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Abstract.- High-rise buildings require the installation of complex elevator group control 

systems (EGCS). In vertical transportation, when a passenger makes a hall call by pressing a 

landing call button installed at the floor and located near the cars of the elevator group, the 

EGCS must allocate one of the cars of the group to the hall call. We develop a Particle Swarm 

Optimization (PSO) algorithm to deal with this car-call allocation problem. The PSO algorithm 

is compared to other soft computing techniques such as genetic algorithm and tabu search 

approaches that have been proved as efficient algorithms for this problem. The proposed PSO 

algorithm was tested in high-rise buildings from 10 to 24 floors, and several car configurations 

from 2 to 6 cars. Results from trials show that the proposed PSO algorithm results in better 

average journey times and computational times compared to genetic and tabu search 

approaches. 
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1. Introduction 

 

High-rise buildings require the installation of large elevator groups. Therefore, the vertical 

transportation industry grows together with the more and more increase of such high-rise 

buildings. Such situations require the management of multiple elevators in a coordinated way in 

order to efficiently transport passengers throughout the building. This management is done by 

the Elevator Group Control System (EGCS).  

 

The EGCS performance depends on the traffic pattern in the building. It represents the mobility 

of a building population in its necessities of vertical transportation. Each building addresses a 

specific shape of its own traffic pattern.  Typically, in a professional building the traffic pattern 

will present a larger than average number of up landing calls at the start of the day. These are 

due to the building’s workers arriving to start work. This phase is called uppeak traffic. On the 

contrary, late in day there is the opposite phenomenon, and a larger than average number of 
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down landing calls takes place. It corresponds to the building’s population wanting to go home 

after a working day. This traffic pattern is called downpeak. In the middle of the day there are 

two joint phenomena, because the appearance of up and down peaks. It depicts a situation of 

people wanting to leave the building for lunch and people coming back after lunch. This period 

is called lunchpeak traffic.  Finally the rest of the day does not show any special tendency from 

any specific floor or from any specific stream. Generally, less traffic is registered too. It is 

called interfloor traffic.  

 

It has been proven (Barney et al. 1985; or Cibse Guide D (2000) amongst others) that uppeak 

traffic is the most stressed traffic that is produced in a high-rise building. Thus, according to 

that we undertake the analysis of our algorithm under such conditions.  

 

In general terms, the main decision the controller has to take is to determine which car from the 

EGCS (one specific lift from the elevator group) must be assigned to a call. That is, once a 

passenger wants to travel from a floor to another different floor in a building, and the passenger 

makes a hall call of an elevator by pressing a landing call button installed at the floor and 

located near the cars of the elevator group, the EGCS must identify the elevator in the group 

that is most suitable to serve the passenger. Thus, the problem to be solved is to select an 

elevator for each hall call that is issued. This problem is called as the car-call allocation 

problem.  

 

The optimization of such problem is mainly based on the minimization of the average journey 

time (AJT), which is the time in seconds that a passenger spends travelling to a destination floor 

measured from the instant of call registration to the instant passenger steps onto the destination 

floor. AJT time consists of the average travel time (ATT), which consists of the car travel time 

from the origin floor to the destination plus the average waiting time (AWT), which consists of 

the time in seconds that a passenger waits for service measured from the instant a passenger 

registers a call to the instant the passenger enters an elevator cars.  See Barney et al. (1985) and 

the Cibse Guide D on Transportation systems in buildings (2000), which probably constitute 

some of the most recognized handbooks in vertical transportation. These parameters are also 

discussed in the simulation suite that is proposed in Cortés et al. (2006). Recently, some authors 

(Tyni et al. 2006 or Hasan et al. 2012) are considering the energy consumption of the system as 

objective function for low traffic situations and basing its analysis on the use of the energy 

generation by the counterweight. It is called the energy problem of the vertical transportation 

system. 

 

In this paper, we focused on the car-call allocation problem is NP-Hard independently of the 

criterion. Thus, most of the approaches are focused on soft computing techniques. In fact, 

vertical transportation has become a major field of application for soft computing approaches 

such as fuzzy logic, neural networks, genetic algorithms, etc. (see section 2). All of them are 

techniques capable of providing better solutions than traditional controllers implementing 

dispatch expert rules that make use of simple IF-ELSE logical command sets. 

 

The rest of the paper follows with the presentation is organized as follows: section 2 describes 

related work undertaken to solve the car-call allocation problem in elevator group control 

systems; the PSO algorithm that we implemented is described in section 3; the computer 

simulations attending to the average journey time and computational time for PSO algorithm 

and its comparison with genetic algorithm and tabu search approaches are dealt in section 3; 

and finally main conclusions are discussed in section 4.  
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2. Related work 

 

As it has been previously addressed in section 1, the implementation of efficient control 

systems in elevator groups is absolutely required for tall buildings. Such type of systems are 

called Elevator Group Control Systems (EGCS), and although this is a young field of research 

(accordingly with the recent evolution of the electronic) it can be found relevant references in 

the scientific literature. 

   

Most of modern EGCSs implement complex algorithms based on different soft computing 

techniques. Genetic algorithms appeared as one of the first attempts to tackle with such 

problem, and since then have been widely used providing good and valuable results. Examples 

of that are Cortés et al. (2003) and Cortés et al. (2004), where the authors implemented a binary 

genetic encoding for feasible solutions that has been widely followed by several authors since 

then. The algorithm was compared to traditional industry collective controllers (that are not 

based on soft computing approaches) providing significant improvements. The comparison was 

undertaken using simulation ARENA software. The main problem of these approaches was the 

required computation time required for the microchips of the controllers. After that, genetic 

approaches continued being applied. It was the case of Tyni et al. (2006) that developed a bi-

objective genetic algorithm that optimized the waiting times and the energy consumption for 

the KONE Corporation. Later, Hirasawa et al. (2008) applied another genetic approach to a 

specific type of elevators that are called double-deck where two cages are connected in a shaft 

have been developed for the rising demand of more efficient transport of passengers in high-rise 

buildings. Here, the authors develop a graph-based evolutionary method named genetic network 

programming that introduce various node functions that can be easily executed by an efficient 

rule-based group supervisory control that is optimized in an evolutionary way. More recently, 

Bolat et al. (2010) developed a genetic algorithm based on the previous work of Cortés et al. 

(2004) providing a novel way to compute the average waiting time of passengers that allowed a 

computationally effective evaluation, and overcoming that limitation. 

 

Tabu search has attracted less attention than genetic algorithms, although recently two 

algorithms based on deterministic and probabilistic approaches have been presented to deal 

with the problem. Bolat et al., (2011) have provided a deterministic and probabilistic approach 

for the tabu search algorithm that allows outperform the results provided by the equivalent 

genetic implementation.  

 

Li et al. (2007) has tried immune systems based on a two-level control structure. One structure 

is the locally optimal assignment of a hall call performed by a conventional collective 

algorithm; the other is the globally optimal assignment of all hall calls, which is executed 

periodically by artificial immune algorithm. This represents one of the very few approaches 

based on immune systems to deal with vertical transportation problems.  

 

Control methodologies have been applied to EGCS too. It is the case of neural networks that 

were very enthusiastically tried in the origins of the discipline (as it was the case of Imrak et al., 

2001). More recently, the same author (Imrak, 2008) has presented an evolution of his first 

approach and has compared it with industry conventional approaches. The paper shows how the 

EGCS can predict the next stopping floors to stop by considering what has been learnt by 

processing the changes in passenger service demand pattern. Echavarria et al. (2009) have 

developed a feed-forward neural network based control algorithm has been developed that can 

approximate elevator call patterns by learning to associate time of day with specific call 
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locations. A brief comparison of the method allows anticipating suitability when comparing to 

fuzzy approaches, although future research is required to guarantee such claim. More recently, 

Dursun (2010) has implemented a neural network to control the EGCS for cases of external 

buttons. It corresponds to the case of vertical transportation zoning approaches. The approach 

provided advantages to conventional static zoning approaches. 

 

Although fuzzy logic was also considered since a long time ago (see Kim et al., 1998 for one of 

the first attempts to deal with fuzzy controllers), nowadays, the extensive use of fuzzy logic is 

being implemented in an enthusiastic way.  It is the case of Jamaludin et al. (2010) that have 

presented a fuzzy controller that instead of depending heavily on the predicted passenger traffic 

pattern for adaptation, the fuzzy logic group controller adjusts itself to suit the system’s 

environment through a self-tuning scheme. Results are simulated and compared to conventional 

approaches showing a significant improvement. Later, Cortes et al. (2011) have developed a 

fuzzy controller to forecast the traffic patterns in the vertical transportation system. The 

controller allows to identify whether systems is under an uppeak, downpeak, lunchpeak or 

interfloor pattern. Recently, Chen et al. (2012) have presented a fuzzy logic approach to control 

the EGCS self-tuned by a genetic algorithm to maximize service quality and managing a wide 

set of variables such as the number of elevators, traffic flow, direction, congestion, priority of 

floor, and preference of passengers, amongst others. 

 

Here we present a particle swarm optimization (PSO) algorithm based on a hall call allocation 

strategy to define the solution encoding and computationally effective car-call allocation quality 

estimation. It constitutes a novel application of PSO to a new relevant industry sector. 

Approaches based on PSO are scarce in the literature. Li (2010) PSO algorithm was an 

exception. Li presented a PSO algorithm that is used to optimize typical zoning elevator 

problems where the floor sector that is going to be served by each elevator car has to be stated. 

The approach shows good results when comparing to other techniques.  

 

Zoning (or sectoring) approach for vertical transportation is a technique used to serve 

skyscrapers during the uppeak traffic. It divides the building into different sectors and assign 

one (or a group of) car to each sector. When the car leaves the passengers in the floors assigned 

to its zone, the car go down to collect more passengers travelling to the floors of the zone. This 

technique is only applied for uppeak conditions because it worsens the EGCS performance 

during other patterns (downpeak, lunchpeak or interfloor). It also requires the installation of 

external button box with all the floor destination number in the hall of the car. Thus, it relates to 

other vertical transportation philosophy of management. This is called the zoning problem at 

difference from the dispatching problem (or car-call allocation problem). When using zoning 

approaches, one of the main parameters to be optimised is the round trip time (RTT), which 

measures the time required to take a passenger from the ground floor, go up to the highest floor 

and come back to the ground floor. Hence, RTT formulas can only be applied to up traffic 

where passengers enter to the lobby and are destined to upper floors. 

 

Therefore, due to these reasons, we cannot compare our algorithm that is configured for a 

traditional button box with only up and down buttons and that do not consider zoning approach 

for dispatching cars, but a global EGCS where all the cars serve all the floors of the building. 

However, the good results provided by PSO to the zoning problem, lead us to try with the 

approach for the car-call allocation problem providing outstanding results as it is shown in the 

result section. To have benchmarks capable of assessing our proposal, we compare it against 

identical objective function implementations and the same building configuration for genetic 
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algorithms and tabu search approaches. In this line, results are provided for high-rise buildings 

from 10 to 24 floors, and several car configurations from 2 to 6 cars. 

 

 

 

3. The particle swarm optimization algorithm for EGCS  

 

In real buildings, passengers arrive randomly to different floors, even at the same time, wishing 

to be transported from a floor to other one. In addition, buildings show specific movement of 

passengers that can determine the flow pattern in the building. Four main patterns are 

traditionally catalogued: (i) uppeak traffic when a larger than average number of up landing 

calls are produced (typically because the building’s workers arriving to start work); downpeak 

traffic when a larger than average number of down landing calls takes place (because building’s 

population wishes to go back home after the working day); (iii) lunchpeak traffic that takes 

place in the middle of the day, and it is due to the appearance of up and down peaks; and finally 

(iv) interfloor traffic corresponding to the rest of the day. The latter phenomenon can be 

characterised for a low demand (usually around 4% of the population) in both directions. 

  

The elevator group control systems determine which car of the group should serve a hall call. If 

the hall call is allocated to the most appropriate car, the passengers’ travel and waiting times are 

reduced. We develop here a PSO algorithm that outperforms other soft computing 

implementations such as genetic algorithm or tabu search. Next we develop the solution 

encoding for the characterization of proposed solutions that is described in next subsection 3.1; 

the way to assess the car-call allocation, i.e., the evaluation of the candidate solutions (what is 

called as fitness); and the detailed description of the algorithm and its flowchart. 

 

3.1. Car-call allocation solution encoding 

 

Hall calls are encoded using a 2×(Number of floors – 1) elements array. The first half of the 

array corresponds to upwards landing calls, and the second half corresponds to downwards 

landing calls. A specific car from the elevator group must be allocated to each requested hall 

call, and a solution of the car-call allocation problem consists of the allocation of a specific car 

of the elevator group to all the hall calls being requested in the building. Therefore, the 

dimension of the solution becomes equal to number of requests in the hall call array (‘ones’ in 

Figure 1.a), as no elevator needs to be assigned to floors without requests. So, the dimension of 

the solution encoding can change according to the different hall call request configurations.   

 

Figure 1 (a) and (b) provides an example of car-call allocation solution encoding for a building 

with 10 floors and 3 elevators. Figure 1 (a) relates to the hall call requested at the floors. It is 

represented by an array of 18 elements, 9 for upwards landing calls, and 9 for downwards 

landing calls. A number equal to ‘1’ means that there is a call, and a ‘0’ means that there are not 

calls at that floor. Figure 1 (b) relates to the solution encoding of the car-call allocation 

problem. In the example, Figure 1 (a) shows that the required solution encoding will have a 

dimension equal to 13; such dimension corresponds to the requested hall calls. A solution 

consists of the allocation of a car of the elevator group (composed of three cars) to a hall call. 

The solution encoding in the example shows the number of the car that is assigned. Hence, each 

element can get a value between 1 and 3 since we have 3 elevators.  

 



 

Upwards Landing Calls Downwards Landing Calls 
F1 F2 F3 F4 F5 F6 F7 F8 F9 F2 F3 F4 F5 F6 F7 F8 F9 F10 

1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 

(a) 

 
F1 F3 F4 F6 F7 F8 F2 F3 F4 F5 F7 F8 F9 

3 1 2 3 3 1 2 1 2 3 2 1 3 

(b) 

 

Figure 1. (a) An example of hall call encoding for a building of 10 floors. (b) Corresponding 

solution encoding for an elevator group with 3 cars.  
 

 

 

3.2. Car-call allocation fitness evaluation 

 

To evaluate the quality of a car-call allocation by the EGCS is, we evaluate the fitness of such 

allocation. As any possible allocation must be evaluated, computationally effective is of 

enormous relevance. Therefore, the method to evaluate the fitness function is a very important 

issue. In addition, the fitness has to provide an adequate value of the performance of the car-call 

allocation. One of the most time-implemented dispatchers in the elevator industry is the THV 

one (see Cortés et al., 2003). THV algorithm was implemented at UMIST (University of 

Manchester Institute of Science and Technology), and assigns the hall call to the nearest lift in 

the adequate trip direction (sometimes appears referred as nearest call algorithm). It is easy to 

be implemented but does not provide high quality estimations of the proposed allocation. 

Another common implementation is due to the estimated time of arrival (even at the same time, 

wanting) algorithm, which undertakes an estimation of the required time since the landing call 

is issued until the car arrives (Barney et al., 1985). ETA includes different levels of priority: (i) 

long waiting calls; (ii) high activity floors; (iii) priority levels; and (iv) remaining calls. Those 

cars attending calls with priority level one to three do not stop at landing calls and only serve 

car calls requiring a special AJT calculation. ETA algorithm provides a suitable behavior during 

uppeak traffic, a medium level service for interfloor, and a bad level of service during 

lunchpeak and specially downpeak.  These approaches were tested in Cortes et al. 2004, Bolat 

et al. 2010 and it was appreciated that the Bolat et al. (2011) fitness evaluation proposal 

outperformed the other previously described approaches both in quality of solutions and 

computational speed. So then, we opted to follow the methodology described in Bolat et al. 

(2011) as an easy-to-implement and fast-to-compute technique, providing the better index of 

performance of the system in a suitable time of response. It is described next. 

 

Given the following parameters:  

- Ψ1: ground floor level 

- Ψ2: highest down hall call level 

- Ψ3: number of down hall calls between Ψ1 and Ψ2. 

- Ψ4: highest up hall call level 

- Ψ5: number of up hall calls between Ψ1 and Ψ4. 

- Ψ6: lowest down hall call level 

- t: door opening and closing time 

- tp: passenger transfer time 

- Hct: Highest car trip time 



- Lct: lowest car trip time 

 

The solution fitness, f, is calculated depending on the type of passengers’ movements. So, a 

fitness value is firstly calculated for each car, i, in the group by considering four different cases 

that are shown in figure 2. Note that each formula relates in which floor the passenger is taken 

and into which floor the passenger is transferred. Hence, as a general definition for Ψ, it shows 

the floors where passengers are getting on and off. 

 

CASE 2

Only up hall calls

uppeak traffic pattern

CASE 3

Only down hall calls

downpeak traffic pattern
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Down and up hall calls

lunchpeak and interfloor
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Figure 1. Fitness estimation depending on the traffic pattern 

 

Finally the group fitness is calculated, see equation (1), and the final fitness is evaluated for the 

proposed allocation, see equation (2). That is, the total fitness of the system is calculated as a 

two-part function where the first part collects the concern related to passengers waiting in the 

halls, and the second part concern related to an unbalanced performance in the cars of the 

group. That is, the second part tries to level the use of each car. Let’s consider the following 

example: car no.1 is working during 100 seconds and car no.2 during 11 seconds, so both cars 

would be working during 111 seconds but in a much unlevelled manner. On the other hand if 

car no.1 works during 57 seconds and car no.2 during 54 seconds, the two cars work during 111 

seconds but in a much more levelled manner. This action will have repercussion on the life 

cycle of the cars. Although k1 and k2 are design parameters, and variations and a discretional 

criterion can be admitted, we select them equal to 1.5 and 2 accordingly with Bolat et al. 

(2011). 

 



1 being  the number of cars in the group

n

i

i

group

f

f , n
n

==

∑
 

(1) 

 

( )1 2groupf k · f k · Hct Lct= + −  (2) 

 

3.3. Particle swarm optimization algorithm 

 
Particle swarm optimization, presented in Kennedy et al. (1995), is a population based 

stochastic optimization technique inspired by social behaviour of bird flocking or fish 

schooling. 

 

PSO is a population based technique. The system is initialized with a population of particles 

that correspond to initial solutions of the problem. These particles move in the search space 

searching for optimal fitness value.  

 

Following Coelho (2010), PSO algorithm defines particle as a potential solution represented by 

an s-dimensional vector, where s is the number of optimization variables. The swarm concept 

relates to an apparently disorganized population of moving particles that tends to cluster 

together while each particle seems to be moving in a random direction. The particle best 

position is calculated for a particle moving through the search space, it compares the fitness 

value at the current position to the best fitness value it has ever attained at any time up to 

current time. Then, the global best relates to the best position among all individual best 

position; and the velocity of the particle flight represents the velocity of the particle in the 

physical analogy, taking into that all the particles velocities and positions are updated after each 

iteration. 

 

We implemented a PSO algorithm that is described by the flowchart in Figure 3. The steps of 

the flowchart are numbered for easy referring. Steps 1 to 4 initialize variables that change in the 

main loop in a suitable way before entering into the main loop (step 5). In step 1, each particle 

is “thrown” to some random place in the search space: each particle is given a random position. 

Then, each particle gets a random velocity (step 2). Since a particle has a position and a given 

velocity, its next position can be calculated in the first iteration of the main loop following the 

rules and calculations detailed in steps 8 and 9 later. In step 3, the fitness value of each 

particle’s initial position is calculated. The best of these initial positions is assigned to the 

variable “global best” (step 4). Steps 5 to 14 constitute the main loop of the algorithm. In step 5, 

it is decided whether another iteration of the loop is undertaken or not by checking the number 

of iterations. Once the maximum number or iterations is reached, the procedure gets out of the 

loop and proceeds to step 15. Step 6 makes sure that all the particles are processed. In step 7, 

we get the next unprocessed particle, and proceed with it.  

 

Let us call this particle the “current” particle.  In step 8, a new velocity is set for the current 

particle using next equation (3): 

  

grwlrwvwv jj ∆+∆+=
+ 231211 , 

 

(3) 

where 1+jv  is the new velocity vector, jv  is the current velocity vector, 1w , 2w , and 3w  are 

constant scalars (weights), 1r  and 2r  are vectors whose elements are random values between 



0 and 1, l∆  is the difference vector between the best and current position of the particle, and 

g∆  is the difference vector between the global best position and the particles current position. 

This equation explains that the new velocity of the particle is calculated using three values: the 

current velocity, the distance of the particle to its best position, and its distance to the global best 

position. Weights 1w , 2w , and 3w  allow us to set relative importance of the three terms in 

determining new velocity. After several tests, we concluded that no part of equation (3) should 

be prioritized to another in order to get the best performance of the algorithm. So then, values 

were set to 0.34, 0.33, and 0.33 to make them roughly equal, and to make them sum up to 1.  

 

In step 9, the current position together with the new velocity determines the new position (each 

iteration was assumed as a unit time). In some occasions, the new calculated position could not 

be valid, e.g. they are out of the bounds of the search space. This fact is checked in step 10, and 

if the position is not valid a random valid position is assigned to the particle. And the new 

velocity value is re-updated according to this new position (step 11). Steps 12 to 14 are for 

bookkeeping and preparation for the next iteration. Step 12 calculates the fitness value of the 

new position. If necessary, the particle’s best position and global best position are also updated 

(steps 13 and 14). When the maximum number of iterations is reached, the procedure gets out of 

the main loop and moves to next step 15. The global best retains the result of the optimization.  

 

After testing several values, we realized that a maximum number of iterations equal to 30 were 

enough to guarantee convergence without penalising computational times. In a similar line, a 

number of 30 particles guaranteed a suitable mapping of the alternative solutions. Increasing the 

iterations and the number of particles did not report significant improvements meanwhile the 

required time to run the algorithm increased in values out of real applicability in the elevator 

industry. 



 

 
Figure 2. Particle swarm optimization algorithm flowchart 
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4. Computer Simulations 

 

4.1. Simulation scenario 

 

High-rise buildings from 10 to 24 floors were selected for our case study. We also considered 

different car configurations for the EGCS: 2, 3, 4 and 6 cars. The configurations were selected 

following the general rules provided in Barney et al. (1985) and the last edition of the CIBSE 

Guide edited by the Chartered Institution of Building Services Engineers (CIBSE, 2010). They 

represent a height that make them qualified as tall buildings. Table 1 and 2 give the main 

specifications of the building and elevators respectively. Total time of a car stopping is given by 

ts = topen+tclose+tp, where topen is the time for opening door, tclose is the time for closing door, and tp 

is the time for passenger transfer. 

 

 
Table 1. Specifications of the buildings 

 

Items for building   Value    

Number of floors   from 10 to 24 

Number of cars  2,3,4,6  

Floor distance (m)  3.3  

 

 
Table 2. Specifications of the elevator system 

 

Items for elevator system Value  

Car capacity (people)  8 

Speed (m/s)  3 

Time for opening door (s) 3 

Time for closing door (s) 3 

Time for passenger transfer (s) 3 

 

We carried experiments on a machine with 2.33GHz (Intel Core2 Quad) CPU  

and 3GB RAM running Microsoft Windows 7. For our application we use only  

one core. 

 

 

4.2. Simulation results 

 

In this section, we provide test results for different car group configurations as specified in 

Table 2. We have compared our PSO algorithm with the genetic algorithm implementation 

provided in Cortes et al. (2004) and subsequently modified in Bolat et al. (2010), and with the 

tabu search presented in Bolat et al. (2011). Average journey time analysis is provided in 

Tables 3 and 4 for each approach for buildings that have 10 to 24 floors and 2 to 6 cars. 

 

We run the algorithms 6 times. We selected this number after testing the algorithms many 

times, once we checked that more runs did not provide different values, so then six could be 

selected as an adequate number of replications to make the final analysis and comparison study. 

Average AJT provides the arithmetic mean, best AJT the best value that was obtained, and SD 

represents the standard deviation for the experiments. As can be viewed, the relation between 

the mean and the standard deviation presents a ratio around 5%, which adds robustness to the 

analysis in terms of the mean. 



 

Table 3 and 4, allow us to state that PSO outperforms in general terms TS and GA. In terms of 

both average value and best-obtained value PSO test results are better than the others for all 

configurations (two, three, four and six cars) and for practically all the floors. We have to note 

the exception that can be appreciated in the 2 cars / 13 floors and 2 cars /20 floors, where the 

genetic approach provides better results of AJT. It is an exception to the general rule that shows 

how PSO outperforms genetic algorithm, although it has to be noted that for these cases the 

standard deviation was better for the PSO algorithm. 

 

Another relevant aspect is the obtained improvement regarding the PSO AJT with respect to the 

other approaches. The advantage of the PSO increases when the problem increases its 

difficulty. It is frequent to appreciate the better results of the PSO for complex cases implying a 

large configuration (6 cars) and tall buildings (more than 20 floors), as can be viewed in table 4. 

In fact, when dealing with simple configurations most of methods can provide acceptable 

solutions (even in case of basic dispatching algorithms). However, when the complexity is 

increased, only advanced methods can provide acceptable solutions. It is under these stressed 

situations when the quality of a method can be better appreciated. And it is under these 

circumstances that PSO provided better values than GA or TS. 

 

The variability of the solutions provided by the three approaches is characterized by the 

standard deviation. In general terms, we have to state that standard deviations have similar 

values for all the algorithms due to the combinatorial character of the soft computing 

approaches.  Indeed, the approaches include a random component that makes them vary from 

the mean necessarily. Anyhow, PSO showed a more robust behaviour than TS and most of the 

times than GA in terms of standard deviation too. In fact, the best result provided by the 

different approaches was many times closer to the best results of all the simulations in the PSO 

approach than in the other approaches. That is, the other methods (GA and TS) varied in a 

longer interval (provided by the best value, best AJT, and the standard deviation, SD AJT) for 

the undertaken simulations than PSO providing many times worse results. 

 
Table 3. AJT comparison for 2 and 3 cars’ configuration (in seconds) 

 

Num. 

of  

floors  

2cars 

 

3cars 

 

Average  AJT SD AJT Best AJT Average  AJT SD AJT Best AJT 

PSO GA TS PSO GA TS PSOGA TS PSO GA TS PSO GA TS PSOGA TS 

10 50.5 51 51.51.2247 4.6476 3.5071 48 45 45 33 39 423.2863 7.09937.0993 30 33 33

11 56.5 60 603.5071 3.7947 7.5895 51 57 45 43.5 49 474.1352 4.8995.8992 36 42 39

12 64 66.5 64.55.2536 4.8062 6.2209 57 60 57 48 56 606.8411 8.19761.8974 42 48 57

13 73.5 72 774.1352 7.5895 4.0988 66 63 72 51 59.5 63 7.823 9.56563.7947 45 48 60

14 77 81.5 83.59.2304 3.5071 4.8062 63 78 75 61 71.5 714.5166 9.37555.8992 54 54 60

15 82 85.5 86.57.2664 3.1464 4.4159 69 81 81 69.5 73 74.54.4159 5.89928.7807 63 66 60

16 87.5 91.5 923.5071 7.0356 5.2536 84 81 84 71 82 85.54.0988 6.48078.4321 63 75 72

17 100.5 106.5 1025.6125 3.1464 7.0993 93102 93 75 84.5 90.58.8994 6.94986.9498 66 72 81

18 104.5 109 111.53.9875 1.5492 1.2247 99108111 82 93.5 946.1968 6.94986.1968 75 87 87

19 111 111.5 113.5 5.02 4.4159 4.8062 102105108 87.5101.5 98.54.4159 4.80626.9498 81 96 87

20 117.5 114 1218.3606 11.0635 2.4495 108102117 98.5105.5106.54.8062 9.93484.5497 90 93 99

21 119 125.5 1297.2664 7.9183 3.7947 111111123 104115.5115.55.2536 4.13524.5497 96108108

22 128.5 132 1368.9833 9.4868 6.4807 117117126108.5 118113.57.687710.15876.1237 99 99102

23 132.5 136.5 137.57.9183 8.6429 5.8224 123123129110.5 124126.511.131 4.8998.7807 93117117

24 144 146.5 1489.4868 8.7807 2.4495 126132144122.5 136133.54.4159 5.58579.2466 117129117

 



 
Table 4. AJT comparison for 4 and 6 cars’ configuration (in seconds) 

 

Num. 

of  

Floors 

4 cars 

 

6 cars 

 

Average AJT SD AJT Best AJT Average AJT SD AJT Best AJT 

PSO GA TA PSO GA TA PSOGA TA PSO GA TA PSO GA TA PSOGA TA 

10 28 35.5 36 1.54923.9875 6 27 30 30 24 27 29.51.89742.6833 3.5071 21 24 24

11 34 38.5 44.5 1.54922.9496 7.4498 33 36 33 30.5 33 36.51.22473.7947 2.2583 30 30 33

12 40 51.5 51 2.44953.5071 5.6921 36 48 45 34.5 40 39.53.14642.4495 6.4109 30 36 33

13 45.5 58 58.5 2.25837.2664 9.6281 42 48 48 40.5 46 49 2.515.2536 2.4495 39 39 45

14 49.5 57.5 64.5 5.92456.9498 4.5497 45 51 57 43.5 50.5 55.5 2.516.410910.8582 42 42 42

15 55.5 70.5 73 6.775 2.51 9.0333 48 69 60 44 55.5 62.52.44956.2209 7.2042 42 48 51

16 61.5 73 79 9.43935.2536 8.8318 51 66 69 52 71.5 712.44953.9875 4.5166 48 69 63

17 71 77.5 88 9.03337.449811.1714 60 69 72 57 67.5 761.89748.4321 5.8992 54 60 69

18 76.5 85 85.5 7.03566.4807 1.6432 72 75 84 58.5 72 81 2.513.7947 6.8411 54 66 75

19 84 95.5 96 67.4498 6.8411 75 87 87 62 74.5 861.54924.4159 9.798 60 69 75

20 83.5 96.5 96 4.41598.3606 9.4868 78 81 78 69 84 84 69.674710.0399 60 69 72

21 92.5 101.5110.5 6.12376.9498 6.1237 84 90105 77 88 1047.26645.5857 5.8992 69 78 96

22 98.5 112.5114.511.76018.642911.2916 84102 96 81 99115.53.2863 1212.6925 78 81 96

23 98.5 116 117 9.56562.449511.0635 84114 99 93.5 102 11311.1319.2952 18.942 78 90 75

24 112 127 130 6.19686.7528 4.0988 102120123 86117.5 1219.23049.7519 7.975 72 99 105

 

 

Figure 4 shows an expected increase in the AJT when the number of floors grows and the 

number of cars decreases. The reduction of AJT with respect to the increase in the number of 

cars follows a quasi-linear tendency, because more cars lead to a better service in univocal. 

However, the variation with the number of floors is less predictable (due to the random arrivals 

of passengers to the floors) although with a clear increasing tendency. 
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Figure 3. Best AJT results variation with respect to number of floors and car configuration in the EGCS 

 



Regarding the computational time required for the execution of the algorithms, Tables 5 and 6 

show the obtained values for all the approaches with respect to the number of floors of the 

building and the cars’ configuration of the EGCS. 

 

TS produced the quickest results for low cars’ configurations (2 and 3 cars) and PSO quicker 

results than GA as a general rule. However, for larger configurations of cars (4 and 6 cars) PSO 

was the fastest approach to solve the problem. Thus, for complex systems PSO showed faster 

computation than the other methodologies. This adds robustness to the PSO approach that we 

developed, and reveals it as a suitable dispatcher when dealing with highly complex building. 

 
Table 5. Computational time comparison for 2 and 3 cars’ configuration (in seconds) 

 

Num. of 

floors 

2 cars 

 

3 cars 

 

Average  Comp. Time SD Comp. Time Average  Comp. Time SD Comp. Time 

PSO GA TS PSO GA TS PSO GA TS PSO GA TS 

10 0.09165 0.1067 0.04362 0.0012315 0.0025211 0.0039119 0.098535 0.13425 0.06699 0.00050272 0.0015377 0.0040434

11 0.091384 0.11263 0.057458 0.0001369 0.0030153 0.041875 0.09964 0.13925 0.069127 0.00099552 0.002483 0.0013116

12 0.091934 0.11334 0.039024 0.0002953 0.0015726 0.0012413 0.10013 0.14112 0.069938 0.00056182 0.0030143 0.0033965

13 0.09281 0.11613 0.059107 0.00051594 0.0021316 0.046707 0.10046 0.14647 0.069873 0.00046022 0.0018993 0.0037979

14 0.092371 0.11868 0.039047 0.00026921 0.0018817 0.001489 0.10107 0.15127 0.070838 0.00024622 0.0024427 0.0035364

15 0.092698 0.122 0.040319 0.00022865 0.0023994 0.0025782 0.10164 0.15506 0.071975 0.00014657 0.0020194 0.003563

16 0.092886 0.12566 0.059817 0.0002612 0.0017492 0.044805 0.10232 0.16006 0.068473 0.00029236 0.0022192 0.0024951

17 0.093138 0.12648 0.038633 0.00011625 0.0031815 0.0020637 0.10243 0.1622 0.069635 0.00024742 0.0023478 0.0044573

18 0.093261 0.13094 0.040271 0.00024043 0.002626 0.0030197 0.10234 0.16584 0.06855 0.00018732 0.001619 0.0032402

19 0.093508 0.13102 0.038971 9.2921e-005 0.0027765 0.0014896 0.10304 0.1656 0.070114 0.00011068 0.0055216 0.0023473

20 0.093923 0.13442 0.039405 0.00025867 0.0012189 0.001644 0.10359 0.17238 0.072942 0.00024677 0.0017868 0.0031705

21 0.09428 0.1386 0.040831 0.00021424 0.0024249 0.002334 0.10394 0.17725 0.070167 0.00019275 0.0020878 0.0027

22 0.094017 0.1407 0.039659 0.00015839 0.0012717 0.0030056 0.10405 0.18126 0.071361 0.00043271 0.0040127 0.0037535

23 0.094821 0.14478 0.039874 0.0005905 0.0022684 0.0028439 0.10491 0.1833 0.070392 0.00071336 0.0027484 0.0036012

24 0.094677 0.14463 0.042606 0.00027286 0.0028016 0.0029168 0.1044 0.18901 0.072497 0.0001107 0.003163 0.002709

 

 

 
Table 6. Computational time comparison for 4 and 6 cars’ configuration (in seconds) 

 

Num. of 

floors 

4 cars 

 

6 Cars 

 

Average Comp. Time SD Comp. Time Average Comp. Time SD Comp. Time 

PSO GA TS PSO GA TS PSO GA TS PSO GA TS 

10 0.10475 0.15825 0.1202 0.00018015 0.0022947 0.0096018 0.11459 0.19727 0.31517 0.00017138 0.0014222 0.011704

11 0.10592 0.16323 0.12042 0.00029818 0.004744 0.005759 0.11604 0.20437 0.29796 0.0001243 0.0014699 0.04199

12 0.10673 0.16771 0.12648 0.00022179 0.0027201 0.0066631 0.11742 0.21022 0.3311 0.00041909 0.001958 0.010741

13 0.10769 0.17033 0.12256 0.00013718 0.0015645 0.0062888 0.11915 0.21677 0.31696 0.00025296 0.0025879 0.019271

14 0.10781 0.17671 0.12713 0.0002104 0.0030834 0.0086551 0.11971 0.22168 0.33321 0.00019081 0.001862 0.017419

15 0.10937 0.18225 0.12577 0.0010358 0.0020738 0.0045146 0.12072 0.2288 0.32129 0.00027924 0.0019329 0.026135

16 0.11029 0.18643 0.12672 0.0012647 0.0020034 0.0059848 0.12209 0.23424 0.33816 0.00025407 0.0029885 0.013306

17 0.11015 0.1894 0.12568 0.00020715 0.0022632 0.0044516 0.12292 0.23993 0.35357 0.00037531 0.0030672 0.016571

18 0.1104 0.19598 0.12769 0.00026058 0.0030638 0.0074558 0.12324 0.24508 0.34916 0.00068712 0.0011765 0.026119

19 0.11119 0.19823 0.13465 0.00017876 0.0034357 0.0077959 0.12438 0.25236 0.3559 0.00032028 0.0020994 0.019683

20 0.11194 0.20452 0.13632 0.00011599 0.0017819 0.0063289 0.1254 0.25784 0.37479 0.00035846 0.0023494 0.023016

21 0.11253 0.20654 0.12922 0.00033222 0.0018198 0.0081645 0.12666 0.26353 0.35121 0.00042655 0.0023575 0.0086219

22 0.11279 0.21573 0.12824 0.00026371 0.00338 0.0029092 0.12708 0.26993 0.37179 0.00038169 0.0036077 0.026862

23 0.11323 0.2188 0.13716 0.00021016 0.0038409 0.0063958 0.128 0.27306 0.37377 0.00022468 0.0041186 0.010537

24 0.11358 0.22144 0.14021 0.00011879 0.0035743 0.006558 0.12875 0.28103 0.3799 0.00033332 0.0029461 0.020579

 

 



Finally, Figure 5 represents the average car working time for each car configuration with 

respect to the number of floors of the building. That is, the time as average that a car of each 

configuration (2, 3, 4 or 6 cars) is working. It can be observed how the value of the average car 

working time is significantly reduced for larger configurations. This aspect will affect the life 

cycle of the cars, so it is important and relevant. Management teams of EGCSs should consider 

the required investment in the EGCS depending on the number of cars with respect to the 

operation costs and the total life cycle cost when doing real monetary calculations. 
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Figure 4. Average car working time with respect to number of floors and car configuration in the EGCS 



5. Conclusion 

 

We have presented a novel application of PSO algorithm to optimize the car-call allocation 

strategy of the controller in Elevator Group Control Systems. PSO algorithms had been tried 

in vertical transportation problems to deal with sectoring problems, which is a technique used 

to serve skyscrapers during the uppeak traffic dividing the building into different sectors and 

assigning one (or a group of) car to each sector. Our PSO implementation to solve the car-call 

allocation problem, also known as the dispatching problem, constitutes a novelty in the 

elevator scientific literature. 

 

Our implementation is based on a hall call allocation strategy to define the solution encoding 

and includes computationally effective car-call allocation quality estimation. Results were 

provided for high-rise buildings from 10 to 24 floors, and several car configurations from 2 to 

6 cars. The algorithm was successfully applied to all the case studies outperforming other soft 

computing techniques such as genetic algorithms and tabu search. Results were better 

attending to the average journey time (that includes the waiting plus travel times) as well as 

attending to the algorithm computational times. Even more the robustness of the method 

(measured as the standard deviation) was also proven. Hence, it was shown that PSO got 

better results in a faster, cheaper way compared with the other methods. Another reason that 

made PSO more attractive with respect to other techniques is its capability to be adjusted with 

very few parameters, which adds additional robustness. 

 

However, results obtained with a CPU can be limited with respect the real industry operation. 

In practice, real implementation should be installed in specific microchips, which would 

require lighter implementations. Bounding this fact, the real implementation of the PSO 

algorithm in the industry appears to be possible. For example, in real cases an alternative can 

be calculating the fitness not every time but in a selective manner, or stopping the algorithm 

after a lower number of iterations. Of course all these decisions are very dependent on the 

computation speed of the electronic microchips installed by the company in the controller, 

and could affect the quality of the implemented algorithm. 

 

Currently, our further research focuses on global controllers capable of identifying traffic 

pattern taking part in the building and launching the corresponding specialised algorithm. 

This global controller intends to incorporate the consideration of energy optimization for low 

demand patterns such as interfloor traffic pattern that can produce a significant reduction of 

energy consumption without worsening very much the quality of service indexes. 
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