
1

Genetic and tabu search approaches for optimizing the hall call – car 
allocation problem in elevator group systems 

BERNA BOLAT 
Yildiz Technical University, Faculty of Mechanical Engineering, 

Mechanical Engineering Department, Yildiz, TR-34349, Istanbul, Turkey. 
Email: balpan@yildiz.edu.tr 

PABLO CORTÉS 
Escuela Técnica Superior Ingenieros, Ingeniería Organización, Seville University, 

Camino de los Descubrimientos s/n, Sevilla 41092, Spain. 

Email: pca@esi.us.es 

Abstract 
The most common problem in vertical transportation using elevator group appears when a 

passenger wants to travel from a floor to other different floor in a building. The passenger 

makes a hall call by pressing a landing call button installed at the floor and located near the 

cars of the elevator group. After that, the elevator controller receives the call and identifies 

which one of the elevators in the group is most suitable to serve the person having issued 

the call. In this paper, we have developed different elevator group controllers based on 

genetic and tabu search algorithms. Even though genetic algorithm has been previously 

considered in vertical transportation problems, the use of tabu search approaches is a 

novelty in vertical transportation and has not been considered previously. Tests have been 

carried out for high-rise buildings considering diverse sizes in the group of cars. Results 

indicate that the waiting time and journey time of passengers were significantly improved 

when dealing with such soft computing approaches. Also, a quickly evaluable solution 

quality function in the algorithms allows suitable computational times for industry 

implementation. 

Keywords: Elevator; Lift; Tabu search; genetic algorithm; elevator group system; vertical 

transportation; car dispatching 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51403220?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

1. INTRODUCTION

Building traffic design must be undertaken taking into account that passengers expect 

efficient service within acceptable time period from vertical transportation systems such as 

elevators and escalators. It is the aim of an optimal elevator control system to provide a 

good quality service to its passengers. The situation arises when a passenger wants to travel 

from a floor to other different floor in a building. The passenger makes a hall call of an 

elevator by pressing a landing call button installed at the floor and located near the cars of 

the elevator group. After that, the elevator controller receives the call and identifies which 

one of the elevators in the group is most suitable to serve the person having issued the call. 

This phenomenon is also called “dispatching”. It is the task of the dispatcher to monitor the 

hall and car calls and to control the movements of the elevators to ensure that the 

passengers are collected promptly and transported rapidly to their destinations. So, the 

problem to be solved is to select for each hall call an elevator that will minimize a 

preselected cost function. The most common optimization criterion for quality of service in 

elevator group control is to reduce the average journey time which consists of waiting time 

and travel time of passengers.

Even though many years research on vertical transportation has showed a narrow interest, 

recently it is attracting an increasing interest from the research community. Now, there are 

a number of applicable optimization techniques to the car dispatching problem, which aim 

to reduce the average journey time of passengers. Examples of it are optimal control, in this 

field one of the most relevant contributions was Closs (1970); knowledge based systems 

e.g. Prowse et al. (1992); fuzzy logic e.g. Ho and Robertson (1994); dynamic programming 

(So and Chan, 1996); expert systems (Qu et al., 2001), neural networks (Imrak and Barney, 

2001), and genetic algorithm (Miravete, 1999; Siikonen et al. 2001; Cortés et al. 2004; and 



3

Bolat et al., 2010) with an increasing interest and showing an appreciated suitability to the 

problem. Even papers considering simulation studies in vertical transportation have arised 

over the last years (Cortés et al., 2006). However, no research has been carried out using 

tabu search algorithms in the field of elevator control systems.  

In this paper, we deal with research on genetic and tabu search algorithms. Both approaches 

search for maximizing the hall call allocation efficiency and for reducing the average 

journey, travel and waiting time. We define a hall call allocation strategy to define the 

solution encoding and a new solution quality estimation function. Results are provided for 

high-rise buildings from 10 to 24-floors, and several car configurations are considered from 

2 to 6 cars. 

The rest of the paper deals with the description of the main performance indicators for 

elevator group systems in section 2. Section 3 includes the presentation of the soft 

computing approaches: genetic and tabu search algorithms, as well as the solution encoding 

specification and the detailed description of the quality function that is used to assess each 

solution. Section 4 presents the obtained results and simulations for a variety of real cases 

showing the suitability of the proposed methods. Finally, section 5 draws the main 

considerations and conclusions of the paper. 

2. ELEVATOR GROUP CONTROL SYSTEM GENERAL PRINCIPLES

A single elevator car is not able to cope with the passenger traffic in high-rise buildings. 

Thus, a number of cars should be installed so that the handling capacity can be increased by 

a common group control that delivers the hall calls to the elevators. Elevator group control 

systems respond to the necessity of providing efficient control for an elevator group that 

provides service to a set of hall (or landing) calls (Barney, 1987).



4

In a real building, passengers arrive randomly to several floors, even at the same time, 

wanting to be transported from a floor to other different floor. When a passenger arrives at 

a landing floor and makes a hall call, the elevator group control system must take a decision 

allocating a car to the hall call in a short time. The performance of an elevator control 

system can be assessed by means of different measurement parameters. Mainly it is 

assessed analysing the passenger Average Waiting Time (AWT), the passenger Average 

Travel Time (ATT) and the passenger Average Journey Time (AJT) that is calculated as the 

sum of the other two. In fact, the average journey time is one of the most significant factors 

to define the performance of the group. It is defined as the time between the instant a 

passenger registers a hall call at the main terminal floor, and the leaving instant at the 

destination floor (Barney, 1987). The relation among the performance criterions are 

illustrated in figure 1.  

Figure 1. Definitions for Average Journey Time calculation 

The optimization of the passenger journey time produces a reduction in the number of 

elevator stops, and at the same time the handling capacity is augmented (Cortés et al., 

2004), what are desirable consequences. 

Average journey time consists of the total average travel time and average waiting time (1).  

AWTATTAJT +=          (1) 

where the average waiting time is the actual time a prospective passenger waits after 



5

registering a hall call (or entering the waiting queue if a call has already been registered) 

until the responding elevator doors begin to open. Following Barney (1987), for car loads 

less than 50%, it is possible to develop an approximate equation for AWT as (2), 

INT.AWT 40= ,     for car loads < 50 % (2) 

Also, for car loads more than 50%, it is possible to develop an approximate equation for 

AWT as (3), 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+= INT.

CC
P..AWT 27708140 ,   for car loads > 50 %        (3) 

being INT the interval (the main floor arrival average time), P the number of passengers, 

and CC the rated car capacity. The average waiting time is used to attain an efficient system 

performance and also dominant in elevator service quality.  

The passenger average travel time is the time the responding elevator doors begin to open 

to the time the doors begin to open again at the passenger’s destination. Following Siikonen 

and Korhonen (1993), we can calculate (4), 

PtSt)S(
S

HtATT psv ⋅+
+

++=
2

11
2

.        (4) 

being, H the highest reversal floor, S the expected number of stops, tv the single floor transit 

time (in seconds), tS the stopping time (in seconds), tP the passenger transfer time (in 

seconds), and L the number of cars within the elevator group. 



6

3. SOFT COMPUTING APPROACHES

Elevator group control systems include controllers to determine which car should serve a 

hall call. This is also known as the car dispatching problem. Industry usually implements 

conventional algorithms that are based on the collective principle. That is, if the car is 

going down and the car finds a down hall call, the car will stop to collect passengers in that 

hall. The same reasoning happens for up hall calls and cars going up. Such conventional 

algorithms are mainly based on the rules expressed in the THV algorithm, (Barney, 1987), 

that was implemented in the computer-aided design suite LSD (Lift Simulation and Design) 

at UMIST (University of Manchester Institute of Science and Technology). The THV 

algorithm assigns the hall call to the nearest lift in the adequate trip direction. Note that this 

method is usually underperformance because the effect of a possible car displacing in the 

direction of a collection of successive calls in the same direction would lead to serve all the 

calls by the same car impacting in a negative way in the waiting times. 

Here we consider the application of soft computing approaches such as genetic algorithms 

(what has been previously applied to vertical transportation successfully, and tabu search 

algorithm what has not been previously tested in vertical transportation problems). Both 

algorithms make use of common ideas which we are explaining in next two sections. 

3.1 Solution encoding 

It is assumed that a potential solution to a problem may be represented as a set of 

parameters. In this study, we follow an encoding strategy that was initially suggested in 

Cortés et al. (2004). So, one array is associated to each car in the elevator group, and is 

defined by representing the up and down calls at each floor that are assigned to this specific 

car. So the length of each array is equal to 2(N −1) , where N is the total number of floors in 



7

the building. Figure 2 depicts a possible solution encoding for an array representing a 

specific car in the group. A solution encoding consists of an array as shown in figure 2 for 

each car of the group. 

Upwards Landing Calls 
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23

0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1

Downwards Landing Calls 
F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24

1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 1
Figure 2. Solution encoding for a car of the group 

In this encoding, “1” means that the hall call of that specific floor is assigned to the car, and  

“0” means that no hall call is assigned in that floor to the car. Binary encoding provides 

flexibility, simplicity and has proven usefulness in a variety of problems. 

3.2. Solution quality assessment function 

Every feasible solution encoded as previously stated is assessed to determine the quality (or 

fitness) of such solution. 

Here we present a novel fitness estimation procedure that requires the definition of the 

following parameters: 

- Ψ1: ground floor level

- Ψ2: highest down hall call level

- Ψ3: number of down hall calls between Ψ1 and Ψ2.

- Ψ4: highest up hall call level

- Ψ5: number of up hall calls between Ψ1 and Ψ4.

- Ψ6: lowest down hall call level

- t: door opening and closing time

- tp: passenger transfer time

- Hct: Highest car trip time



8

- Lct: lowest car trip time

The solution fitness, f, is calculated depending on the type of passengers’ movements. So, a 

fitness value is firstly calculated for each car, i, in the group by considering four different 

cases that are shown in equations (5-8). Note that each formula relates in which floor the 

passenger is taken and in which floor the passenger is transferred. So, as a general 

definition for Ψ, it shows the floors where passengers are get on and off. 

Case I: there is not any hall call in the system 

fi = 0 (5)

Case II: there are only down hall calls 

( ) ( )2 1 3 1⎡ ⎤= Ψ −Ψ + Ψ −Ψ⎣ ⎦i pf t t (6)

Note that case II takes place during downpeak traffic. 

Case III: there are only up hall calls 

( ) ( )4 1 5 1⎡ ⎤= Ψ −Ψ + Ψ −Ψ⎣ ⎦i pf t t (7)

Note that case III takes place during uppeak traffic. 

Case IV: there are up and down hall calls 

( ) ( ) ( ) ( )( )4 1 2 4 2 6 3 5 1
⎡ ⎤= Ψ −Ψ + Ψ −Ψ + Ψ −Ψ + Ψ +Ψ −Ψ⎣ ⎦i pf t t t t (8)

Finally, case IV takes place during lunchpeak traffic or interfloor. 

Then the average value is calculated as (9):  

1 being  the number of cars in the group

n

i
i

group

f
f , n

n
==
∑ (9)

The final fitness value is computed as (10): 

( )1 2groupf k · f k · Hct Lct= + − (10)



9

So, the total fitness for the system is calculated as a two-part function where the first part 

collects the concern related to passengers waiting in the halls, and second part the concern 

related to an unbalanced performance in the cars of the group. That is, the second part tries 

to level the use of each car. Let consider the following example: car no. 1 is working during 

100 seconds and car no. 2 during 11 seconds, so both cars would be working during 111 

seconds but in a very unlevelled manner. On the other hand if car no. 1 works during 57 

seconds and car no. 2 during 54 seconds the two cars work during 111 seconds but in a 

much more levelled manner. This action will have repercussion on the life cycle of the cars. 

Additionally a levelled use of cars does impact in a positive way in the waiting times of 

passengers too. Parameters k1 and k2 are weights for each part and after testing several tests 

we found that better results were obtained for values equal to k1 = 1.5 and k2 = 2.  

The quality of such solution is calculated for every feasible encoded solution following this 

previous procedure. This will condition the searching trajectories in the feasibility region 

according to the TS algorithm, or the possibilities of a successful offspring in GA.  

The advantages of using such fitness function are associated to the capability for 

distributing hall calls according to the travel direction of the car, the suitability for dynamic 

systems, the effectiveness in the search space, and its fast computation reducing 

computation times. 

Let consider an example with a 2 cars group in a ten floors building. The up hall calls and 

down hall calls are assigned as in figure 3. 

Up hall calls            Down hall calls 
F1 F2 F3 F4 F5 F6 F7 F8 F9 F2 F3 F4 F5 F6 F7 F8 F9 F10 Car 

No.1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 
Up hall calls        Down hall calls 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F2 F3 F4 F5 F6 F7 F8 F9 F10Car 
No. 2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
Figure 3. Solution encoding for the group 



10

Supossing values for t = 5.5, tp = 3, and computing 57 seconds running Car No. 1 and 54 

seconds running Car No. 2: 

- The fitness for Car No. 1 is calculated using equation (6) that corresponds to the

case without up hall calls. Setting the values,

o Ψ1= 1 (ground floor)
o Ψ2 = 6 (the highest of all downwards landing calls )
o Ψ3= 3 (because corresponds to the number of down hall calls between Ψ1

and Ψ2.; that is the down calls in second, fifth and sixth floors)

The fitness is then calculated as: 

( ) ( ) ( ) ( )1 2 1 3 1 5 5 6 1 3 3 1 33 5⎡ ⎤= Ψ −Ψ + Ψ −Ψ = − + − =⎡ ⎤⎣ ⎦⎣ ⎦pf t t . .

- The fitness for Car No. 2 is calculated using equation (7) that corresponds to the

case without down hall calls. Setting the values,

o Ψ1= 1 (ground floor)
o Ψ4 = 7 (the highest of all upwards landing calls )
o Ψ5= 2 (because corresponds to the number of up hall calls between Ψ1 and

Ψ4; that is the up calls in third and seventh floors)

The fitness is then calculated as: 

( ) ( ) ( ) ( )2 4 1 5 1 5 5 7 1 3 2 1 36⎡ ⎤= Ψ −Ψ + Ψ −Ψ = − + − =⎡ ⎤⎣ ⎦⎣ ⎦pf t t .

So, the final fitness is given by: 

( ) ( ) ( )1 2

33 5 36
1 5 2 57 54 58 125

2group

.
f k · f k · Hct Lct . · · .

+
= + − = + − =

3.3. Genetic algorithm 

Genetic algorithms are inspired in the natural selection principle, whose main idea is that 

new powerful offspring forms are expected from old generations (Goldberg, 1989). The 

individuals of the population represent feasible solutions and are described by means of its 



11

chromosome corresponding to the solution encoding presented in section 3.1. So, the 

genotypes are binary encoded. Bit 0 indicates no hall call allocation for the car, and bit 1 

indicates that the registered hall call of that floor is allocated to the car. 

We implemented a genetic algorithm whose main ideas were introduced in Bolat et al. 

(2010). However, here we are introducing a new fitness concept which is described in 

previous section 3.2. So, an initial randomly generated population is considered according 

to a hall call allocation based on a 5-minute period. The size of population which is one of 

the most critical parameters is chosen between 20 and 30. In fact, in large populations, the 

effectiveness of searching increases, because of a good exemplification of solution areas, 

but related to this, searching takes time. On the contrary, in small populations, the solution 

area is not exemplified sufficiently and untimely might occur.  

Genetic operators such as selection, crossover and mutation are performed on the 

population chromosomes to produce offspring. The selection operator simulates the 

survival competition mechanics in the natural world and chooses genotypes to propagate 

their genetic information according to the fitness of the individuals in the populations. 

There are a number of selection methods, although our tests lead us to choose the roulette 

wheel selection method where the slot size for each individual is proportional to its fitness. 

The crossover genetic operator is a structured information exchange process which chooses 

a random crossover point in a pair of parent genotypes and then swaps parts of bit strings 

between the two parents to produce two offspring. There have been implemented different 

types of crossover techniques which are single-point, two- point and uniform crossover 

techniques all of whom are applied in our study. The choice of the crossover operator has a 

significant impact in the yield of the GA. 



12

Mutation is another important genetic operator that randomly changes a gene of an 

offspring. When using a binary representation, a mutation corresponds to change a 0 to 1 

and vice versa. This operator allows the introduction of new chromosomes material to the 

population, assuring that given any population the entire search space is connected 

(Buckles and Petry, 1992).  

The number of generations of the GA can be a critical parameter. One advantage of GA is 

that can be stopped at any time having the better solution at the moment (Bolat et al., 

2010). We tested with the number of generations between 30 and 100 iterations and best 

solutions were found for values between 30 and 50 without increasing too much time 

consumption. 

Figure  4 defines the performance of the genetic algorithm. 

Chromosome

Chromosome

Chromosome

Chromosome 1

Chromosome 2

Chromosome 1

Chromosome 2

Offspring 1

Offspring 2

+

Offspring 1 Offspring 11

Elevator
control system

Best
Solution?

Y

N

Selection
Method

(Roulette
Wheel)

Next Generation

Genetic Operation

:
:
:

Fitness Value

Chromosome
Selection

Crossover operation

Mutation operation

START

Solution
Space

Randomly

Combines Genes

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

Hall call information

Elevator position

E2 E1 

Figure 4.Genetic algorithm description 



13

3.4. Tabu search algorithm 

Tabu Search (TS) is to derive and exploit a collection of principles of intelligent problem 

solving. TS which is founded on ideas proposed by Glover (1989 and 1990) is based on 

selected concepts that join the fields of artificial intelligence and optimization. TS is a 

powerful algorithmic approach that has been applied with great success to many difficult 

combinatorial problems. The basic principle of TS is to pursue the search whenever a local 

optimum is encountered by allowing non-improving moves, cycling back to previously 

visited solutions is prevented by the use of memories, called tabu lists, that record the 

recent history of the search. In this problem we propose the use of TS to optimize the hall 

call allocation problem. To do so, we define the candidate solution encoding, the procedure 

to assess the quality of such solution in terms of waiting times, and the guidelines and 

pseudocode of the proposed tabu search algorithms. 

We have developed conventional and probabilistic tabu search algorithms (TS and PTS). 

The principle of both algorithms is the same only differentiating in the neighbourhood 

mechanism. Figure 4 depicts the general structure for the tabu search algorithms. The 

detailed description of the main aspects for both algorithms follows next: 

a) Neighbourhood structure: a neighbour solution is defined as any other solution that is

obtained by a pair wise interchange of any two nodes in the solution. In this study, we used 

two different swap mechanisms for each algorithm (TS and PTS). The swap mechanism in 

TS is carried out after mapping the entire neighbourhood and selecting that neighbour with 

a minimum fitness value (best neighbour). On the contrary, the swap mechanism in PTS 

works randomly. Each iteration provides a new solution that is found by making a 



14

definitive local movement over the current solution within the neighbourhood. Then a 

solution is selected depending on the type of algorithm (conventional or probabilistic), and 

the tabu list and aspiration criterion that are taken into consideration in both algorithms and 

are explained next.  

b) Tabu list, recency and frequency: tabu movements are stored in a list that is called tabu

list. The basic role of the tabu list is to prevent cycling by including some attribute of 

recently visited solutions in a tabu list. Only solutions that are not in tabu list would be 

feasible solutions for a definitive movement (excepting those solutions satisfying the 

aspiration criterion that is detailed next).  

An important factor of tabu search algorithms attends to the length of the tabu list and the 

replacement of solutions in such list. Generally, the strategy is applying a first in/first out 

rule. After reaching the last free register of the list, the new solution enters the list and 

replaces the oldest solution. If the tabu list is too long, possible movements will be 

restricted, because most of the actions will be tabu. On the contrary in cases of too short 

tabu lists, designs may be around the same cycle, near the beginning of the design, so the 

searching procedure may converge to a local optimum. In this study, the length of tabu list 

was chosen as an integer constant, which is 10 times the number of cars in the group 

because it provided the better results attending to the fitness function. 

To state if a solution attribute is tabu or not, we make use of the recency and frequency 

tabu. Every time a solution is selected from the neighbourhood, the tabu list is modified. 

The solution is recorded and its frequency is accordingly increased. The tabu frequency of a 

solution is a parameter stating the number of times that can appear previously to be stated 

as tabu. If some solution surpasses the threshold such solution is labelled as tabu and it is 



15

included in the tabu list. The tabu recency of a solution is a parameter stating the number of 

iterations that the solution is maintained in the tabu list. When recency is equal to zero the 

solution is erased from the tabu status. 

These two factors are carefully selected for putting in a fast and effective algorithm. 

Recency and frequency memory were selected [0, 1] in this study. 

c) Aspiration Criterion: an aspiration criterion is a factor allowing movements to tabu

solutions in certain conditions. The better visited solutions during the searching process 

area are stored in the elite list. The aspiration criterion determines when the tabu status of a 

solution can be ignored and the algorithm allows the move to that solution.  

The idea is to provide flexibility in the searching procedure. So, movements to tabu 

solutions are ignored temporally, and the movement is allowed even if it has been made 

very recently or frequently.   

d) Short Term Memory (STM): STM carries out the generation of a neighbourhood shaped

by a set of similar solutions and its quality analysis, as well as the identification of the new 

generated solution shaping a specific trajectory. STM also checks the validity of such 

solution moving to it in case of not belonging to the Tabu List. In case of not validation, a 

next neighbour is selected (selecting the next better neighbour for the TS, or selecting 

another candidate in a probabilistic way for the PTS). 

e) Long Term Memory (LTM): LTM checks if the new searching process is evolving good,

allowing the return to a previous stage of the searching procedure.  So that, a better design, 

can be found in the previous region, by re-evaluating again. Long-term memory is used as a 

local call to strengthen, and to ensure the diversification of the global process. 



16

f) Chain of solutions: a chain of solutions is constituted by all the enchained adjacent

solutions. STM is responsible for the optimal enchaining of these solutions, depicting a 

trajectory. The trajectory is consequence of the quality of the solutions and a tabu filter 

depicting an intelligent exploration, meanwhile the LTM periodically analyses whether the 

trajectory is acceptable or the process should not follow this path and the algorithm should 

move back to take another more promising path to configure a new trajectory. 

STM and LTM are the most important procedures of the algorithm. Both procedures are 

necessarily combined to gain equilibrium between exploration of the feasibility region 

(STM procedure) and exploitation of a promising region (LTM procedure).  In this line 

STM constitutes a form of aggressive exploration (exploitation) that seeks to make the best 

possible movement within the neighbourhood. The use of STM together with recency and 

frequency tabu, and the aspiration criterion allows a very efficient and quick exploration of 

the neighbourhood. Meanwhile, LTM allows moving back to the best stored solutions to 

continue searching in those promising areas once the number of visited solutions reaches 

certain value (this is called the length of the chain of solutions). This mechanism tries to 

maintain the quality of solutions. 

g) Stopping criteria: the algorithms utilize a maximum number of iterations as stopping

criterion. After various experiments, a value equal to ten times the number of cars was 

selected.  



17

TABU STATUS PROCEDURE

LONG-TERM MEMORY 
PROCEDURE

Generate Random Initial Solution

While Maximun Iterations

Current Solution Analized

Aspiration Criterion

Generate Neighbourhood

For All The neighbours

Inclusion In Elite List

Tabu List

Candidate List – Posible Solution

Choose Neirghbour Candidate (*)

Chain Solution>LTM_threshold?

Solution Quality<Impr_threshold?

Random Selection From Elite List

For Every Solution In Tabu List

Reduce Tabu Recency

Is Tabu Solution Recent?

Erase Solution From Tabu List

Increase Tabu Frecuency of Selected Solution

Tabu Frecuency>Tabu_threshold?

Update New Solution InTabu List

YES

NO

NO

YES

[END LOOP FOR]

YES

YES

NO

YES

YES

NO

SHORT-TERM 
MEMORY
PROCEDURE

NO

NO

(*): - TS selects the best possible candidate
from the neighbourhood

- PTS selects a candidate from the
neighbourhood randomly

Figure 5. The flowchart of Tabu Search Algorithm 

4. COMPUTER SIMULATIONS

4.1. Simulation scenario 

We used several target buildings to test our algorithms. We select tall buildings from 10 

floors to high rise building with 24 floors. We have also considered different possibilities 

for the elevator group configuration: 2,3,4,6 cars. Table 1 defines the specifications of the 

building. 



18

Table 1. Vertical transportation system specifications for simulations 

Items Value 

Number of  floors  10; 12; 14; 16; 18; 20; 22; 24 
Number of cars   2;3;4;6 
Floor Distance (m) 4.5 
Car capacity (persons) 8 
Time spent on: 

Time for opening door (s) 2.5 
Time for closing door (s) 3 
Time for passenger transfer (s) 3 

Lunch peak traffic has been recognized as one of the most complex traffic patterns in 

buildings because it includes uppeak and downpeak effects which require opposing 

responses from a controller (Cortés et al., 2004). The lunch-peak period was simulated with 

a 40% up-peak, 40% down-peak flow and 20% inter-floor traffic following the CIBSE 

guide (2005) and generating 5-minutes arrival periods. Once these percentages were 

considered the arrivals were randomly generated. 

4.2. Simulation Results 

In this section, we provide results for different car group configurations as specified in table 

3. Computational tests were carried out in a Pentium 4 CPU 3.00 GHz workstation.

The tabu search approaches (basic tabu search algorithm, TS, and probabilistic tabu search 

algorithm, PTS) were compared to three different genetic algorithm implementations based 

on different crossover operators (single point crossover, SPC, two point crossover, TPC, 

and uniform crossover, UC); and also results from a conventional algorithm 

implementation, (Cortés et al., 2004), were provided. 



19

Table 2 depicts the average journey time (AJT) for building from 10 to 24 floors, and for 

different cars’ implementations in the elevator group (2 to 6 cars). 

Table 2. AJT results in buildings from 10 to 24 floors for each algorithm, and elevator group under 
consideration (results are provided in seconds) 

2 cars 3 cars 4 cars 6 cars Building 
floors CONV GA TS PTS CONV GA TS PTS CONV GA TS PTS CONV GA TS PTS

58.5(SPC) 41.0(SPC) 37.5(SPC) 32.5(SPC)
61.5(TPC) 40.0(TPC) 35.3(TPC) 31.5(TPC) 10 98.6 

58.5(UC) 

58.5 58.5 79.7 

39.0(UC) 

42.0 41.0 70.3 

37.5(UC) 

41.3 31.5 60.8 

31.0(UC) 

33.0 27.5

60.0(SPC) 46.0(SPC) 42.0(SPC) 36.0(SPC)
60.0(TPC) 47.0(TPC) 38.3(TPC) 32.5(TPC) 12 103.5 
60.0(UC) 

63.0 64.5 83.6 
47.0(UC) 

46.0 45.0 73.6 
39.8(UC) 

40.5 42.0 63.6 
39.0(UC) 

37.0 31.5

82.5(SPC) 54.0(SPC) 46.5(SPC) 40.0(SPC)
75.0(TPC) 53.0(TPC) 45.0(TPC) 40.0(TPC) 14 108.6 
76.5(UC) 

82.5 76.5 87.6 
54.0(UC) 

56.0 51.0 77.0 
45.8(UC) 

46.5 46.5 66.5 
40.0(UC) 

48.5 40.5

72.0(SPC) 56.0(SPC) 48.8(SPC) 49.5(SPC)
75.0(TPC) 52.0(TPC) 46.5(TPC) 45.5(TPC) 16 112.6 
72.0(UC) 

72.0 72.0 90.7 
61.0(UC) 

60.0 52.0 79.7 
48.0(UC) 

48.8 48.8 68.8 
46.0(UC) 

49.5 47.5

90.0(SPC) 66.0(SPC) 60(SPC) 49.0(SPC)
90.0(TPC) 65.0(TPC) 63.8(TPC) 53.5(TPC) 18 116.6 
84.0(UC) 

87.0 87.0 93.8 
66.0(UC) 

65.0 64.0 82.4 
61.5(UC) 

60.8 59.3 71.0 
61.0(UC) 

67.5 50.0

93.0(SPC) 89.0(SPC) 75.8(SPC) 66.0(SPC)
93.0(TPC) 74.0(TPC) 69.0(TPC) 64.5(TPC) 20 120.8 
99.0(UC) 

108.0 99.0 97.1 
84.0(UC) 

84.0 76.0 85.2 
66.0(UC) 

74.3 59.8 73.4 
67.5(UC) 

70.0 66.5

105.0(SPC) 87.0(SPC) 78.0(SPC) 68.5(SPC)
120.0(TPC) 85.0(TPC) 77.3(TPC) 69.5(TPC) 22 124.8 
105.0(UC) 

105.0 109.5 100.2 
81.0(UC) 

87.0 89.0 87.9 
76.5(UC) 

81.0 75.8 75.6 
66.5(UC) 

71.0 64.5

115.5(SPC) 95.0(SPC) 80.3(SPC) 64.0(SPC)

115.5(TPC) 89.0(TPC) 78.8(TPC) 67.0(TPC) 24 127.9 

115.5(UC) 

115.5 111.0 102.6 

90.0(UC) 

90.0 90.0 90.0 

73.5(UC) 

87.8 74.3 77.3 

65.5(UC) 

66.5 63.0

After analysing results from table 2, we found that genetic algorithm provided 7 times the 

best result for the SPC implementation, 12 times for the TPC implementation and 9 times 

for the UC implementation. The basic TS approach provided 3 times the best result, and 

PTS provided 15 times the best result showing the better performance in general terms. The 

conventional algorithm implementation was significantly outperformed by all the tested 

methods. 



20

The genetic approaches showed a similar behaviour for their three implementations 

corresponding to single point crossover (SPC), two point crossover (TPC), and uniform 

crossover (UC), although TPC implementation showed slightly better results for most of 

the cases. In general, GA approaches behaved better for few cars’ cases, as well as for 

lower floors. When the number of cars increases and floors are higher, tabu approaches 

tend to behave better, especially in the probabilistic approach. The probabilistic tabu search 

was the method presenting a higher number of successes (15 times). 

Next figure 5 shows the comparative results for GA in its best implementation (TPC), 

conventional TS algorithm, and PTS algorithm. The figure depicts how PTS provides better 

results, especially for complex cases with many cars in the elevator group. 

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4

G A  (TP C ) - 2  c a rs
TS  - 2  c a rs
P TS  - 2  c a rs

20

40

60

80

1 00

1 20

1 2 3 4 5 6 7 8

G A  (TP C ) - 3  c a rs
TS  - 3  c a rs
P TS  - 3  c a rs

2 0

4 0

6 0

8 0

10 0

12 0

1 2 3 4 5 6 7 8

G A  (TP C ) - 4  c a rs
TS  - 4  c a rs
P TS  - 4  c a rs

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 2 3 4 5 6 7 8

G A  (TP C ) - 6  c a rs
TS  - 6  c a rs
P TS  - 6  c a rs

Figure 6. AJT results in buildings from 10 to 24 floors for each algorithm, and elevator group under 
consideration 



21

Next figure 6 shows the evolution of AJT related to the number of cars in the elevator 

group and calculated for each specific floor for the best implementation regarding the 

quality of service (AJT) that is the PTS algorithm in our tests. The figure states how AJT 

increases for higher floors, and how AJT decreases when cars in the group raise, as it was 

expected. 

1 01 21 41 61 82 02 22 4

2  c a rs
3  c a rs

4  c a rs

6  c a rs

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

A J T

F lo o r

N o .  L i fts

1 0 0 -1 2 0
8 0 -1 0 0
6 0 -8 0
4 0 -6 0
2 0 -4 0
0 -2 0

Figure 7. PTS algorithm: AJT results in buildings from 10 to 24 floors depending on the number of 
cars in the group 

Regarding computational time, tabu search approaches showed worse behaviour than 

genetic algorithm implementations (Table 3). GA implementations provide implementable 

computational time in real controllers for most of the cases, even in largest configurations. 

PTS computational times are suitable for cases with lower group configurations. The 4 cars 

case is in the limit and the 6 cars case would not be directly implementable. Anyhow, all 

the soft computing approaches reveals very robust with respect to the number of floors in 



22

the building, being the computational time  key factor the number of cars in the group. Also 

tests show how conventional TS results are out of limits regarding computational times. 

Table 3. Computational time results in buildings from 10 to 24 floors for each algorithm, and elevator 
group under consideration (results are provided in seconds) 

2 cars 3 cars 4 cars 6 cars Building 
floors GA* TS PTS GA* TS PTS GA* TS PTS GA* TS PTS 

1.6 2.6 2.9 1.9
3.0 2.5 2.2 1.9 10 

1.6 

3.2 0.5 

2.4 

4.4 0.8 

1.8 

9.3 6.2 

2.0 

43.6 27.3 

2.0 2.3 1.7 2.0
1.9 2.5 1.7 2.5 12 

2.2 
6.5 0.4 

2.5 
4.8 0.8 

1.7 
22.0 2.9 

2.0 
57.2 22.3 

2.2 2.2 1.8 2.0
2.0 2.2 1.7 2.0 14 

2.0 
5.0 0.5 

2.6 
9.2 0.8 

1.5 
30.7 4.7 

2.0 
81.6 29.6 

2.1 2.2 1.8 1.8
2.3 2.4 1.7 1.9 16 

2.1 
6.8 0.5 

2.2 
9.9 0.7 

1.7 
28.9 5.1 

1.7 
104.1 16.9 

2.3 2.4 1.7 1.9
2.3 2.3 1.7 1.9 18 

2.0 
4.8 0.6 

2.2 
13.5 1.5 

1.8 
67.5 8.4 

2.1 
183.5 46.2 

2.0 4.8 1.7 2.1
2.3 2.4 1.9 2.1 20 

2.1 
4.6 0.6 

2.4 
13.0 1.9 

1.9 
57.0 6.3 

1.9 
167.8 57.5 

2.2 2.3 1.9 1.8
2.2 2.5 1.8 1.9 22 

2.0 
5.4 0.6 

2.4 
9.4 2.0 

1.9 
50.4 14.0 

2.1 
173.0 60.8 

2.3 2.7 1.8 1.8
2.1 2.8 1.8 1.9 24 

2.0 

6.1 0.7 

2.5 

16.3 2.1 

1.8 

89.4 12.8 

2.5 

134.4 47.8 

(*) Computational results are shown first for SPC, then for TPC and last for UC 

However, it has to be taken into account that results are provided for a Pentium 4 CPU 3.00 

GHz workstation. Real industry controller microchips are faster, and faster results would be 

probably expected from real implementations.  

5. CONCLUSIONS

This paper presents two soft computing approaches (genetic algorithm and tabu search) for 

optimizing the average journey time in an elevator group control system. Even though 



23

genetic algorithm has been previously considered in vertical transportation problems, the 

use of tabu search approaches is a novelty in vertical transportation and has not been 

considered previously. 

Tests were carried out for high-rise buildings considering diverse sizes in the elevator 

group (2 to 6 cars). Results indicate that the waiting time and journey time of passengers 

were significantly improved when dealing with soft computing approaches. Even more, the 

probabilistic tabu search approach showed the best results when it was compared to the rest 

of implementations, although several genetic implementations also provided very good 

results, especially attending to the computational time.  

Computational times indicate that genetic algorithms could be directly implemented in 

industry controllers due to its very tight consumption times. On the other hand, tabu search 

algorithms can consume very much computational time when a large neighbourhood and a 

great number of iterations are used (cases of elevator groups with 6 cars). In such cases, the 

parameters of the tabu search algorithm must be carried out attending not so much to the 

algorithm accuracy but to the available time of trip of the elevator between different events 

(calls). However, the tabu search algorithm we are presenting here showed a very short 

time for computing its novel fitness estimation. Its major computational time consumption 

appears when dealing with the neighbourhood in the short term memory. Bounding this 

fact, the real implementation of the tabu search algorithm in the industry appears to be 

possible. For example, in real cases an alternative can be stopping the algorithm previously 

to reach the next event, which would occur after a known time interval. Of course all these 

decisions are very dependant on the computation speed of the electronic microchips 

installed by the company in the controller. Due to all these facts together with the great 



24

potential of tabu search implementations regarding to AJT, an ongoing research on the 

capabilities of such soft computing techniques is necessary in our opinion. So, applications 

of TS approaches on vertical systems should gain interest and support in a near future, and 

new implementations should be expected. 

Acknowledgements 

The Spanish author acknowledges the financial support given by the Consejería de 

Innovation, Ciencia y Empresa of Andalusia, through its Excellence projects programme 

(project ref. P07-TEP-02832). 

REFERENCES 

[1] Closs, G.D. (1970) The computer control of passenger traffic in large lift systems, Ph.D.

Thesis, UMIST, Manchester, UK.

[2] Prowse, R.W., Thomson, T., Howells, D. (1992) Design and control of lift systems

using expert systems and traffic sensing, Elevator Technology 4, IAEE Publ., London.

[3] Ho, M., Robertson, B. (1994) Elevator group supervisory control using fuzzy logic,

Canadian Conference on Elevator and Computer Engineering, 2, 11.4.4.

[4] A.T.P. So, W.L .Chan (1996) Dynamic zoning for intelligent supervisory control, Int. J.

of Elevator Engineering, 1, pp. 47-59.

[5] Z. Qun, S. Ding, C. Yu, L. Xiaofeng (2001) Elevator group control system modeling

based on object oriented petri net, Elevator World 49(8), pp. 99-105.

[6] C. E. Imrak, G.C. Barney (2001) The application of neural networks to lift traffic

control, Elevator World 49(5), pp.82.

[7]A. Miravete (1999) Genetics and intense vertical traffic, Elevator World, July 11.4.4,

47(7), pp.118-120.

[8] M.L. Siikonen, T. Sus, H. Hakonen (2001) Passenger traffic flow simulation in tall

buildings, Elevator Word, August 11.4.4, pp117-123.



[9] P. Cortés, J. Larrañeta, L. Onieva (2004) Genetic algorithm for controllers in elevator

groups: analysis and simulation during luncpeak traffic, Applied Soft Computing, 4 (2).

pp.159-174.

[10] P. Cortés, J. Muñuzuri, L. Onieva (2006) Design and analysis of a tool for planning

and simulating dynamic vertical transport, Simulation: Transactions of the Society for

Modeling and Simulation International 82 (4), pp. 255-274.

[11] D.E. Goldberg (1989) Genetic algorithms in search, optimization and machine

learning. NewYork: Addison-Wesley.

[12] B. Bolat, P. Cortés, E. Yalçin, M. Alişverişçi (2010) Optimal car dispatching for

elevator groups using genetic algorithms, International Journal of Intelligent Automation

and Soft Computing (AutoSoft) 16 (1), pp. 89-99.

[13] Barney G.C. (1987) Elevator abstracts including escalators, Ellis Horwood Lim.,

Chichester.

[14] Siikonen, M-L., Korhonen, T. (1993) Defining the traffic mode of an elevator, based

on traffic statistical data and traffic type definitions, Kone Elevator, U.S. Patent No.5 229

559.

[15] Buckles, B.P. Petry, F.E (1992) Genetic algorithms technology series, IEEE Computer

Society Press, Los Alamitos,CA.

[16] Glover, F. (1989) Tabu Search, Part I, ORSA Journal on Computing 1 (3), 190-206.

[17] Glover, F. (1990) Tabu Search, Part II, ORSA Journal on Computing 2 (1), 4-32.

[18] Cibse Guide D,“Transportation systems in buildings”, Cibse Pub. London, 2005.

25




