Existence of a positive solution for a singular system
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ABSTRACT. We show the existence and nonexistence of positive solutions to a system
of singular elliptic equations with Dirichlet boundary condition. This system arises in
studies of pattern formation in biology and in the activator-inhibitor model proposed by
Gierer-Meinhardt.
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1 Introduction

In this paper we study the system

P1

—Au = At — uT%l in €,
v
P2
—Av = pv? — u—ﬁQ in £, (1.1)
v
u=v=0 on 01},

where Q@ ¢ RN, N > 1, is a bounded domain with smooth boundary 052,

>‘7M€]R7 0<Q17Q27/81762 <1 and p17p2>0- (12)
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2 Singular system

Our main goal in this paper is to show results about existence and nonexistence of positive
solutions of (1.1) in terms of the parameters A and p. It is clear that, thanks to the
maximum principle, if A < 0 or g < 0 then (1.1) does not possess positive solutions. With
respect to the existence, our main result is

Theorem 1.1. (A) Assume that g1 < p1. There is a constant \*(2) > 0 depending on
such that for
w=> A (A7 and N>0

where
p2(l — q2)

(1+6)(1—q)’

there exists a positive CHT(Q), 0 < YT < 1 solution of (1.1).
(B) Assume that q1 > p1. There is a constant A\(2) > 0 depending on Q2 such that for

A< A(Q)p™" and p >0,

where

Br(l—q1)
(1 =p1)(1—q2)’

then (1.1) does not possess a positive solution.

Systems of singular equations like (1.1) are the stationary counterpart of general evo-
lutionary problems of the form

upl

ur = nAu 4+ Au?t — S in Q,
vP1

D2
vy = 0Av 4+ pv® — t9u7 in Q, (1.3)
v 2

u=v=0_0 on 0f.
In the original model proposed by Gierer-Meinhardt [10],

n56>07 )‘3/117770<07 Q1ZQ2:1’ p17p2751552>05 0<(p1_1)//61 <p2/(/82+1)

and the boundary conditions are of Neumann type. This system was motivated by biologi-
cal experiments on hydra in morphogenesis, where u represents the density of an activator
chemical substance and v is an inhibitor. The slow diffusion of u and the fast diffusion
of v is translated into the fact that 7 is small and § is large, see also [11, 16, 18] for an
account on biological applications of such systems. There are a few papers dealing with
scalar equations [1, 4, 5, 8, 19] and references therein.

According to an observation made in [3], it is natural to study (1.3) with Dirichlet
boundary conditions, since numerical experiments from [10] exhibit solutions approaching
zero near the boundary of ). Moreover, Neumann condition is not explicitly mentioned
in the original paper [10]. Although, the majority of early papers deal with a system on
a bounded domain with Neumann boundary conditions.

The stationary system with
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was studied in [2]. Thus for the system

upl
—Au = —u -+ ’Uﬁ n Q,
p2
—Av=—v+ % in €, (1.4)
v
u=v=20 on 012,

they have shown existence and nonexistence of solutions and uniqueness of solution in one
dimension. Another uniqueness result for (1.4) was proved in [3], in the situation

n=06=1 A=p=y=0=-1 and pr=p2>1, (=0, hhi=q=q@=1

A study allowing more general singular nonlinearities was performed in [9, 13, 14].

We are interested in studying stationary states of (1.3) for a different range of pa-
rameters and constants (1.2). Notice that our results depend strongly on the size of ¢;
and pj. Indeed, in the existence part (A) of Theorem 1.1 we require ¢; < pi1, and the
conclusion holds for A > 0 and g > C'A? for some positive constants C' and o. Part (B)
demands q; > p1, thus the nonexistence of solution is inferred for A > 0 and p < CA™" for
some positive constants C' and r. In order to obtain our main results we use an adequate
sub-supersolution method, which will be detailed later.

The paper is organized as follows. In section 2 we show that the sub-supersolution
method holds for our system, which has singular nonlinearities, generalizing classical re-
sults, see for instance [17]. In section 3 we study some auxiliary problems related to
sublinear equations, singular equations and porous medium logistic equation. Section 4 is
devoted to the proof of Theorem 1.1.

2 The sub-super method for singular systems

First of all we show that the sub-supersolution method works well for singular systems.
We consider the general system

—Au = f(z,u,v) in Q,
—Av = g(x,u,’u) in Qv (21)
u=v=0 on 052,

where f,g: Q2 x R X R +— R are Caratheodory functions. On the other hand, we denote
by
po(x) = dist(z,0%),

and given w < z a.e. in )

[w, z] :={u:w(x) <u(z) <z(x) ae ze}.
The notions of solutions and sub-supersolutions of (2.1) are:
Definition 2.1. We say that (u,v) € (L*(Q))? is a solution of (2.1) if

1. f(-,u,v)po, g(-,u,v)po € LY (2);
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- [use= [ fauve - [oac= [ gwuog vee @,
Q ) Q )
Definition 2.2. We say that (u,v), (w,v) € (LY(Q))? is a pair of sub-supersolutions of
(2.1) if
1.u<uandv <7 in §;
2.
fC u,v)po, (-, u,v)po € L) for all u € [u,u] and v € [v,7],

(2.2)
g(-,u,v)po, g(-,u,v)po € LY(Q)  for all u € [u,u] and v € [v,V];

3. for all £ € CZ(Q),& >0,

_/QuAg_/Qf(g;,u,v)ggog—/QuAf—/Qf(x,u,v)g, Yo € [v,7];

and

_/QvAg—/Qg(q:,u,v)§§0§—/QUAf—/Qg(xauav)f» Vu € [u,u].

Next we prove that the existence of a pair of sub-supersolutions implies the existence
of a solution of the system.

Theorem 2.3. Assume that there exists a pair of sub-supersolution (u,v), (w,v) of (2.1).
Then, there exists a solution (u,v) of (2.1) such that u <u <u and v <v < 7T in .

Proof. First, we define the truncations

;

u(z) if u(z) > u(x),
Tu(z) =< u(z) if u(z) <u(z) <u(x), (2.3)
( u(z) if u(z) < wu(z),
and
[ B(2) ifv(z) > D(2),
Sv(z) =1 wv(z) if v(z) < ov(z) < V() (2.4)
| (@) if o(z) < u(a).

We denote by
LY (p0, Q) := {u: upg € L'(Q)}.

We define the Nemytskii operators (well defined by (2.2))

F:LY(Q) x LY(Q) ~— L'(pg, Q)
(u,v) +— F(u,v):= f(zx,Tu, Sv)
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and similarly
G: LY Q) x LY(Q) ~ L'(po, )
(u,v) +— G(u,v) := g(z,Tu, Sv).

We define the operator K : L'(pg, Q) — L'(Q) by h +— w := K(h), being w the unique

solution of

—Aw=~h in {,
w=20 on 0f).

It can be proved:

1. F and G are continuous (Theorem 2.1 in [15], the notion of equi-integrability is not
needed here).

2. [F,G)(LY(2))? is bounded in L'(pg, ), since T and S defined by (2.3) and (2.4) are
bounded.

3. Ko F and K o G are continuos and compact operators from (L'(Q2))? to L'(Q)
(Theorem 3.1 in [15]).

Then, by the Schauder’s fixed point theorem, we can conclude the existence of a solution
(u,v) € (LY(Q))? of

—Au = f(x,Tu,Sv) in Q,
—Av = g(z,Tu,Sv) in
u=0v=0 on 02.
We claim that (u,v) € [u, @] x [v,7] and so (u,v) is solution of (2.1). Indeed, let

w:=Uu—Uu.

Then, for all V € [v,7] and all £ € C3(Q),£ > 0, we get
- [ wac< [ (1. Tu.50) - flam Ve
and then taking V = Sv
- /Q wAE < /Q (f(2, Tu, Sv) — fl,, Sv))E.
Then, applying the Kato’s inequality (see Proposition 3.1 in [15]) we obtain
—/Qw+A§ < /[ >T(f(:n,Tu, Sv) — f(x,1,Sv))E =0 VEe€C3(Q),€>0.

We deduce that wt = 0 a.e.; and conclude the proof. O

Remark 2.4. Assuming more reqularity to f, g and the pair of sub-supersolution, we can
obtain that the solution lies in a better space, see Section 5 in [15]. See also Remark 3.6.
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3 Some auxiliary problems

In order to find a pair of sub-supersolutions of (1.1) we need to study some scalar equations.
First of all, given A € R and 0 < ¢ < 1, consider

—Au = Mu? in Q,

(3.1)
u=20 on 0f).

It is well-known that there exists a unique positive solution of (3.1) if, and only if, A > 0.
We denote this solution by wyy 4; moreover

1/(1—
wing = AV g
It is known that there exist constants k£ and K with 0 < k£ < K < +00 such that
kpo(z) < wp g(z) < Kpo(x) = €€, (3.2)

We need to study the following problem

_ a(x) .
—Au = Af(z,u) — F o Q, (3.3)
u=20 on 0,

where (€ (0,1) and

a:— R is a continuous positive function, (3.4)

thereis 1 <~y <2 such that limsup a(2)

s —po(:p)V(Hﬁ)—? < 400, (3.5)

f: QxR —R isa continuous function, (3.6)

f(x,8) >0 for s #0, (3.7)

lim f(@,) =0 uniformly in z. (3.8)
S$—+00 S

In the following result we characterize the existence of positive solution of (3.3).

Proposition 3.1. There exists \* € (0,+00) such that for all X\ > X*, problem (5.3) has
a positive a.e. weak solution and no positive solution for A < \*.

Proof. We are going to apply the sub-supersolution method from [15]. Take
u=cyp], u:= Ke,

for ¢, K > 0 such that u <@ in €2, where e is the unique positive solution of

—Ae=1 in Q,
e=0 on 0},
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and @1 > 0 is the first eigenfunction of the Laplacian in HE(2) such that |j¢1]l = 1.

Recall that there exist positive constants 0 < ¢ < C' < oo such that
0 <cpo(z) < e(x), p1(z) < Cpo(x), Vo e

First, observe that

')\f(x,u) — aﬁ,)‘ po € LYQ),  Yu€ [um)].

Indeed, for u € [u,u] we have

la(z)uP|pg < Ca(z)py "™ < Cpy ™" € LY(9)

ify—1>—1.
To show that u is subsolution, we need to verify
a(x ) 5 - .
—Au+ 25,) = —cy(y = D)@} 2IVerl® + evhig] + a(@)e P <A f(z,0p]) in Q.

We distinguish two cases:
(i) Near the boundary 0
For every M > 0 there is a § > 0 such that for every

res:={re:pr) <d}

one has by (3.5)

-2 _ — — -2
—ey(y = 1)) IV + a(z)ePpr ™ = ¢ Pl P[Py (y — 1)V 2 +
2

- -2 —C -2
< PRl =ePy(y = 1) Vi |2 + M) < 10 =Dl Ve[

for a sufficiently large ¢ > 0.
In this way, taking 0 smaller if necessary, we get

a(x _ -1
—Au + alz) < ey - b )!Vs01!2 + Mf] 0.

uf 2

Notice that if M = 0, we can take ¢ > 0 arbitrary.
(ii) Inner points z € Q \ Qs.

Once ¢ has been fixed above, take A large enough in such a way that

o] +a(@)er T < AP f(x,ep)).
On the other hand, with respect to the supersolution we need that

a7 > M) - 42,
U
for which it suffices that
K > \f(z, Ke).
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This is promptly verified for K large enough thanks to (3.8).
We claim that there is no positive solution of (3.3) if A > 0 is small. Indeed, if u > 0
is an existing solution, multiply the equation by ¢ and integrate. Hence,

[ e+ %) = [ s (39
Let § > 0 and Q9 := {x € Q: po(x) > 6}. Thus

c/m (u+ u%)«pl < /95 (Mu+ a?i:;))gm < )\/Qf(:n,u)gpl (3.10)

where c is a constant depending on 4, €2 and ||a|| 0 (qs). Since

/\/f(m,u)nplﬁO as A — 0
Q

we get a contradiction since u+ 1/u” is bounded from below and [, f(z, u)¢1 is bounded.
This last assertion follows from the fact that u is a priori bounded independently from A
by a bootstrap argument, since there is a constant C' > 0 such that —Au < CA(1 + u) for
every u.

Setting

A* =inf { A > 0| such that (3.3) has a positive a.e. solution }.
Then \* < 400 and for all A > \*, problem (3.3) has a positive a.e. weak solution. ]

Remark 3.2. If vy —2+ (v > 0, then in view of (3.5), a(z) — 0 as x — I. This is true
if 6> 1 for example.

If v =2+ By <0, then eventually 0 < § < 1 and a(x) — 0 as x — I or a(r) — +00
as © — 0. But with (3.5) satisfied.

We now consider a particular case of (3.3),

1
—Au = u? —a(x)— in Q,

uf (3.11)
u=20 on 052,

where 0 < ¢,3 < 1 and a verifies (3.4) and (3.5).

Proposition 3.3. There exists A\*(a) > 0 such that a positive mazimal solution of (3.11)
exists if, and only if,
A > N(a).

We denote this mazimal solution by O, 4 3] Moreover, the map a — A*(a) is increasing.

Furthermore, if a € C()), there exist constants ¢ and C' such that

cpo(x) < O g,p.0)(@) < Cpo(w). (3.12)

Proof. The existence of a positive solution as well as A*(a) follow by Proposition 3.1.
The maximality of the solution is due to the fact that any positive solution of (3.3) is a
subsolution of (3.1).

The fact that a — A\*(a) is increasing is immediate.

The existence of the constant ¢ verifying (3.12) is due to the Hopf maximum principle
and C is due to the C1(2) regularity of the solution, see also Remark 3.6. O
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We need some properties of the porous medium logistic equation with a possibly sin-

gular weight
—Au = u? — N(z)uP in Q,
(3.13)
u=20 on 012,

where 0 < ¢ < 1, p > 0 with
0< N <kpo(z)?, k>0, (3.14)
N € C(Q) and € R (possibly negative).
Proposition 3.4. Assume that 5+ p > —1.
1. If ¢ < p, then there exists a unique C1(Q) positive solution if, and only if, X > 0.

2. If ¢ > p, then there exists \.(N) > 0 such that there exists a positive C*(Q) solution
if, and only if, A > M«(N).

Moreover, if N > Ny > 0 for some Ng € R then A\ (N) > 0.

Proof. Take u := Ke and u := €], r > 1 and K,e > 0 positive constants to be chosen
later. In order to apply the sub-supersolution method we need that

|N(x)uP|po € L*(Q), Vu € [u,ul.
Observe that (3.14) implies
IN(@)aPlpo < Ko7+

and so [N (z)uP|py € L*(Q) if
B+p>-—2.
First observe that u is subsolution of (3.13) provided that

r(1— 1)t~ D20 2 4 el 7o o) (7D 4 P a0 < ) (3.15)

On the other hand, w is supersolution if K is taken large. Take also K large such that
u <@ in Q. So, it suffices to verify (3.15). For that, we consider two cases:

1. Assume that p > ¢. Take r > 1 such that r(p — ¢) + 8 > 0. Then, recalling that
lle1lloo = 1, (3.15) is satisfied if

relTIN + CeP™9 <\

for which it suffices to take € sufficiently small.
With respect to the uniqueness, the result follows applying Theorem 2.1 in [6], specif-
ically taking g(t) = t9.

2. Assume now that p < q. Take now € = 1. Again we distinguish two cases:
(i) Near the boundary 0

Take in this case r > 1 and r(1—¢q) —2 < r(p—q) + 3, or equivalently, (1 —p) < G+2.
Then we need that 1 < (24 (3)/(1 — p) or equivalently —1 < 3+ p. In this case, (3.15) is
equivalent to

P D2 (1= )|V P + e} + CplPTITIR <
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Take 6 > 0 small enough such that

r(1— 1) |V |2 + rAe? + Cgog(p_l)JrﬁH <0
in Qs ={ze€Q:p(x) <d}.
(ii) Inner points:
In the region Q \ Qs we have that @1 > ¢(d) for some ¢(8) > 0. Hence, for (3.15) it is
sufficient that

rA1 + 0(5) <A,

for some C'(9). Fixed 0, we can take \ large.
Hence, we can define

A«(N) =inf { A > 0| such that (3.13) has a positive a.e. solution }.

Then A\ (N) < +oo and for all A > A,(N), problem (3.13) has a positive a.e. weak
solution.

Finally, assume that N > Ny > 0 and ¢ > p. Then, multiplying the equation by ¢
and integrating we have

0= / pruf uf™ = N =M’ ™) < / PP (AP — Ny — Al ),
@ QO

Assuming ¢ > p, the maximum of the function f(z) := Az97P — \;2!~P is attained at

Tag = < m >l/<1—q>

and

Fz) = A0-P)/(1=a) <q—p> -4

and so if A\ is small we have that
/ pruP(Au?™? — Ny — /\1u17p) <0,
Q

a contradiction. A similar argument can be used in the case ¢ = p. This completes the
proof. O

Remark 3.5. Equations (3.3) and (3.11) have been studied in [5] and [19], but with
different behavior of a(x) or without a(z). Also, equation (3.13) has been previously studied
when N is bounded, see [7] and references therein.

Remark 3.6. The solutions of Propositions 3.3, 3.4 and Theorem 1.1 (A) belong to
CHY(Q), 0 < Y < 1. This follows from the results in [12] which says that if —Au = h in
Q with u =0 on 9Q and supg |h(x)|pf (z) < oo for some 0 < YT < 1, then u € CH1-1(Q).
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4 Proof of Theorem 1.1

We are going to apply the sub-supersolution method to system (1.1). If we denote

upl up2

. q _ P q2 _
Flu) = At = 2 gu,0) = ot — L,

the third paragraph of the definition of sub-supersolution (Definition 2.2) is equivalent to
_Aﬂ S f(@; Q)a —Au Z f(ﬁa 6)7

and

We start the proof of Theorem 1.1:

Proof. (A) Take

Ui=wp g, and T i=wp g (4.1)
A subsolution is
y = 6[”1‘]27627“’{)\2&1]}' (4.2)
Observe that wpy 4] = Al/(l_‘h)w[l’ql] and so v verifies
i
—Av = p® — \p2/(1-a) s Q. (4.3)
Under the change of variable
V = Ruv,
where
R 1
T2/ ((1=g1)(1+52))°
(4.3) transforms into
i
_ — @ Al
AV = AV® VB m Q, (4.4)
V=0 on 0},
where
A=p\7,
with
p2(1l — q2)

(1—q1)(1+ fB2)

Observe that (4.4) is in the setting of (3.11) by taking a = wf? .. Indeed, (3.4) and (3.5)

[L,q1]
are verified for all v such that '
< P2 +2

which can be chosen 1 < 7. Hence, applying Proposition 3.3, we conclude the existence of
a positive solution of (4.4) if

A > \(Q)
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or equivalently,
> A(Q)A.

It is clear that v < T and v > 0 if u > A*(Q)A?. It remains to check that there exists
u > 0 and satisfies
—Au < — y—ﬁlum in Q.

Let u be the solution of

—Au = u® —y PPt in Q,

(4.5)
u=20 on 0f).

Observe that in this case N (z) = v~ being v defined in (4.2). Hence, taking into account
(3.12) we obtain that 0 < N < C’,o(;ﬁ1 and so it is clear that

—B1+p1 > —1.

Thus we can apply Proposition 3.4 to conclude that, if g1 < pi, there exists a positive
solution of (4.5) provided A > 0. Moreover, it is clear that u < .

Finally, the second paragraph of Definition 2.2 is easy to verify.

In conclusion, if ¢g; < p; there is a positive solution of (1.1) if A > 0 and u > A*(Q)A\7.
(B) Finally, we assume that ¢; > p;. Observe that if (u,v) is a solution of (1.1), then

VS Whygy = 1P

14,92] [1,q2]

and then,

—Au < Auft — M_ﬁl/(l_q”w[_lilﬂupl.
Under the change of variable

U = Ru, R = Mﬁl/((lftn)(lfpl))
the above inequality is transformed into

—AU < \rUn — w[‘lglﬂ UP' in Q,
U=0 on 0.

Hence, multiplying by ¢1, integrating and with a similar argument to the proof of Propo-
sition 3.4, we can conclude that if

A< A(Q),

there is no positive solution of (1.1). O
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