figures the continuous black line correspond with an angle of 30o and

the black dashed line with 21.78o.

We observe that for Ā = 0.001, when the interaction is weaker than for Ā = 0.01,

the analytical solution corresponding to the spread angle of 30o is better captured.

This observation corresponds with the hypothesis under which De Vriend deduces

formula (6.2); a weak interaction between the fluid and the sediment.

(a) Without viscosity (b) With viscosity

Fig. 4. MS1. Spread angle, Ā = 0.001

By comparing the solutions for the model with and without viscosity, we observe

that in both cases, Ā = 0.001 and Ā = 0.01, the angle of spread is slightly small in

the case of the model with viscosity.

As we mentioned previously, Grass model is usually used with k = 2. In this case

we obtain α = 21.78o. We can observe in Figures 4 and 5 that the line corresponding

to α = 21.78o reproduces the angle of spread of an internal level curve (it is also

better captured for Ā = 0.001 than for Ā = 0.01).

The results presented in Figure 6 correspond to Ā = 0.01, without viscosity.

In Figure 6(a) we present the results obtained with Grass model, we observe that

effectively the angle of spread approximates the predicted angle of α = 21.78o
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(a) Without viscosity (b) With viscosity

Fig. 5. MS1. Spread angle, Ā = 0.01

(discontinous line).

In Figure 6(b) we study the angle of spread of model MS2. In this case the times

of the superposed level curves correspond to t = 0, t = 7000 and t = 14000 s. We

also observe that the predicted theorical angle of spread for this model (α = 30o)

is also well approximated.

Finally, by comparing figures 5(a), 6(a) and 6(b), corresponding to set Ā = 0.01

in three cases, we can observe that:

(i) Models MS1 and Grass model, have different angle of spread. But the time

evolution obtained with both models are nearly the same (see Figure 7(a)). In

both cases, figures 5(a) and 6(a) the final time is the same.

(ii) Models MS1 and MS2, have the same angle of spread. But the time evolution

of the sediment layers are different. The final time presented in Figure 5(a) is

t = 36000 s. and in Figure 6(b) is t = 14000 s (see Figure 7(b)). That is, to

obtain the same time evolution for the sediment layer the value of Ā must be

smaller for MS2.
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(a) Grass model (b) Model MS2

Fig. 6. Spread angle for Grass model and model MS2, with Ā = 0.01

(a) t = 36000 s. for model MS1 (black
lines) and Grass model (magenta lines).

(b) Model MS1 (t = 36000 s., black
lines) and model MS2 (t = 14000 s.,
red lines)

Fig. 7. Comparison of the level curves
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