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1 Introduction

In this paper we study the system





−∆u = λuq1 − up1

vβ1
in Ω,

−∆v = µvq2 − up2

vβ2
in Ω,

u = v = 0 on ∂Ω,

(1.1)

where Ω ⊂ IRN , N ≥ 1, is a bounded domain with smooth boundary ∂Ω,

λ, µ ∈ IR, 0 < q1, q2, β1, β2 < 1 and p1, p2 > 0. (1.2)
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2 Singular system

Our main goal in this paper is to show results about existence and nonexistence of positive
solutions of (1.1) in terms of the parameters λ and µ. It is clear that, thanks to the
maximum principle, if λ ≤ 0 or µ ≤ 0 then (1.1) does not possess positive solutions. With
respect to the existence, our main result is

Theorem 1.1. (A) Assume that q1 < p1. There is a constant λ∗(Ω) > 0 depending on Ω
such that for

µ ≥ λ∗(Ω)λσ and λ > 0

where

σ =
p2(1− q2)

(1 + β2)(1− q1)
,

there exists a positive C1,Υ(Ω), 0 < Υ < 1 solution of (1.1).
(B) Assume that q1 ≥ p1. There is a constant λ∗(Ω) > 0 depending on Ω such that for

λ < λ∗(Ω)µ−r and µ > 0,

where

r =
β1(1− q1)

(1− p1)(1− q2)
,

then (1.1) does not possess a positive solution.

Systems of singular equations like (1.1) are the stationary counterpart of general evo-
lutionary problems of the form





ut = η∆u + λuq1 − γ
up1

vβ1
in Ω,

vt = δ∆v + µvq2 − θ
up2

vβ2
in Ω,

u = v = 0 on ∂Ω.

(1.3)

In the original model proposed by Gierer-Meinhardt [10],

η, δ > 0, λ, µ, γ, θ < 0, q1 = q2 = 1, p1, p2, β1, β2 > 0, 0 < (p1−1)/β1 < p2/(β2+1)

and the boundary conditions are of Neumann type. This system was motivated by biologi-
cal experiments on hydra in morphogenesis, where u represents the density of an activator
chemical substance and v is an inhibitor. The slow diffusion of u and the fast diffusion
of v is translated into the fact that η is small and δ is large, see also [11, 16, 18] for an
account on biological applications of such systems. There are a few papers dealing with
scalar equations [1, 4, 5, 8, 19] and references therein.

According to an observation made in [3], it is natural to study (1.3) with Dirichlet
boundary conditions, since numerical experiments from [10] exhibit solutions approaching
zero near the boundary of Ω. Moreover, Neumann condition is not explicitly mentioned
in the original paper [10]. Although, the majority of early papers deal with a system on
a bounded domain with Neumann boundary conditions.

The stationary system with

η = δ = 1, λ = µ = γ = θ = −1 and p1 = p2 = q1 = q2 = β1 = β2 = 1.
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was studied in [2]. Thus for the system




−∆u = −u +
up1

vβ1
in Ω,

−∆v = −v +
up2

vβ2
in Ω,

u = v = 0 on ∂Ω,

(1.4)

they have shown existence and nonexistence of solutions and uniqueness of solution in one
dimension. Another uniqueness result for (1.4) was proved in [3], in the situation

η = δ = 1, λ = µ = γ = θ = −1 and p1 = p2 > 1, β2 = 0, β1 = q1 = q2 = 1.

A study allowing more general singular nonlinearities was performed in [9, 13, 14].
We are interested in studying stationary states of (1.3) for a different range of pa-

rameters and constants (1.2). Notice that our results depend strongly on the size of q1

and p1. Indeed, in the existence part (A) of Theorem 1.1 we require q1 < p1, and the
conclusion holds for λ > 0 and µ ≥ Cλσ for some positive constants C and σ. Part (B)
demands q1 ≥ p1, thus the nonexistence of solution is inferred for λ > 0 and µ < Cλ−r for
some positive constants C and r. In order to obtain our main results we use an adequate
sub-supersolution method, which will be detailed later.

The paper is organized as follows. In section 2 we show that the sub-supersolution
method holds for our system, which has singular nonlinearities, generalizing classical re-
sults, see for instance [17]. In section 3 we study some auxiliary problems related to
sublinear equations, singular equations and porous medium logistic equation. Section 4 is
devoted to the proof of Theorem 1.1.

2 The sub-super method for singular systems

First of all we show that the sub-supersolution method works well for singular systems.
We consider the general system





−∆u = f(x, u, v) in Ω,

−∆v = g(x, u, v) in Ω,

u = v = 0 on ∂Ω,

(2.1)

where f, g : Ω× IR× IR 7→ IR are Caratheodory functions. On the other hand, we denote
by

ρ0(x) = dist(x, ∂Ω),

and given w ≤ z a.e. in Ω

[w, z] := {u : w(x) ≤ u(x) ≤ z(x) a.e. x ∈ Ω}.

The notions of solutions and sub-supersolutions of (2.1) are:

Definition 2.1. We say that (u, v) ∈ (L1(Ω))2 is a solution of (2.1) if

1. f(·, u, v)ρ0, g(·, u, v)ρ0 ∈ L1(Ω);
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2.

−
∫

Ω
u∆ξ =

∫

Ω
f(x, u, v)ξ, −

∫

Ω
v∆ξ =

∫

Ω
g(x, u, v)ξ, ∀ξ ∈ C2

0 (Ω).

Definition 2.2. We say that (u, v), (u, v) ∈ (L1(Ω))2 is a pair of sub-supersolutions of
(2.1) if

1. u ≤ u and v ≤ v in Ω;

2.
f(·, u, v)ρ0, f(·, u, v)ρ0 ∈ L1(Ω) for all u ∈ [u, u] and v ∈ [v, v],

g(·, u, v)ρ0, g(·, u, v)ρ0 ∈ L1(Ω) for all u ∈ [u, u] and v ∈ [v, v];
(2.2)

3. for all ξ ∈ C2
0 (Ω), ξ ≥ 0,

−
∫

Ω
u∆ξ −

∫

Ω
f(x, u, v)ξ ≤ 0 ≤ −

∫

Ω
u∆ξ −

∫

Ω
f(x, u, v)ξ, ∀v ∈ [v, v];

and

−
∫

Ω
v∆ξ −

∫

Ω
g(x, u, v)ξ ≤ 0 ≤ −

∫

Ω
v∆ξ −

∫

Ω
g(x, u, v)ξ, ∀u ∈ [u, u].

Next we prove that the existence of a pair of sub-supersolutions implies the existence
of a solution of the system.

Theorem 2.3. Assume that there exists a pair of sub-supersolution (u, v), (u, v) of (2.1).
Then, there exists a solution (u, v) of (2.1) such that u ≤ u ≤ u and v ≤ v ≤ v in Ω.

Proof. First, we define the truncations

Tu(x) :=





u(x) if u(x) ≥ u(x),

u(x) if u(x) ≤ u(x) ≤ u(x),

u(x) if u(x) ≤ u(x),

(2.3)

and

Sv(x) :=





v(x) if v(x) ≥ v(x),

v(x) if v(x) ≤ v(x) ≤ v(x),

v(x) if v(x) ≤ v(x).

(2.4)

We denote by
L1(ρ0, Ω) := {u : uρ0 ∈ L1(Ω)}.

We define the Nemytskii operators (well defined by (2.2))

F : L1(Ω)× L1(Ω) 7→ L1(ρ0,Ω)

(u, v) 7→ F (u, v) := f(x, Tu, Sv)
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and similarly

G : L1(Ω)× L1(Ω) 7→ L1(ρ0, Ω)

(u, v) 7→ G(u, v) := g(x, Tu, Sv).

We define the operator K : L1(ρ0, Ω) 7→ L1(Ω) by h 7→ w := K(h), being w the unique
solution of 



−∆w = h in Ω,

w = 0 on ∂Ω.

It can be proved:

1. F and G are continuous (Theorem 2.1 in [15], the notion of equi-integrability is not
needed here).

2. [F,G](L1(Ω))2 is bounded in L1(ρ0, Ω), since T and S defined by (2.3) and (2.4) are
bounded.

3. K ◦ F and K ◦ G are continuos and compact operators from (L1(Ω))2 to L1(Ω)
(Theorem 3.1 in [15]).

Then, by the Schauder’s fixed point theorem, we can conclude the existence of a solution
(u, v) ∈ (L1(Ω))2 of 




−∆u = f(x, Tu, Sv) in Ω,

−∆v = g(x, Tu, Sv) in Ω,

u = v = 0 on ∂Ω.

We claim that (u, v) ∈ [u, u]× [v, v] and so (u, v) is solution of (2.1). Indeed, let

w := u− u.

Then, for all V ∈ [v, v] and all ξ ∈ C2
0 (Ω), ξ ≥ 0, we get

−
∫

Ω
w∆ξ ≤

∫

Ω
(f(x, Tu, Sv)− f(x, u, V ))ξ

and then taking V = Sv

−
∫

Ω
w∆ξ ≤

∫

Ω
(f(x, Tu, Sv)− f(x, u, Sv))ξ.

Then, applying the Kato’s inequality (see Proposition 3.1 in [15]) we obtain

−
∫

Ω
w+∆ξ ≤

∫

[u≥u]
(f(x, Tu, Sv)− f(x, u, Sv))ξ = 0 ∀ξ ∈ C2

0 (Ω), ξ ≥ 0.

We deduce that w+ = 0 a.e.; and conclude the proof.

Remark 2.4. Assuming more regularity to f , g and the pair of sub-supersolution, we can
obtain that the solution lies in a better space, see Section 5 in [15]. See also Remark 3.6.
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3 Some auxiliary problems

In order to find a pair of sub-supersolutions of (1.1) we need to study some scalar equations.
First of all, given λ ∈ IR and 0 < q < 1, consider




−∆u = λuq in Ω,

u = 0 on ∂Ω.
(3.1)

It is well-known that there exists a unique positive solution of (3.1) if, and only if, λ > 0.
We denote this solution by ω[λ,q]; moreover

ω[λ,q] = λ1/(1−q)ω[1,q].

It is known that there exist constants k and K with 0 < k < K < +∞ such that

kρ0(x) ≤ ω[λ,q](x) ≤ Kρ0(x) x ∈ Ω. (3.2)

We need to study the following problem



−∆u = λf(x, u)− a(x)

uβ
in Ω,

u = 0 on ∂Ω,
(3.3)

where β ∈ (0, 1) and

a : Ω → IR is a continuous positive function, (3.4)

there is 1 < γ < 2 such that lim sup
x→∂Ω

a(x)
ρ0(x)γ(1+β)−2

< +∞, (3.5)

f : Ω× IR → IR is a continuous function, (3.6)

f(x, s) > 0 for s 6= 0, (3.7)

lim
s→+∞

f(x, s)
s

= 0 uniformly in x. (3.8)

In the following result we characterize the existence of positive solution of (3.3).

Proposition 3.1. There exists λ∗ ∈ (0, +∞) such that for all λ ≥ λ∗, problem (3.3) has
a positive a.e. weak solution and no positive solution for λ < λ∗.

Proof. We are going to apply the sub-supersolution method from [15]. Take

u := cϕγ
1 , u := Ke,

for c,K > 0 such that u ≤ u in Ω, where e is the unique positive solution of



−∆e = 1 in Ω,

e = 0 on ∂Ω,
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and ϕ1 > 0 is the first eigenfunction of the Laplacian in H1
0 (Ω) such that ‖ϕ1‖∞ = 1.

Recall that there exist positive constants 0 < c < C < ∞ such that

0 < cρ0(x) ≤ e(x), ϕ1(x) ≤ Cρ0(x), ∀x ∈ Ω.

First, observe that
∣∣∣∣λf(x, u)− a(x)

uβ

∣∣∣∣ ρ0 ∈ L1(Ω), ∀u ∈ [u, u].

Indeed, for u ∈ [u, u] we have

|a(x)u−β|ρ0 ≤ Ca(x)ρ−γβ+1
0 ≤ Cργ−1

0 ∈ L1(Ω)

if γ − 1 > −1.
To show that u is subsolution, we need to verify

−∆u +
a(x)
uβ

= −cγ(γ − 1)ϕγ−2
1 |∇ϕ1|2 + cγλ1ϕ

γ
1 + a(x)c−βϕ−βγ

1 ≤ λf(x, cϕγ
1) in Ω.

We distinguish two cases:
(i) Near the boundary ∂Ω:

For every M > 0 there is a δ > 0 such that for every

x ∈ Ωδ := {x ∈ Ω : ρ0(x) < δ}

one has by (3.5)

−cγ(γ − 1)ϕγ−2
1 |∇ϕ1|2 + a(x)c−βϕ−βγ

1 = c−βϕγ−2
1 [−c1+βγ(γ − 1)|∇ϕ1|2 +

a(x)

ϕγ−2+βγ
1

]

≤ c−βϕγ−2
1 [−c1+βγ(γ − 1)|∇ϕ1|2 + M ] ≤ −c

2
γ(γ − 1)ϕγ−2

1 |∇ϕ1|2

for a sufficiently large c > 0.
In this way, taking δ smaller if necessary, we get

−∆u +
a(x)
uβ

≤ cγϕγ−2
1 [−(γ − 1)

2
|∇ϕ1|2 + λ1ϕ

2
1] ≤ 0.

Notice that if M = 0, we can take c > 0 arbitrary.
(ii) Inner points x ∈ Ω \ Ωδ.

Once c has been fixed above, take λ large enough in such a way that

c1+βγλ1ϕ
γ
1 + a(x)ϕ−βγ

1 ≤ λcβf(x, cϕγ
1).

On the other hand, with respect to the supersolution we need that

−∆u ≥ λf(x, u)− a(x)
uβ

,

for which it suffices that
K ≥ λf(x,Ke).
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This is promptly verified for K large enough thanks to (3.8).
We claim that there is no positive solution of (3.3) if λ > 0 is small. Indeed, if u > 0

is an existing solution, multiply the equation by ϕ1 and integrate. Hence,
∫

Ω

(
λ1ϕ1u +

a(x)
uβ

ϕ1

)
= λ

∫

Ω
f(x, u)ϕ1 (3.9)

Let δ > 0 and Ωδ := {x ∈ Ω : ρ0(x) > δ}. Thus

c

∫

Ωδ

(
u +

1
uβ

)
ϕ1 ≤

∫

Ωδ

(
λ1u +

a(x)
uβ

)
ϕ1 < λ

∫

Ω
f(x, u)ϕ1 (3.10)

where c is a constant depending on δ, Ω and ‖a‖L∞(Ωδ). Since

λ

∫

Ω
f(x, u)ϕ1 → 0 as λ → 0

we get a contradiction since u+1/uβ is bounded from below and
∫
Ω f(x, u)ϕ1 is bounded.

This last assertion follows from the fact that u is a priori bounded independently from λ
by a bootstrap argument, since there is a constant C > 0 such that −∆u ≤ Cλ(1 + u) for
every u.

Setting

λ∗ = inf {λ > 0 | such that (3.3) has a positive a.e. solution }.
Then λ∗ < +∞ and for all λ ≥ λ∗, problem (3.3) has a positive a.e. weak solution.

Remark 3.2. If γ− 2+βγ > 0, then in view of (3.5), a(x) → 0 as x → ∂Ω. This is true
if β ≥ 1 for example.

If γ − 2 + βγ < 0, then eventually 0 < β < 1 and a(x) → 0 as x → ∂Ω or a(x) → +∞
as x → ∂Ω. But with (3.5) satisfied.

We now consider a particular case of (3.3),



−∆u = λuq − a(x)

1
uβ

in Ω,

u = 0 on ∂Ω,
(3.11)

where 0 < q, β < 1 and a verifies (3.4) and (3.5).

Proposition 3.3. There exists λ∗(a) > 0 such that a positive maximal solution of (3.11)
exists if, and only if,

λ ≥ λ∗(a).

We denote this maximal solution by Θ[λ,q,β,a]. Moreover, the map a 7→ λ∗(a) is increasing.
Furthermore, if a ∈ C(Ω), there exist constants c and C such that

cρ0(x) ≤ Θ[λ,q,β,a](x) ≤ Cρ0(x). (3.12)

Proof. The existence of a positive solution as well as λ∗(a) follow by Proposition 3.1.
The maximality of the solution is due to the fact that any positive solution of (3.3) is a
subsolution of (3.1).

The fact that a 7→ λ∗(a) is increasing is immediate.
The existence of the constant c verifying (3.12) is due to the Hopf maximum principle

and C is due to the C1(Ω) regularity of the solution, see also Remark 3.6.
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We need some properties of the porous medium logistic equation with a possibly sin-
gular weight 



−∆u = λuq −N(x)up in Ω,

u = 0 on ∂Ω,
(3.13)

where 0 < q < 1, p > 0 with

0 < N ≤ kρ0(x)β, k > 0, (3.14)

N ∈ C(Ω) and β ∈ IR (possibly negative).

Proposition 3.4. Assume that β + p > −1.

1. If q < p, then there exists a unique C1(Ω) positive solution if, and only if, λ > 0.

2. If q ≥ p, then there exists λ∗(N) ≥ 0 such that there exists a positive C1(Ω) solution
if, and only if, λ ≥ λ∗(N).

Moreover, if N ≥ N0 > 0 for some N0 ∈ IR then λ∗(N) > 0.

Proof. Take u := Ke and u := εϕr
1, r ≥ 1 and K, ε > 0 positive constants to be chosen

later. In order to apply the sub-supersolution method we need that

|N(x)up|ρ0 ∈ L1(Ω), ∀u ∈ [u, u].

Observe that (3.14) implies
|N(x)up|ρ0 ≤ Kρβ+p+1

0

and so |N(x)up|ρ0 ∈ L1(Ω) if
β + p > −2.

First observe that u is subsolution of (3.13) provided that

r(1− r)ε1−qϕ
r(1−q)−2
1 |∇ϕ1|2 + rε1−qλ1ϕ

r(1−q)
1 + Cεp−qϕ

r(p−q)+β
1 ≤ λ. (3.15)

On the other hand, u is supersolution if K is taken large. Take also K large such that
u ≤ u in Ω. So, it suffices to verify (3.15). For that, we consider two cases:

1. Assume that p > q. Take r > 1 such that r(p − q) + β > 0. Then, recalling that
‖ϕ1‖∞ = 1, (3.15) is satisfied if

rε1−qλ1 + Cεp−q ≤ λ

for which it suffices to take ε sufficiently small.
With respect to the uniqueness, the result follows applying Theorem 2.1 in [6], specif-

ically taking g(t) = tq.

2. Assume now that p ≤ q. Take now ε = 1. Again we distinguish two cases:
(i) Near the boundary ∂Ω:

Take in this case r ≥ 1 and r(1−q)−2 < r(p−q)+β, or equivalently, r(1−p) < β +2.
Then we need that 1 < (2 + β)/(1− p) or equivalently −1 < β + p. In this case, (3.15) is
equivalent to

ϕ
r(1−q)−2
1

[
r(1− r)|∇ϕ1|2 + rλ1ϕ

2
1 + Cϕ

r(p−1)+β+2
1

]
≤ λ.
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Take δ > 0 small enough such that

r(1− r)|∇ϕ1|2 + rλ1ϕ
2
1 + Cϕ

r(p−1)+β+2
1 < 0

in Ωδ = {x ∈ Ω : ρ0(x) < δ}.
(ii) Inner points:
In the region Ω \ Ωδ we have that ϕ1 ≥ c(δ) for some c(δ) > 0. Hence, for (3.15) it is

sufficient that
rλ1 + C(δ) ≤ λ,

for some C(δ). Fixed δ, we can take λ large.
Hence, we can define

λ∗(N) = inf {λ > 0 | such that (3.13) has a positive a.e. solution }.

Then λ∗(N) < +∞ and for all λ ≥ λ∗(N), problem (3.13) has a positive a.e. weak
solution.

Finally, assume that N ≥ N0 > 0 and q ≥ p. Then, multiplying the equation by ϕ1

and integrating we have

0 =
∫

Ω
ϕ1u

p(λuq−p −N − λ1u
1−p) ≤

∫

Ω
ϕ1u

p(λuq−p −N0 − λ1u
1−p).

Assuming q > p, the maximum of the function f(x) := λxq−p − λ1x
1−p is attained at

xM =
(

λ(q − p)
λ1(1− p)

)1/(1−q)

and

f(xM ) = λ(1−p)/(1−q)

(
q − p

λ1(1− p)

)(q−p)/(1−q) 1− q

1− p

and so if λ is small we have that
∫

Ω
ϕ1u

p(λuq−p −N0 − λ1u
1−p) < 0,

a contradiction. A similar argument can be used in the case q = p. This completes the
proof.

Remark 3.5. Equations (3.3) and (3.11) have been studied in [5] and [19], but with
different behavior of a(x) or without a(x). Also, equation (3.13) has been previously studied
when N is bounded, see [7] and references therein.

Remark 3.6. The solutions of Propositions 3.3, 3.4 and Theorem 1.1 (A) belong to
C1,Υ(Ω), 0 < Υ < 1. This follows from the results in [12] which says that if −∆u = h in
Ω with u = 0 on ∂Ω and supΩ |h(x)|ρΥ

0 (x) < ∞ for some 0 < Υ < 1, then u ∈ C1,1−Υ(Ω).
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4 Proof of Theorem 1.1

We are going to apply the sub-supersolution method to system (1.1). If we denote

f(u, v) := λuq1 − up1

vβ1
g(u, v) := µvq2 − up2

vβ2
,

the third paragraph of the definition of sub-supersolution (Definition 2.2) is equivalent to

−∆u ≤ f(u, v), −∆u ≥ f(u, v),

and
−∆v ≤ g(u, v), −∆v ≥ g(u, v).

We start the proof of Theorem 1.1:

Proof. (A) Take
u := ω[λ,q1], and v := ω[µ,q2]. (4.1)

A subsolution is
v := Θ[µ,q2,β2,ω

p2
[λ,q1]

]. (4.2)

Observe that ω[λ,q1] = λ1/(1−q1)ω[1,q1] and so v verifies

−∆v = µvq2 − λp2/(1−q1)
ωp2

[1,q1]

vβ2
in Ω. (4.3)

Under the change of variable
V = Rv,

where
R =

1
λp2/((1−q1)(1+β2))

,

(4.3) transforms into 


−∆V = ΛV q2 −

ωp2

[1,q1]

V β2
in Ω,

V = 0 on ∂Ω,
(4.4)

where
Λ = µλ−σ,

with

σ =
p2(1− q2)

(1− q1)(1 + β2)

Observe that (4.4) is in the setting of (3.11) by taking a = ωp2

[1,q1]. Indeed, (3.4) and (3.5)
are verified for all γ such that

γ ≤ p2 + 2
1 + β2

,

which can be chosen 1 < γ. Hence, applying Proposition 3.3, we conclude the existence of
a positive solution of (4.4) if

Λ ≥ λ∗(Ω)
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or equivalently,
µ ≥ λ∗(Ω)λσ.

It is clear that v ≤ v and v > 0 if µ ≥ λ∗(Ω)λσ. It remains to check that there exists
u > 0 and satisfies

−∆u ≤ λuq1 − v−β1up1 in Ω.

Let u be the solution of



−∆u = λuq1 − v−β1up1 in Ω,

u = 0 on ∂Ω.
(4.5)

Observe that in this case N(x) = v−β1 , being v defined in (4.2). Hence, taking into account
(3.12) we obtain that 0 < N ≤ Cρ−β1

0 and so it is clear that

−β1 + p1 > −1.

Thus we can apply Proposition 3.4 to conclude that, if q1 < p1, there exists a positive
solution of (4.5) provided λ > 0. Moreover, it is clear that u ≤ u.

Finally, the second paragraph of Definition 2.2 is easy to verify.
In conclusion, if q1 < p1 there is a positive solution of (1.1) if λ > 0 and µ ≥ λ∗(Ω)λσ.

(B) Finally, we assume that q1 ≥ p1. Observe that if (u, v) is a solution of (1.1), then

v ≤ ω[µ,q2] = µ1/(1−q2)ω[1,q2]

and then,
−∆u ≤ λuq1 − µ−β1/(1−q2)ω−β1

[1,q2]u
p1 .

Under the change of variable

U = Ru, R = µβ1/((1−q2)(1−p1))

the above inequality is transformed into



−∆U ≤ λµrU q1 − ω−β1

[1,q2]U
p1 in Ω,

U = 0 on ∂Ω.

Hence, multiplying by ϕ1, integrating and with a similar argument to the proof of Propo-
sition 3.4, we can conclude that if

λµr < λ∗(Ω),

there is no positive solution of (1.1).
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