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Abstract

In this paper we look at the influence of the Coriolis force on

the quasi-geostrophic equations on a domain with islands. We prove

that asymptotically we obtain the solution of the Sverdrup equation

with homogeneous Dirichlet conditions on the inward boundary plus a

corrector function which takes into account the presence of the islands.
This work is motivated by the fact that in oceanography most of the

surfaces are not simply connected. This is the case for example for

the North Pacific with the Japanese islands. At our knowledge, in

all the previous mathematical works, just simply connected domains

have been considered. Finally we will give some simple numerical

simulations related to the Stommel model to see the importance of

the corrector.
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1 Introduction

We consider Ω ⊂ IR2 the surface of a water extension that has some
islands, which is the case of North Pacific Ocean with the Japanese is-
lands, for instance. All the models used to obtain the Sverdrup relation
through an asymptotic analysis consider the case of a simply connected
domain, which implies Dirichlet homogeneous boundary conditions in
the initial model. Here, we consider the case of a bidimensional do-
main Ω with an island. The case of several islands can be treated in
the same way. A simple model, called the quasi-geostrophic equation
with one layer (of constant depth), allows us to describe roughly the
stream intensification on the West coasts. We consider the case of an
island, that means the domain of figure 1 given by Ω = Ω1 \ Ω2 with
Ωi ⊂ IR2 simply connected, Ω2 ⊂⊂ Ω1, and Γi = ∂Ωi. The model
related to the stream function Ψ can be described as:

(1)






E∆2Ψ− µ∆Ψ+ ε∇⊥Ψ .∇∆Ψ+ a .∇Ψ = ∇⊥ . f in Ω,

Ψ = 0 on Γ1,

Ψ = cE,µ,ε on Γ2,

∇Ψ . n = 0 on ∂Ω,

with the compatibility condition

(2)
∫

Γ2

(E∇(∆Ψ) + f⊥) . n = 0,

where E, µ y ε are small positive constants, ∇⊥ = (−∂y, ∂x), a =
(−1, 0), f⊥ = (−f2, f1) and n is the exterior unit normal of the bound-
ary ∂Ω. We remark that ∇⊥ . corresponds to the curl operator.

To get this compatibility condition, we use
∫

Γ2

∇Ψ . n =
∫

Γ2

a . n =
∫

Γ2

∆Ψ∇⊥Ψ . n = 0.

First and last equalities are obtained thanks to the boundary condi-
tions (in particular ∇Ψ = 0 on ∂Ω, since ∇Ψ . τ = ∇Ψ . n = 0 on ∂Ω),
and the second one due to the fact that Γ2 is a closed curve (is a Jordan
curve or a simple closed curve). The reader interested by compatibility
conditions on fluid mechanics problems is referred for instance to [7]
and references cited therein.
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We note that such model is used to describe vertically averaged flows
in a three dimensional flat domain in terms of the stream function Ψ
associated to the mean velocity field u = (−∂yΨ, ∂xΨ).

The purpose of this work is to perform the asymptotic analysis when
E, µ, ε converge to 0. In a first step (Theorem 1), we assume that ε = 0
(that is to say, the linear case). The study of a such linear equation is
interesting from a pedagogical point of view, see for instance [9] and
[12]. We obtain at the limit the Sverdrup solution with a corrector
which takes into account the presence of the island. In a second step
(Theorem 2) we show how to extend the result to the nonlinear case
that means the case ε $= 0. In the last section, we present a simple
simulation on the Stommel model with an island. We see the influence
of the island.

An asymptotic study on the same 4th order model in the nonlinear
case (ε $= 0) was made in [2] and over a Stommel type model (2nd
order for E = ε = 0) in [3] for a field a tangent to the boundary and
which tends locally to a field a transversal to the boundary. The case
of model (1) with E = ε = 0, homogeneous boundary condition and
a = (−1, 0) has been largely studied because there are many physical
applications modelled by this kind of equation. All the previous works
are only related to a simply connected domain Ω.

We note that the configuration of the domain implies the presence
of characteristic boundary layers (North, South), free boundary lay-
ers (issued from the south and the north of the island), Stommel or
Munk layers (Western part of the domain). We did not study here the
associated boundary layers correctors necessary to obtain better con-
vergence results since we are only interested by the main order. This
will be done in a forthcoming work related to the study of characteristic
boundaries.

The non-stationary case in a simply connected domain is studied in
[5] where they build the western boundary layers and they obtain an
approximate solution. They assume that ∇⊥ . f vanishes in a neight-
bourhood of the North and the South Parts of the boundary. It allows
them to not study the characteristic boundary layers which appear for
general data. Here we consider the stationary version of the quasi-
geostrophic equations. This may be seen as the study of the long time
behavior of the flow. We have not the time derivative to obtain better
convergence results as in [5].
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2 Internal convergence and close to East

coasts.

Here, we will prove the following result

Theorem 1 Let Ω be a domain of C2 class with ∂Ω = Γ1 ∪ Γ2 where
Γ1 ∩ Γ2 = ∅ defined as in figure 1. Let f ∈ H1(Ω)2 such that ∇⊥ . f ∈
H2(Ω). Let Ψ be a solution in H4(Ω) of (1) with ε = 0 and (2). For
all neighbourhood V = V− ∪ VI,II of Γ− ∪ ΓI ,II , where Γ− = {x ∈ ∂Ω :
nx ≤ 0} and ΓI ,II = ΩI ∩ ΩII , with ΩI ,ΩII as in figure 2, one has

Ψ→ Ψ+ c 1ΩII weakly in L2(Ω) and strongly in L2(Ω \ V ),

∂xΨ⇀ ∂xΨ weakly in L2(Ω \ V−)

where Ψ is the solution in L2(Ω)∩H2(Ω\ΓI,II) of the Sverdrup equation





− ∂xΨ = ∇⊥ · f in Ω,

Ψ = 0 on Γ+,

and c is computed by the equality

c =
−

∫
Γ−

2
Ψnx +

∫
Γ2

f⊥ . n
∫
Γ+
2
nx

with Γ+
2 = {x ∈ Γ2 : nx > 0}, Γ−

2 = {x ∈ Γ2 : nx < 0} and 1ΩII the
characteristic function of the sub-domain ΩII . +,

Remark. We assume the same kind of regularity on f than in [7] to
obtain our result. More precisely, we assume ∇⊥ . f ∈ H2(Ω) and they
assume that ∇⊥ . f ∈ W 1,∞(0, T ;H2(Ω)). +,

Proof.

Existence. We use the linearity of the problem and the uniqueness of
solution for the equation (1) with ε = 0. In this way, we decompose
the unknown of the problem (1), Ψ, into

(3) Ψ = Ψ1 + cE,µΨ2
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where Ψ1 and Ψ2 are respectively strong solutions (in H4(Ω)) of






E∆2Ψ1 − µ∆Ψ1 − ∂xΨ1 = ∇⊥ . f in Ω,

Ψ1 = 0 on ∂Ω,

∇Ψ1 . n = 0 on ∂Ω,

and






E∆2Ψ2 − µ∆Ψ2 − ∂xΨ2 = 0 in Ω,

Ψ2 = 0 on Γ1,

Ψ2 = 1 on Γ2.

∇Ψ2 . n = 0 on ∂Ω,

The existence and uniqueness of the solutions Ψ1 and Ψ2 in H4(Ω) is
a classic result, cf. [6]. The constant cE,µ can be determined by the
compatibility condition (2) as,

(4) cE,µ = −

∫
Γ2
(E∇∆Ψ1 + f⊥) . n
∫
Γ2

E∇∆Ψ2 . n
.

Remark that
∫
Γ2
E∇∆Ψ2 . n $= 0, because if we multiply the equation

for Ψ2 by Ψ2 and we integrate by parts, we obtain

E
∫

Ω
|∆Ψ2|

2 + µ
∫

Ω
|∇Ψ2|

2 + E
∫

Γ2

∇∆Ψ2 · n = 0

and this would imply that Ψ2 = 0 if we impose that
∫
Γ2

E∇∆Ψ2 . n =
0.
Convergence. From expression (3), we have to observe the convergence
for the different terms Ψ1, Ψ2 et cE,µ, when E, µ → 0. The convergence
of cE,µ needs to introduce a function θ because we will only know the
weak convergence in L2(Ω) for Ψ1 and Ψ2 in the whole Ω. For the sake
of simplicity, we will not remark the dependency from E and µ in Ψ1

and Ψ2.
i) Convergence for Ψ1. As f ∈ H1(Ω), ∇⊥ · f ∈ H2(Ω) and Ω is given
by figure 1, using the results obtained in [2] and [4], we get:

Ψ1 → Ψ1 weakly in L2(Ω) and strongly in L2(Ω \ V ),

∂xΨ1 ⇀ ∂xΨ1 weakly in L2(Ω \ V−)
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where Ψ1 is the solution in L2(Ω) for the following Sverdrup ”homo-
geneous” problem:





− ∂xΨ1 = ∇⊥ · f in Ω,

Ψ1 = 0 on Γ+.

Existence and uniqueness of a solution for the previous problem is
done in [1]. Remark that Ψ1 is smooth in Ω \ V , more precisely Ψ1 ∈
H2(Ω \ V ).

We review quickly the main steps used in [2] for the reader’s conve-
nience. These steps allow to establish the convergence from Ψ1 through
Ψ1. Multiplying the equation verified by Ψ1 by Ψ1ex, we obtain

‖Ψ1‖L2(Ω) ≤ C

where C is independent from E and µ. Then, multiplying by Ψ1 we
get the estimate

E‖∆Ψ1‖
2
L2(Ω) + µ‖∇Ψ1‖

2
(L2(Ω))2 ≤ C1

where C1 is independent from E and µ. These estimates allow us to
get the weak limit in L2 for a subsequence that tends to a solution of
the Sverdrup relation, that is to say, without boundary conditions.

To prove the weak convergence of ∂xΨ1 through ∂xΨ1 in L2(Ω\V−),
we only have to test the equation satisfied by Ψ1 against (∂xΨ1)η where
η ∈ C2(Ω), η = 0 in V− and η ≥ 0 in Ω. We obtain an uniform estimate

for
∫

Ω
|∂xΨ1|

2η. This gives the strong convergence of Ψ1 in L2(Ω\V ).

The idea is the same as in [7] for a simply connected domain and the
linear case, and as in [4] for the nonlinear case. This last argument,
use the boundary condition ∇Ψ1 . n = 0 sur Γ+ strongly.
ii) Convergence for Ψ2. Now, we focus on the problem for Ψ2. First,
we lift the boundary condition to study an homogeneous problem as
we heve done for Ψ1. More concretely, we consider ξ ∈ C4(Ω) such that
ξ = 0 on a neighbourhood of Γ1 and ξ = 1 on a neighbourhood of Γ2.
If we take Ψ2 = Ψ̃2 + ξ then Ψ̃2 verifies






E∆2Ψ̃2 − µ∆Ψ̃2 − ∂xΨ̃2 = −E∆2ξ + µ∆ξ + ∂xξ in Ω,

Ψ̃2 = 0 on ∂Ω,

∇Ψ̃2 . n = 0 on ∂Ω,
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The reasoning will finish in the same way that for Ψ1, i.e.

Ψ̃2 ⇀ Ψ̃2 weakly in L2(Ω) and strongly in L2(Ω \ V ),

∂xΨ̃2 ⇀ ∂xΨ̃2 weakly in L2(Ω \ V−)

where Ψ̃2 is the solution in L2(Ω) of :





− ∂xΨ̃2 = ∂xξ in Ω,

Ψ̃2 = 0 on Γ+.

Therefore Ψ2 → Ψ2 = Ψ̃2 + ξ weakly in L2(Ω), strongly in L2(Ω \ V )
and ∂xΨ2 → ∂xΨ2 weakly in L2(Ω \ V−) where Ψ2 is the solution in
L2(Ω) of






− ∂xΨ2 = 0 in Ω,

Ψ2 = 0 on Γ+
1

Ψ2 = 1 on Γ+
2

that is to say Ψ2 = 1ΩII .
The characteristic line crossing trough the extremal points of an

island divide the domain in two subregions denoted as ΩI and ΩII .
Then it appears a boundary layer along ΓI ,II .
iii) Convergence for the constant cE,µ. Let θ ∈ H2(Ω) be such that
θ = 0 on a neighbourhood of Γ1 and θ = 1 on a neighbourhood of Γ2.
From the equation verified by Ψ1, we obtain

∇ . (Eθ∇∆Ψ1 − µ θ∇Ψ1 + θaΨ1+θf
⊥) = E∇θ .∇∆Ψ1

− µ∇θ .∇Ψ1 +∇θ . aΨ1 +∇θ . f⊥

and a = (−1, 0). Then, integrating in Ω, and using that ∇θ = 0 on
Γ1 ∪ Γ2, ∇Ψ1 · n = 0 on Γ, we get

(5)

∫

Γ2

E∇∆Ψ1 . n+ f⊥ . n = −
∫

Ω
E∆θ∆Ψ1

+ µ
∫

Ω
∇θ .∇Ψ1 +

∫

Ω
∇θ . aΨ1 +

∫

Ω
∇θ . f⊥.

We saw that ‖Ψ1‖L2(Ω) ≤ C, E ‖∆Ψ1‖2L2(Ω) ≤ C, µ ‖∇Ψ1‖2L2(Ω) ≤ C
with C independent from E and µ. Therefore, for E, µ → 0
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∫

Γ2

E∇∆Ψ1 . n + f⊥ . n →
∫

Ω
∇θ . aΨ1 +

∫

Ω
∇θ . f⊥

(=
∫

Γ−

2

Ψ1nx +
∫

Γ2

f⊥ . n).

Moreover, from the equation verified by Ψ2,

∇ . (Eθ∇∆Ψ2−µ θ∇Ψ2+θaΨ2) = E∇θ .∇∆Ψ2−µ∇θ .∇Ψ2+∇θ . aΨ2

thereby
∫

Γ2

E∇∆Ψ2 . n = −
∫

Ω
E∆θ∆Ψ2 + µ

∫

Ω
∇θ .∇Ψ2 +

∫

Ω
∇θ . aΨ2.

The limit for Ψ2 is made as before for Ψ1, obtaining

(6)
∫

Γ2

E∇∆Ψ2 . n → −
∫

Ω
Ψ2∂xθ (i.e.

∫

Ω
∇θ . aΨ2).

But ∫

Ω
Ψ2∂xθ =

∫

ΩII

∂xθ =
∫

Γ+
2

nx.

Then,

cE,µ → −

∫
Ω ∇θ · aΨ1 +∇θ · f⊥

∫
Γ+
2
nx

:= c

Therefore, Ψ = Ψ1 + cE,µΨ2 → Ψ1 + c1ΩII
with c given as before.

Observe that c does not depend on the function θ because it is the
limit for cE,µ that is independent from θ. Let us rewrite it in another
form. If we integrate by parts the numerator of the constant c and if
we use the Sverdrup equation satisfied by Ψ and the properties of θ,
we find

c =
−

∫
Γ−

2
Ψnx +

∫
Γ2
f⊥ . n

∫
Γ+
2
nx

.

Finally, collecting all the previous results, we finish the proof of The-
orem 1. +,

Remark. If we assume to have no tangential force on the boundary
of the Island that means f⊥ . n = 0, we find exactly the constant Ψl
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defined, Equality (2.8), in [10]. That means we find the vertical average
value of the Sverdrup streamfunction on the eastern side of the island

c =
1

(yn − ys)

∫ yn

ys
Ψ(x+(y), y) dy

where x+ denotes the graph of the eastern part of the Island, ys and yn
are respectively the mimimum vertical coordinate (South), the maxi-
mum vertical coordinate (North) on the boundary of the island. +,

3 Another boundary conditions

It is possible to choose another boundary conditions different to ∇Ψ ·
n = 0 on ∂Ω. We refer to [7] for the reader interested in a physical dis-
cussion on the possible boundary conditions for the quasi-geostrophic
equations (1).

For the problem (1), changing for instance the boundary condition
∇Ψ ·n = 0 on ∂Ω by ∆Ψ = 0 on ∂Ω and conserving the Dirichlet type
condition on Ψ, we will obtain essentially the same results of Theorem
1 (except the weak convergence in L2(Ω \ V−) from ∂xΨ to ∂xΨ that,
seemingly, only works if ∇Ψ . n = 0 on Γ+).

To obtain the strong convergence in L2(Ω \V ) through the solution
Ψ1 in L2(Ω) that vanishes on Γ+, we only have to take the difference
between the equation for Ψ1 and the equation that verifies the Sverdrup
solution Ψ1 that vanishes on Γ+. Then test the resulting equation with
(Ψ1 −Ψ1)Φ, where Φ is given by

Φ(x, y) =
∫ x

gWest(y)
η(x", y) dx"

for η ∈ C2(Ω), η = 0 in V and η ≥ 0 in Ω. Recall that we consider
gEast of C2 class.

In this case, we change the compatibility condition (2) by :

(7)
∫

Γ2

(E∇∆Ψ− µ∇Ψ+ f⊥) . n = 0.

Accordingly, if we consider the problem (1) with ε = 0 and (7) we
also obtain existence and uniqueness for a solution Ψ in H4(Ω). This
solution is constructed as for (3) replacing the boundary conditions

∇Ψ1 . n = ∇Ψ2 . n = 0 on ∂Ω
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by
∆Ψ1 = ∆Ψ2 = 0 on ∂Ω,

and the expression for the constant cE,µ given in (4) by

(8) cE,µ = −

∫

Γ2

(E∇∆Ψ1 − µ∇Ψ1 + f⊥) . n
∫

Γ2

(E∇∆Ψ2 − µ∇Ψ2) . n
.

Observe that
∫
Γ2
(E∇∆Ψ2 − µ∇Ψ2) . n $= 0 because if we consider Ψ2

as a function test for the problem for Ψ2, then we get

E
∫

Ω
|∆Ψ2|

2 + µ
∫

Ω
|∇Ψ2|

2 +
∫

Γ2

(E∇∆Ψ2 − µ∇Ψ2) . n = 0.

Therefore, we obtain the same kind of convergence than before because
of the results of [2] are also proved for this type of boundary conditions.
And then, we obtain the same limit function on Ψ1 and Ψ2 given by
Ψ1 the Sverdrup solution and Ψ2 = 1ΩII .

Finally, we prove the convergence for the constant cE,µ to the same
limit of the previous section, c, adding to the left hand side of (5) and
(6) respectively the integrals

−
∫

Γ2

µ∇Ψ1 . n and −
∫

Γ2

µ∇Ψ2 . n.

Remark that the result is true even if we consider a combination of
the two boundary conditions ∇Ψ · n = 0 on Γ and ∆Ψ = 0 on ∂Ω \ Γ.
In this case, thanks to the regularity H2(Ω) ∩ H3

loc(Ω) for Ψ, we can
easily determine the limit of the constant cE,µ.

This section allows us to state that the choice of the boundary con-
ditions does not have any influence on the asymptotic stream in the
interior and the East coasts. The influence of the second boundary
condition can be remarked at the boundary layer level.

4 Non linear case.

We will prove by a comparison argument between the linear problem
and the nonlinear one that for some range of the coefficients E, µ and
ε, Theorem 1 can be extended to the nonlinear case that means ε $= 0.

More precisely we prove the following result
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Theorem 2 Let f be a function such that f ∈ L2(Ω). Let Ψε be a
solution of the quasi-geostrophic equation with ε $= 0 and Ψ the solution
for ε = 0. Then we get

‖Ψε −Ψ‖H1(Ω) ≤ C
ε

µ5/4E7/4

with C independent on ε, E and µ. +,

This result allow then to prove the same convergence than in Theorem
1 if ε/(µ5/4E7/4) → 0. It suffices to subtract then and to sum the
solution corresponding to the linear problem.

Proof.

Let us consider the difference of the two solutions Ψ̃ = Ψε − Ψ. It
satisfies






E∆2Ψ̃− µ∆Ψ̃+ ε∇⊥Ψε .∇∆Ψε − ∂xΨ̃ = 0 in Ω,

Ψ̃ = 0 on Γ1,

Ψ̃ = cε − c on Γ2,

∇Ψ̃ . n = 0 (or ∆Ψ̃ = 0) ∂Ω.

Multiplying these equation by Ψ̃, integrating by parts and using the
compatibility condition valuable for Ψ̃ and using the identity,

∫

Ω
∇⊥Ψε .∇∆Ψε Ψ̃ = −

∫

Ω
∇⊥Ψε .∇Ψ̃∆Ψε,

we get

(9) E‖∆Ψ̃‖2L2(Ω) + µ‖∇Ψ̃‖2(L2(Ω))2 = ε
∫

Ω
∇⊥Ψε .∇Ψ̃∆Ψε.

Let us remark that

|
∫

Ω
∇⊥Ψε .∇Ψ̃∆Ψε| ≤ ‖∇Ψε‖(L4(Ω))2‖∇Ψ̃‖(L4(Ω))2‖∆Ψε‖L2(Ω)

≤ C‖∇Ψε‖
1/2
(L2(Ω))2‖∆Ψε‖

3/2
L2(Ω)‖∇Ψ̃‖

1/2
(L2(Ω))2‖∆Ψ̃‖

1/2
L2(Ω).

Multiplying the nonlinear equation on Ψε by Ψε, we get using the
compatibility condition

E‖∆Ψε‖
2
L2(Ω) + µ‖∇Ψε‖

2
L2(Ω) ≤ ‖f‖L2(Ω)‖∇Ψε‖L2(Ω).
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Then,
Eµ‖∆Ψε‖

2
L2(Ω) + µ2‖∇Ψε‖

2
(L2(Ω))2 ≤ C1

and
E2‖∆Ψε‖

2
L2(Ω) + µE‖∇Ψε‖

2
(L2(Ω))2 ≤ C2

with C1 and C2 independent on ε, E, µ. In the second inequality,
we have used that ‖∇Ψε‖L2(Ω) ≤ K‖∆Ψε‖L2(Ω), with K > 0 indepen-
dent on ε. This is a consequence of the H2 regularity of the Neu-
mann Poisson problem when ∇Ψε . n = 0 is imposed on ∂Ω. For other
boundary conditions, we can use, taking a = ∇Ψε, that ‖a‖H1(Ω) ≤

K(‖∇ . a‖L2(Ω) + ‖∇⊥ . a‖L2(Ω)

)
, ∀a ∈ H1 such that

∫
Ω a = 0 (see [6]).

Thus, using these two previous estimates, we get

(10)
ε|
∫

Ω
∇⊥Ψε .∇Ψ̃∆Ψε| ≤

E

2
‖∆Ψ̃‖2L2(Ω)

+
µ

2
‖∇Ψ̃‖2(L2(Ω))2 + C

ε2

µ3/2E7/2
.

with C independent on ε, E, µ. Then using (9) and (10) and Poincare
inequality, we get the conclusion. +,

Notice that there are more posibilities for the estimation done in
(10). Indeed, one can change ε2/(µ3/2E7/2) by ε2/(µ3E2) or ε2/(µE4)
or ε2/(µ5/2E5/2). Therefore, the condition ε/(µ5/4E7/4) → 0 for the
convergence can be respectively changed by ε/(µ2E) → 0 or ε/(µE2) →
0 or ε/(µ7/4E5/4) → 0.

5 Simulation for the Stommel model

In this section, we consider the approximation from the Stommel model
(E = ε = 0) through the Sverdrup equation, and we observe from a
numerical point of view the influence of one island over the flux stream
on the West coasts. We recommend [8]and also [12] for the reader
interested in the Stommel relation without island. In any case, we
recall the origin and meaning of the Stommel relation coefficients.

In 1948, Stommel proposed the following adimensional equation in
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a simply connected domain to describe the ocean circulation:

(11)






−
R

β
∆Ψ− ∂xΨ = ∇⊥ . f in Ω,

Ψ = 0 on ∂Ω.

Here, R = ω0d/2HL where ω0 = 8 10−5s−1 is the Earth rotating
velocity, H = 3000 m is the characteristic depth, L = 1000 km is the
characteristic length and d = (2ν/ω0)1/2 is the characteristic depth for
the Ekman layer, where ν = 10−2 m2s−1 is the turbulent viscosity, then
d ≈ 16 m and R ≈ 2.1 10−13 m−1s−1. On the other hand, β = 1.9 10−11

m−1s−1 is the coefficient correspondent to the β-plan approximation.
Consequently, R/β ≈ 10−2.

With one island (see domain Ω defined in figure 1), Stommel equa-
tion can be written as:

(12)






− µ∆Ψ+ a .∇Ψ = ∇⊥ . f in Ω,

Ψ = 0 on Γ1,

Ψ = cµ on Γ2,

with a = (−1, 0), µ = R/β and with the compatibility condition

(13)
∫

Γ2

(−µ∇Ψ+ f⊥) . n = 0.

If ∇⊥ . f ∈ H1(Ω), we have existence and uniqueness of a solution
Ψ ∈ H2(Ω) for this system and we also have the asymptotic behaviour
when µ → 0 through the same solution found in the previous sections.
The solution Ψ can be written as Ψ = Ψ1+ cµΨ2 where Ψ1 and Ψ2 are
the solutions of

{
− µ∆Ψ1 − ∂xΨ1 = ∇⊥ . f in Ω,

Ψ1 = 0 on ∂Ω,

and






− µ∆Ψ2 − ∂xΨ2 = 0 in Ω,

Ψ2 = 0 on Γ1,

Ψ2 = 1 on Γ2,

13



respectively, with cµ given by

cµ = −

∫

Γ2

(µ∇Ψ1 − f⊥) . n
∫

Γ2

(µ∇Ψ2) . n
.

We will use numerically the expression for cµ on all Ω obtained due to
θ as in the previous sections. More concretely, we will use

(14) cµ =
µ
∫
Ω ∇θ∇Ψ1 −

∫
Ω ∇θ . aΨ1 −

∫
Ω ∇θ . f⊥

µ
∫
Ω∇θ∇Ψ2 −

∫
Ω a .∇θΨ2

.

Now we give some simulations on the Stommel model (12) and
(14) with the data usually found in geophysical books. The interested
reader is referred to [7] and [12].

We consider a square domain Ω = (0, 1)2 with an ellipsoidal island
and a wind of Munk type f(x, y) = (cos(πy)/π, 0). Then, ∇⊥ . f =
sin(πy). The stream function is calculated by the FEM program, of
O. Pironneau, cf. [11].

Figure 3 represents the stream function corresponding to the Stom-
mel model with µ = 3.10−2 when we take into account the constant
cµ. Figure 4 represents the stream function when we do not take into
account the constant cµ, i.e., we consider Ψ1 only. The figure 5 shows
the difference that means cµΨ2.

This last figure shows the importance of this corrector function
which converges asymptotically to c1ΩII in Ω \ V .
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[1] C. Bardos. Problèmes aux limites pour les équations aux dérivées par-
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Fig. 3: The complete stream function.

Fig. 4: The sverdrup solution.
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Fig. 5: The corrector.
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