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Abstract

The main goal of this paper is the theoretical study of a system modelling the
angiogenesis process. This model presents ...
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1 Introduction

In this paper we analyze a system modelling a crucial step in the tumor growth process:
the angiogenesis. We suggest to the interested reader the paper [15] to know multiple
aspects of angiogenesis. We focus our attention only on the behaviour of two populations
involved in such process: the endothelial cells (CEs) which move and reproduce to generate
a new vascular net attracted by the chemical substance generated by the tumor (TAF).
We represent them by u and v respectively. They live together in a region Q@ C RY,
N > 1, that is assumed to be bounded and connected and with a regular boundary 9f2.
Specifically, we consider the case in which

0 =T1UTy,

with 'y Ny = (), being T'; closed and open in the relative topology of 9€2. We assume that
I'y is the boundary of the tumor and I'y is the boundary of the blood vessel, see Figure 1
where we have represented a particular situation, in this case the tumor is surrounded by
the vessel.

We assume Neumann homogeneous boundary conditions in both variables at I';, and
also for the variable u at I's. However, and as one of the principal novelty of this model, we
consider that at the boundary of the tumor, this generates a quantity of TAF depending
nonlinearly of the TAF existing. Specifically, we assume that at I'o

ov v
8n_'u1+v
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Figure 1: A particular example of domain Q.

being 1 a real number, although in the real application u will be a positive constant. In
such case, p represents the rate of TAF produced. Here n stands for the normal outward
vector to 0f2.
So, we are assuming that the tumor is generating the TAF with a production term of
the Michaelis-Menten type, in contrast to the model in [7] where this term is linear.
Hence, we study the following parabolic problem and its stationary counterpart

/

uy — Au = —div(V (u) Vo) + du —u?  in Q x (0,7,

vy — Av = —v — cuv in Q x (0,7),

ou Ov

% = % =0 on Fl X (O,T), (11)
ou v v

%_0, il on I'y x (0,7,

U({I,‘, 0) - U()(l'), ’U(l’,O) = Uo(l') in 2,

where 0 < T < 400, \,ps € R, c>0and V € CY(R), V > 0 in (0, 00) with V(0) = 0; and
ug and vy are non-negative and non-trivial given functions.

Let us explain now the model. We are assuming that u is affected by a chemotaxis
term. Here, V' models the chemotactic response of the CEs to the chemoatractant TAF,
and in this case this response depends on the density of u on a non-linear way. Also, we
assume that CEs grow following a logistic law. On the other hand, we assume that the
TAF has a degradation typically linear, —wv, it is also affected by a competition term with
U, —Cuv.

Similar models to (1.1) have been studied extensively in the last years, we refer to the
recent review paper [11].

Model (1.1) has basically three main difficulties, due basically to the nonlinearities: the
reaction term, the chemotactic response and the boundary condition. The logistic term
has been yet used to model the cell growth and death. Also, the nonlinear chemotactic
sensitivity has been used in different papers, see for instance [12], [16], [13] and references
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therein. We would like to mention that in [12] the function V' is bounded and negative for
large values of u, which provides bounds of the solution and so prevents the overcrowding.
However, the non-linear term at the boundary of the tumor has not used extensively in
our knowledge. The combination of these three terms imply a more involved and realistic
model.
We summarize our main results. With respect to the parabolic problem, and using
basically [3] and some estimates:

e There exists a unique local in time positive solution of (1.1).
e If V is bounded, there exists a unique global in time positive solution of (1.1).

With respect to the stationary problem, it is clear that there exists three kinds of solu-
tions of (1.1): the trivial one, the semi-trivial solutions (u,0) and (0,v) and the solutions
with both components positive, the coexistence states (u,v). Basically, the trivial solution
always exists, and:

e The semi-trivial solution (u,0) exists if, and only if A > 0. In fact this semi-trivial
solution is (A, 0).

e There exists a value g3 > 0 such that the semi-trivial solution (0,v) exists if, and
only if p > .

With respect to the existence of coexistence states, we need to introduce two functions
F:(0,400) — R and A : (u1,+00) — IR such that:

e If A <0 or u < p; there does not exist any coexistence state of (3.1).

e Assume that V’(0) > 0, there exists at least a coexistence state of (3.1) if
(15— FO) (O — A) > 0.
e Assume that V’(0) = 0, there exists at least a coexistence state of (3.1) if A > 0 and

pw—F(\) > 0.

Finally, with respect to the stability of the semi-trivial solutions, we show that
e (u,0) is stable if u < F(\), and unstable if p > F(A).

e (0,v) is stable if A\ < A(p) (resp. A < 0if V/(0) = 0), and unstable if A > A(u) (resp.
A >0 V/(0) = 0).

So, when both semi-trivial solutions are stable or unstable, there exists at least one coex-
istence state. Hence, these curves are crucial in the study of existence of positive solutions
and we will study in detail both maps.

In order to prove these results we use mainly bifurcation methods and sub and super-
solution.

The structure of this paper is as follows. In section 2 we study the parabolic problem:
first we prove the existence of solution local in time and then the global existence. In
section 3 we study the stationary problem. Section 4 is devoted to study the global
stability of the semi-trivial solution (u,0). Finally in the last section we briefly discuss
some biological implications of our results.
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2 The parabolic problem

2.1 Local existence

We are interested by the positive solution of the following system of PDEs

uy — Au = —div (V(u)Vv) + du —u? in Q x (0,7T),

vy — Av = —v — cuv in Q% (0,7),

%:@:0 on I'; x (0,7),

O n Ty % (0,7) 2
an_ on Mt ont2 T

U((L‘, 0) - uO(x)? in Qa

’U(Z‘,O) :’Uo(.’E>, in Qa

where c is a positive constant and A € R. The following result shows the local existence
of solution of (2.1).

Theorem 2.1. Let p > N and suppose that the initial data (ug,vo) € WHP(Q;R?) and

ug > 0, vg > 0 a.e. Then, problem (2.1) has a unique nonnegative local in time classical
solution

(u,v) € C(Q x (0, Thnae); R?) N CHLQ x (0, Thae); R?),

where Thq: denotes the mazimal existence time. Moreover, if there exists a function
w: (0,400) — (0,400) such that, for each T > 0,

(), o)l < w(T), 0 <t < min{T, Tpuas}, (2:2)
then Thee = +00.

Proof. We will prove that problem (2.1) is included in the frame of [3]. Let § > 0 be and
denote Dy = (—4, 00) x (=0, +00) which is an open set containing the range of the solutions
u and v. For n = 2, number of equations, we define n? functions aj;, € C?(Do; L(IR?)) for
1 <4,k <n in the following way. For each (n1,7n2) € Do,

0 0 1 0
aj o if j # k; ajk L if j =k
72 00 12 -V(n) 1

then, we put

N .
v v v Ov div (V)

A = - E 8]' ajk = — .
u u jh=1 u Oku div (Vu — V(u) Vo)

For the boundary conditions, we define for ¢ = 1,2, §; : 9Q — {0,1} as §;(z) =1 Vz €
I'1 U9, because the boundary conditions are Neumann boundary conditions for each
unknown on each part of the boundary. We denote (¢;;) 1 <4, j < 2 the following matrix:

m 0 on I'y m 0 onlIy
c11 = 0 C12 =
2 1+ 72 on I n2 0 only
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om v(z | onbe fm 0 onT,
21 = wv(ne 22 =
72 T on I'y 2 0 onTy
and
§ := diag (6;) : 992 — L(IR?).
Then we put
v v 0 0 N v OV
B = Z n;y | Qg
U U 0 69 = U Opu
C11 C12 v 1-— 51 0 v
v + ¥ =
C21 €29 u 0 1-— 52 u
ov v
on 1+v
V(u) dv  Ou  pV(uv

on | on 1+

This couple (A, B) is a linear boundary value problem of separated divergence form,
namely, if we denote

a=1;, and a=

—V(u) 1

it holds that
Gk = Q,ka,

where « is symmetric and uniformly positive definite and (A, B) is normally elliptic because
it also holds
o(a(r)) C[Rez >0] VzeQ

and the boundary operator is a Neumann boundary operator of each component of 0f2.
Then, if we denote

Wi = Ker B={(v,u) € (W*P(Q))?: B(v,u)t =0}
and LP = (LP(£2))?, then the operator
27
A= A]W’;,p e L(Wg", LP)
is well defined and is the negative infinitesimal generator of an analytic semigroup on L”

(pg 19).
For the reaction term, we define the function f € C?(Dg;IR?) by

f oy [ T omn2
2 Mz — 13
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Then, (2.1) can be written as the following quasilinear parabolic boundary value problem

) ) ) v
O +A = in  x (0,00)
U U U U
v v 0
B = ( on 9% x (0, 00) (2.3)
U U 0
0
U(l‘, ) _ UO('Z‘) on O
U(Qj‘,O) UO('T)

Then, Theorems 14.4 and 14.6 of [3] are applicable. The first one says that with our
hypotheses (p > N, the coefficients of A and B are C?, f € C? and independent of the
gradient) for each initial data belonging to W3, there exists a unique maximal weak
W#P-solution where we have denoted

{(v,u) e WHP(Q)?: B(v,u)' =0} if 141 <5<2

Wy =
wep if 0<s<1+
This function is a W!4-solution for each ¢ € (1, 00) (Coroll. 14.5). In particular, for s = 1,
our claim follows. The second one asserts that because the boundary operator is equal to
0, the solution is a classical solution and the equation is verified point-wise.
The nonnegativity of the solution follows from Theorem 15.1. In fact, the hypothesis
(15.3) is verified for r» = 2 because V' (0) = 0 and, so, the nonnegativity of v holds. But, if
u > 0, then the maximum principle applied to the problem

vy —Av=—v—cuv in Qx (0,7,

g—v:() on I'y x (0,7,

O ; (2.4)
an =M on I's x (0,7),

v(z,0) = vo(x) in Q,

implies that v > 0.

To reach the result about the global solution, we can invoke Theorem 15.5. which is
applicable because (A, B) is a lower triangular system. For these systems and if aj is a
diagonal matrix, f is independent of the gradient and if there exists a function w : Ry —
R such that

I(u(t),v(t)|loo <w(T), 0<t<T < o0, t<th,

then tT = oo, supposed that the solution is bounded away from 9 for each T > 0. O

2.2 Global existence

The following lemma states that v is bounded, independently of the variables ¢ and z, via
the well-known method of sub and supersolutions (see for example [17]).
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Lemma 2.2. There ezists a constant C' > 0 such that the v-solutions of (1.1) satisfy
[o(®)leqey <

where C' is independent of t.

Proof. Observe that the v-solutions of the problem (1.1) are subsolutions of

—Aw=—-w in Qx(0,Tha),

0

7w =0 on Fl X (O,Tmaw)a

ggj (2.5)
% = ’M’ on FQ X (O,Tmax)a

v(z,0) =vp(x) in Q.

\

Now, let ¢ be the solution of the stationary problem
—Ap+¢=0in
Onp =0o0n T, Opp = |u| on I's.

It is well known that ¢ > 0. Taking K > 0 big enough, K¢ is a supersolution of (2.5).
Therefore, v < w < K¢ and the conclusion is easily followed. O

Lemma 2.3. There exists C > 0 such that the solution of the u-equation of (1.1) satisfies

[u(®)llz2@) < C,

with a constant C' which is independent of t.

Proof. Multiplying the v-equation by v and integrating in {2, we obtain

2 po o 2
2dt v+/v +/|Vv| /891+U /chv.

C
Adding the term —?E / v? on both sides of the equality, where C is the constant of the

Q
injection of H(Q) in L?(T';), taking into account Lemma 2.2 and multiplying the before
equality by e(2=C¢9)t we have

d ( (2— Ce)t/v2> +26(2—C€)t/ |VU|2 §2“L‘C|@Q|e(2_06)t,
dt Q Q

where |0Q2| denotes the N —1 dimensional Lebesgue measure of 9€). Therefore, integrating
in (0,t) and multiplying by e~ (=2 we get

t
/’U2(t) +€_(2—CE)t2/ 6(2—06)8(/ |V'U|2)d8 S
. : \ . (2.6)
(2icion) [ c-congs)e-e-con i [ ige-a-con
0 Q
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In particular, from (2.6) we obtain

t
e—<2—0e>t/ (2-C2)s (/ Vo2)ds < C(|Jvoll2(). (2.7)
0

Next, we multiply the u-equation by u and integrate in €2

d puv
=2 242 Vo —2 22 -2 [ u?
7 u / |Vul® + /QV(U)Vu Vv /asz V(u)1 e —i—/Q A /Qu

Adding 2 / u? on both sides of the equality we have
Q

d/u2—|—2/u2:—2/ |vu\2+2/ V(u)Vu-VU—2/ V() 24 +2/()\+1)u2—u3.
dt Jo 0 Q Q Ty 1+wv Q

Owing to |V (s)| < C for almost every s € R and the inequality (A +1)s? —s3 < C = C())
for all s > 0, we deduce

d
/u2+2/u2 < —2/ \vu|2+c/2|vuy |Vv|+C/ -2 1201 (2.8)
dt Jo Q Q Q r, 1l+v

The term C|pul

is bounded by the following expressions

uv
CM/SC’,u uge/ u? + C(e),
[ Frs < [ u<e [ o

using that for every e > 0 there exists C'(g) > 0 such that s < es? + C(e) for every s € R.

Moreover,
5/u < C(e /u —|—£/]Vu\
I

Taking account these estimations in (2.8) we get

d
| +(2—C€)/u < (C=—2) /\vuy2+c/zyvuyw+0()
Q

ry 1

Then,

d
G| +(2—cg)/Q ((c+1>e—2)/9yw|2+0(e)/g\w?+0(g).

(2—Ce)t

Multiplying this inequality by e we have

i <e(2—C€)t/u2) < 0(8)6(2_C€)t/ |VU|2+CB(2_CE)t,
dt Q Q

and integrating in (0,¢) we obtain

t t
e2=Ce)t / /“0 <Cl(e /(6(2_08)5/ Vv|2)ds—|—C'/ e2=Cs s,
Q 0

At this point, thanks to (2.7),
/ W < a2 4 CO(Jfwol]) + C
Q

and the Lemma is easily concluded. O
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Lemma 2.4. Let v € (1,00), and t > to > 0 for tg small enough. If ||u(t)| ;@) < C,
then
[v(®) lwrpem < C,

where
n

n)=y——— Ve >0.
p(y,mn) Yo Tite

Before proving Lemma 2.4, we remind some facts about Sobolev spaces and the in-
terpolation theory. For Sobolev spaces with non-integer index, it holds that ([3], pag
25)

If 59, 51 € R\ N, 51 < 59 = WP s WP Vp € [1,00].

If the p-index is different, we can use the following general enough imbedding theorem

Theorem 2.5. ([1]. Theor 7.58) Let Q C RN a C?-domain. Let so >0, 1 <p < q< oo
and s1 =syg— — + —. If s1 > 0, then
p q

W0 (Q) — Wi (Q).

With respect to the interpolation theory, we remind that if Fy and E; are two normed
spaces continuously embedded into a topological space £, we can defined the real interpo-
lation for 0 < § < 1 and 1 < p < oo, which we denote (Eo, E1)s,, (See Definition 22.1 of
[18]). It is true that

1. (Eo,El)gjp C Ey+ Ey.
2. EgNE| — (Eo,El)g’p.
3. (Lemma 22.2) If 0 < <1 and 1 <p < g < oo, then

(Eo, Er)ap — (Eo, E1)a,q-

Finally, because (Ey, E1)o1 C (Fo, E1)ep C Eo + Ei, it follows from Lemma 25.2 ii) of
(18] that if (Eo, E1)e, is a Banach space, then

3C > 0, such that |la||(g, 5, , < CHaHlE;G HaH%l Va € Eg N Ejy. (2.9)

0,p —
The application of this theory for the Sobolev spaces is based on the following funda-
mental results. If we denote
W —1+1/y<s<1l+1/y

) : (2.10)
(W=7 —241/y<s<—-1+1/y

Sy
WB -

then it holds

Theorem 2.6. ([3], Theor. 5.2; Theor. 7.2) Suppose that (A, B) is a normally elliptic
Neumann problem on Q with C'-coefficients, 1 < p < oo and 0 < § < 1. Then

1.
(Lm Wg”p)@,p = Wé&p,

for 260 € (0,2)\ {1,1+1/p}.
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2. If =24+ 1/p<s9<s1 <14+1/p, and sy := (1 —0)sp + 0s1 € N, then,
(W7 W), = Wi?
When (A, B) is a normally elliptic problem on Q with C'-coefficients, it is possible to

construct an interpolation-extrapolation scale of spaces; we put Fy = L,, Fy = Wé’p , and
E_; a completion of Ey (see [3], pag 29), we define

Ey = (Eo, Er)g, = W% for 20€(0,2)\{1,1+1/p}, (2.11)

and we can extend the definition inductively for Eji.9. Then, there exists a family of
operators, Ag € L(E149, Ep), being Ay the negative infinitesimal generator of an analytic
semigroup on Ey. The semigroup e *4¢ is defined e #4 : By — Ey (see [3], pags 28-30).

Proof of Lemma 2.4. System (2.3) has a local classical solution (u(t),v(t)) defined in
(0, Thnaz)- So, we pose the nonhomogeneous linear problem

' O —Av+v = f(t) == —cu(t)v(t) in Q x (0,00)
ov
— =0 on I'; x (0,7),
v f”__ o(t) oo (2.12)
Ge =) =i onTax (0.7),
’U(IE70) = UO(‘/E)a in 2,

which we simply denote

O — Agv = f(t) in Q x (0,00)
Bov = g(t) onI'x (0,7), (2.13)
’U(iL', O) - ’Uo(.’IJ), in €2,

(Ao, By) generate an analytical semigroup whose generator is Ag € L£(L7(Q2)) with dom Ay =
ker B. The operator By |ker 4, : Ker Ag — Wl_l/%V(aQ) is an homeomorphism and we
denote Bf its inverse operator. The generalized variation-of-constants formula gives, for
20 € (1/7,14+1/5),

t

v(t) = e Hetyy — / e~ Aam1(f(7) + Ay 1 BSg(7)) dr, (2.14)
0

and (2.14) is well defined for (f, g) € C((0, Tyaz), W2%, x OW2*) ([3], pag 63). Note that

it follows from (7.8) of [3] and (2.10) that for —2 < s < 0,

LY — Wy (2.15)

We choose 6 := 1+ % —e<2a< 1+ % Owing to Theorem 2.6, there exists some
0 < 0 < 1 such that
Wy 27, Wge Moy = Wi = W5,
So, it holds that

202 2 2 _
Yw e Wg' TN W =W, lwllyss <C Hw\\%/;w [ e
0

Bo
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If we remind (2.11), Wa" = Eo, W5 > = Eq_1, Aq-1 : Ba — Ea1 and the
semigroup e tho1 B S E, 4. So, for f € Wég_2’7 =F,_1,

(- (- —(t— 1-6,
e~ (= A1 £ s, < Clle T)zﬁla_1fH€Véow e ’T')Aa—lf”WgaZQ.
0 0

Because A,—1 is the generator of an analytic semigroup, it holds that ([3], Remark 8.6.c)

”wHWéa,'\/ S CHAaf]_wHWéa—Q,'y Vw 6 Ea,
0 0

because [0, +00) C p(—Ap); this claim holds following Theorem 8.5 and (3.1) of [3]. So

e fllyas < CllAase™ A flf sy DA fIL
0 0

Finally, thanks to [10], Theor 1.3.4,

e P o S I [P
0 0

He—(t—T)Aa,llefG < Ce—é(t—T)(l—G) ||f| 1-0

waee < Wiz
0 0
and it results
||€7(th)Aa,1fHW5ﬁ < Cefé(tfﬂ') (t _ T)*Q ||f||W;a_2’7’ (216)
0

for each 6 € (0,1). Taking norm || - ||;7s,» on both sides of (2.14) and using (2.16), we get

t
-0 —5(t— -0
o) < O oolygeant | € E=r) () g2t AacaBig () o2

Taking into account Lemma 2.2, (2.15) and the Sobolev embedding W57 < WP we
deduce easily the Lemma. O

Lemma 2.7. Given any o € [1,4+00), if |luol[req) < +oo then there exists C' > 0
(depending on o and |lug||p«(q)) such that u(t) € L*(2) and

|u(®)|La@) <C Yt >t

Proof. Fix a > 2. Multiplying the u-equation by au®~! and integrating in €2, we obtain

LA _4(0‘_1)/ ]V(ua/2)12+a(a—1)/ V() 2Vy - Vue
dt Q (0% Q Q

—a/ V (1) Opvu®! —i—)\a/ ua—a/ utt, (2.17)
o9 Q )

We add / u® on both sides of the equality. Besides, we estimate the term —a / V (u)pvu®t,
Q o0

v
—a | V(up u <o [ u
/1—\2 1+wv Ty
At this point, we use the following inequality. Given € > 0, there exists C(¢) > 0 such
that
s <es®+C(e) Vs€R.
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Then,
/ w1t < 5/ u®+ C(e)|ly] =
FQ FZ

_ ua/2 2 ua/2 2 ua/2 2
_E/FQ( )—l—CSC’(s/Q( )+£/Q|V( )2) + C,

using the injection H'(§) in L?(T'y). Taking account this estimation in (2.17), we have

IR
dt QU QU ~

< _4(0;_ D /Q IV (u?)|? + aa — 1) /Q V(uw)u®"2Vov - Vu + /Q((a)\ + Du® — au®t)+

—i—CE/ua—i-Ce/ IV (u®?)? + C.
Q Q

Using (a4 1)s® — as®™ < 0 = C(\, ) for every s > 0,

d
(0% 1_ Oé<
p Qu + ( C’e)/ﬁu <

—4(a—1

<( ) + Ce) /Q IV (u?)? + afa —1) /Q V(u)u*"2 Vv - Vu + C.

An easy computation gives
ala—1) / V(u)u*"2Vv - Vu = 2(a — 1) / wz WV (u)Vo - V(u®/?)
Q Q
and replacing it in the previous inequality, we obtain

d
. « 1_ a<
dt Jo" i 8)/Qu -

< (—4(0;—1)_1_6)/Q|v(ua/2)|2+2(a_1)/Qu§—1V(U)Vv.V(ua/2)+C. (2.18)

Now, we deal with the second term in the right hand side,

[e3

[V () Vo - V()1 < Clluz ™| gow ) Vol ooy IV (w?) [ 12(0) <

< CENuE a1 9003y + IV ()2, (2.19)
where

2p
O(p) = —— 2.
(p) S P>

Replacing (2.19) into (2.18), and considering € small enough, we obtain

d (e e o
2 ) + (1= O 22y < CEuE 2y |02y + €. (220)
Now, we begin a recursive algorithm. Taking

Y =2,
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by Lemma 2.3 u(t) € L*(Q), |u(t)|lr2@ < C. By Lemma 2.4, v(t) € WhrOoN)(Q),

S0, ||V1)H%p(m is finite. Choosing a@ < 2 + % we assure that u2~! € LY(Q). So, for

2<a§2+mwehave

d

@Hu”/?(t)Hiz(g) + (1 =) [u? (1) |72y < C.

Therefore,
a/2

We have just proved that |[u(t)||pa) < C for 2 <a <2+ %'
Now, we define

20

0(p(v0, N))

Owing to the previous reasoning, we have that u(t) € L7 (). So, by Lemma 2.4 v(t) €

v =24+

WhPnN)(Q). If we choose o < 2 + m we will assure that u®/2~1(t) € LY(Q), and
by (2.20) we obtain that for 2 < @ < 2 + g2y, u(t) € L(Q) and [|u(t)|| () < C.

By a recursive algorithm we get that u(t) € L*(2) and |[u(t)|| L) < C, for every a with
2<a<2+ 6(})%, and

(yn,V)) 5
Tn—1
=24 =t
T 0t V)
Using that
N
L, N)=ym1————
p(n-1,N) = 1N_1+€’)’n_1’
we have that
2e 2
Yn = Yn-1(1 — N) + N
The limit of 7, is 1, so for £ > 0 as small as we want, we have that u(t) € L*(2) and
|u(t)|| o) < C for all a € [1,+00). O

Remark 2.8. Consequently, by Lemmas 2.4 and 2.7, we have obtained that u(t) €
LP(Q), Vv € LP(Q)N, for every p > 1.

In the following result we obtain a better bound of u, a L>*-bound. Let p > 1 and
define
B:=-A+1,

with domain

D(B) := {u c W2P(Q) : g—z =0on 89}

For each 8 > 0 define
X? .= D(B") with the norm |u||5 := || B%ul|,.
Lemma 2.9. Let 20 < 1, then fort >ty > 0 we have

[u)lls < C
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Proof. We have that

u(t) = e Pug + / t e~ BV - (V(u) Vo) + (A + 1)u — u?)dr,
0

and so
t
lu®)lls < le™Puolls + / le” " DB(=V - (V(0) Vo) + (A + Du — u?)dr||5.
0
First, by [10, Theorem 1.4.3]

le™Puollg < Ct=Fe™fu]lp,

and
le” DB (u — w?)||g < (¢ — ) Pe (N + Dlullp + |u?]lp)

where § € (0,1).
Moreover, by [13, Lemma 2.1] we obtain

[ DBV - (V@) Vo)lls € Clle DAV - (V () Vo)l
< Ot - 7) Y2 ||V () Vo,

where € > 0 such that —1/2 — 3 — e > —1. Then,

t
lu(®)lls < Ct=Pe=*|luollp + C/ [(t =)~ DV () Vot
0

(2.21)
(t =) Pe 2D+ Dlullp + w?p))dr.
Now, observe that
IV (w)Voll, < ClVoLe@)-
Finally, thanks to Lemmas 2.4 and 2.7 we easily conclude the result from (2.21). O

Corollary 2.10. We have that
lu(t)]|oo < C  for allt >0,
and consequently we have proved the global existence.

Proof. Let p> N, 23 € <%, 1). Since 23 > N/p we have by [10, Theorem 1.6.1] that
X8 — Cc(@).
Thanks to Lemma 2.9 we have that [lu(t)|lc < C for ¢t > t; > 0. Moreover, the local

existence Theorem yields ||u(t)||c < C for t < tg. Therefore, ||u(t)||cc < C for all £ > 0.
Then, this result and Lemma 2.2 prove the global existence criterium (see (2.2)). O
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3 Steady-states

Consider now the stationary problem

—Au = —div(V(u)Vv) + du —u? in Q,

—Av = —v — cuv in Q,

ou v (3.1)
% = % = on Fl,

ou ov v

.= - = Is.

on 0, on M1y ont2

First, we need to introduce some notations.
For a € (0,1) we denote

Xp:={u e C?(Q):0u/dn=00n 09}, Xy:={ucC>(Q):0u/on=0o0nT;}
and finally
X = X1 x Xo.
Moreover, given a function ¢ € C(Q) we denote by

¢y := max c(x), cr :=minc(x).
Q Q
We are interested in solutions (u,v) € X of (3.1) with both components non-negative and
non-trivial. Observe that thanks to the strong maximum principle, any component, u or
v, of a non-negative and non-trivial solution is in fact positive in the whole domain €.
Consider functions m € C%(Q), g € C1*(I's) and the eigenvalue problem

—Ap+mop=Ap in (Q,

9¢

o 0 on I'y, (3.2)
% + g(b =0 on I's.

on

We are interested only in the principal eigenvalue of (3.2), i.e., the eigenvalues which have

an associated positive eigenfunction. In the following result we recall its main properties,
see [4], [5] and [8].

Lemma 3.1. Problem (3.2) admits a unique principal eigenvalue, which will be denoted by
M(=A+m; N, N+g). Moreover, this eigenvalue is simple, and any positive eigenfunction,
¢, verifies ¢ € C’é’o‘(ﬁ). In addition, \i(—A 4+ m; N, N + g) is separately increasing in m
and g; and when g = K constant, it verifies

lim AN (=A+m;N,N+ K) =—o0,
K=—o0 (3.3)

Jm A=A NN+ K) = \(=A 4 m; N, D),

where A\ (—A+m; N, D) stands for the principal eigenvalue of —A+m with homogeneous
Dirichlet boundary conditions on I'y and 0¢/0n =0 on I'y.
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Moreover, we are going to consider the following Steklov eigenvalue problem with
eigenvalue on the boundary

—Ap+mep=0 in Q,

I
% =0 on Fl, (34)
o
% b go=ps onTy
n

It is well-known that there exists a principal eigenvalue of (3.4), we denote it by
1 (—A+m; N, N + g).
It is clear that u is a principal eigenvalue of (3.4) if, and only if,
0=XM(—A+m;N,N+g—pu),
and that
0>M(-A4+m;NN+g—p) <= u>pu(—A+m;N,N +g),
and analogously,

0<M(=A+m;N,N+g—p) <= p<pm(=A+m;N,N+g).

3.1 Semi-trivial solutions

Apart from the trivial solution (u,v) = (0,0) of (3.1), there exist the semi-trivial solutions.
It is clear that if v = 0, then u verifies

—Au=X u—u* inQ, Ou/dn=0 on dQ,

that is u = A.
On the other hand, when v = 0 then v satisfies the equation

—Av+ov=0 in Q,

%:0 onFl, (35)
ov v

Yo onT.

on 'ul—l—v otz

This equation was analyzed in [19] with I'; = (), we include a proof for reader’s conve-
nience and some useful estimates.

Proposition 3.2. There exists a positive solution of (3.5) if, and only if,
p>p = (=A+1;N,N).

Moreover, if the solution ewists, it is the unique positive solution, and we denote it by 0,,.
Furthermore, 8, is locally asymptotically stable (1. a. s.) for p > py , i.e.

M(=A+1;N,N — pu(1/(146,))%) > 0. (3.6)
Finally,
1 o 0 .
77_1 Se S 7_1 9 Z’fLQ, 37
H%Hoo(m Jo1 < b (901)L(M1 e (3.7)

where @1 s a positive eigenfunction associated to piy.
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Proof. Observe that if v is a positive solution of (3.5) we get

1
0=M(-A+1;NN—pu—
1( + ) ) /1’1+U)7

and so p > 0. Moreover,
1

and then, p > p.

To prove the existence of solution, we apply the sub-supersolution method. Take ¢; a
positive eigenfunction associated to u;. Then (v,7) = (ep1, M 1) is sub-supersolution of
(3.5) if

no_ ao_
e=4 and K >H#
1o (¢1)L

The uniqueness follows by an standard argument. Indeed, observe that the map s —
us/s(1+s) = p/(1+ s) is decreasing.
To prove the stability, linearizing (3.5) around 6, we need to prove that

M(=A+1;N,N — pu(1/(1+6,))% > 0.

For that, observe that 7 = 6, is a strict-supersolution of

0
71):0 Ol’lFl, 7_M(

—-A =0 inQ
v+v m ), an

The next result provides us with a priori bounds of the solutions of (3.1) and bounds
in the space X.

Lemma 3.3. Let (u,v) a coezistence state of (3.1). Then,
u< XA and v <46, (3.8)

Moreover, consider that (\,p) € K C R? compact. Then, there erists a constant C
(independent of X\ and p) such that for any solution (u,v) of (3.1) we have

[[(w, v)|lx < C.

Proof. That v < 6, is clear. On the other hand, observe that the first equation of (3.1)
can be written as

~Au = —V'(u)Vu-Vo—V(u)Av+Iu—u® = =V (u)Vu- Vo —V(u)(v+ cuv) + I — u?.

Then, if we denote by Z € Q such that w(Z) = maxgu, using that —Au(z) > 0 and
Vu(z) =0, we get
V(u(T))

u(@) <A\ — @)

v(Z)[1 + cu(T)]. (3.9)

Then we can conclude that u < A. This completes the proof of (3.8).
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Suppose (A, 1) € K C R? compact and let (u,v) be a solution of (3.1). Then, we have
that u and v are bounded in L*°(Q) for some constant C' not depending on A or u. Now,
going back to the v-equation and using the LP-estimates of Agmon, Douglis and Nirenberg
[2], we have that for p large

[vller @y < Cllvllwaeq) < O] —v = cuvllp + [|po/ (1 4+ v)lp) < C.
But, the u-equation in (3.1) can be written as follows
—Au+V'(u)Vu - Vo = du — u® — V(u)(v + cuv)

and thus, v is bounded in W?2P(Q) for all p > 1, and so in C'(Q2). Now, again using the
v-equation and the Schauder Theory in Holder spaces (see [9]), v is bounded in X5, and
finally w in X; with constants independent of A and u. O

As an easy consequence of the above result, we have
Corollary 3.4. If A <0 or u < py then (3.1) does not possess positive solution.
The following result will be crucial in the existence result:

Proposition 3.5. 1. Assume that V'(0) > 0 and fix A\ > 0. Then, there exists jio(\)
such that (3.1) does not possess coezistence states for p > po(X).

2. Fiz . > py. Then, there exists Ao(p) such that (3.1) does not possess coexistence
states for A > Ao(p).

Proof. 1. Fix A > 0 and assume that there exist a sequence p, — oo and coexistence
states (up,vy) of (3.1). Denote by z, €  such that u,(z,) = ||un||c. Then, by (3.9) we
have

Vlunllo)
[t

Moreover, we know that u, < A, and so

[[tnlloo + V(20 ) (1 + €|t o) < A (3.10)

—Avy, + (14 cX)v, >0,

and so by a similar argumento to the proof of Proposition 3.2, we get that

and so by (3.10), we have
V(llunloo)

[[tnlloo +
[t | oo

(14 cllunlo0) (02 = 1= eX)pr(an) < A
Since p1 > § > 0 in Q and 1+ ¢||un||ec > 1, we obtain that V(||un|ls)/||tnllec — 0, which
is impossible due to V/(0) > 0.

2. Denote by u,, = mingecq u(x). Since the minimum can not attain at the boundary
(because in such case Ou(x,,)/dn < 0) then, using again that Vu(z,,) = 0 and —Au(x,,) <
0 we get

V(um)

Um

A< Uy +

V(@) (1 + ctm).
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Since v < 6, if A — oo then wu,, — oco. On the other hand, since v is solution of the
second equation of (3.1) we have

0=M(-A+1+cu;N,N — H‘fv) > AL(=A + 1 + cup; N, N — p).
But observe that \j(—A + 1+ cuy); Ny, N — p) — oo as A — 00, a contradiction.
[
Finally, another eigenvalue problem is analyzed
—A¢ + div(V'(0)VO,0) = A in Q,
o (3.11)

%:0 on Iy UTls.

Fix p > p1, we denote the principal eigenvalue as A(u) and extend A(u) = 0 for p < py.
Observe that A(u) = 0 when V/(0) = 0. In the following result we show some properties
of Au).

Proposition 3.6. Assume that V'(0) > 0. Then

lim A(p) = co.

p—00

v'(0)
Proof. Under a change of variable ® = e e ¢ we get

V'(0) 2 V'(0) Vi) 6
Alp) = M(-A+ —— —20,;N,N + ——=pu—"r—).
And so, using (3.7) we obtain that
VI 0 Ho_ 1
A > (- + LB NN o
2 lerlloo
as [t — 00. O

Now, finally we denote by
pi(A) = p(=A+1+cA; N, N).
The main result is:

Theorem 3.7. 1. Assume that V'(0) > 0. Then there exists at least a coexistence state
if
A= A@) (1 — 1 (V) > 0.

2. Assume that V'(0) = 0. Then there exists at least a coexistence state if X > 0 and

> pri(A).
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Proof. We fix p > pp and consider A as bifurcation parameter. First, we apply the
Crandall-Rabinowitz theorem [6] in order to find the bifurcation point from the semi-

trivial solution (0,6,). Consider the map F : R x X; X Xy — C*(Q) x C¥(2) x C*(I'y)
defined by

ov v
— (_ y — 2 —_ —_
FN\ u,v) = (—Au+ div(V(u)Vv) — Au + u*, —Av + v + cuv, o Mo

).
It is clear that F is regular, that F(\,0,6,) = 0 and

—A& + div(V'(ug)EVvg + V(ug)Vn) — AE + 2upé

D () F (Ao, uo, vo) “)- —An +n+ cugn + cvo§
! 91—z
on 1+

Hence, for (ug,vo) = (0,0,) and Ao = A(u) and we get that
Ker[D g, F (o, 0,0,)] = span{(®1, 2)}

where ®; is an eigenfunction associated to A(u) and @5 is the unique solution of

(—A + 1)@2 = —CHMCI)l n Q,

8;)2 =0 on I'y,
n

0P

87712 —u(1/(1+6,))*®2 =0 on .

Observe that @2 is well-defined by (3.6). Hence, dim(Ker[D, ,)F(Xo,0,0,)]) = 1.
On the other hand, observe that

§
D (uw)F (Ao, uo, vo) =1 0

We can show that Dy, ) F (Mo, 0,6,)(P1, ®2)" ¢ R(D(y)F (A0, 0,6,)). Indeed, suppose
that there exists (£,7) € X such that D, ,)F(Xo,0,6,)(&n)" = (—®1,0,0), and so

_Aé’ + V/(O)dm)(gvg“) — AO{ = —‘I)l in Q, 85/871 =0 on 0.

V'(0)0

Under the change of variable £ = e #¢, the above equation is transformed into

—div(evl(o)eﬂvo — /\oevl(o)eﬂg =—P; in Q,

o<

on " on I, (3.12)
as , 0,

o - Ty.

on PV Ok g =0 ont2
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In a similar way, since ®; is an eigenfunction associated to A(u) we can make the change
of variable ®; = e*%#4)1, and (3.11) transforms into

—div(e®nV1py) = Noe®Prep;  in Q,

O
on 0 on I, (3.13)
O

0
—— 4V K = I's.
on * (O)#l +0, Y1=0 only

Now, multiplying (3.12) by #; and (3.13) by ¢, and subtracting we get

0:/¢1¢1)
Q
an absurdum.

It can be showed that R(D,.)F (Ao, 0,6,)) has co-dimension 1.

Hence, the point (A, u,v) = (A1(n),0,6,) is a bifurcation point from the semi-trivial
solution (0,6,,).

Now, we can apply Theorem 4.1 of [14] and conclude the existence of a continuum
CT C R x X1 x Xy of positive solutions of (3.1) emanating from the point (\,u,v) =
(A(p),0,6,) such that:

i) CT is unbounded in R x X7 x Xo; or
ii) there exists Ao € R such that (Ao, Ao, 0) € cl(CT); or

iii) there exists A € R such that (X,0,0) € cl(CT).

Alternative iii) is not possible. Indeed, if a sequence of positive solutions (A, un,vn) €
cl(C*) such that A\, — X and (uy,v,) — (0,0) uniformly, then denoting by

Un

- 9
|Vl

n

and using the elliptic regularity, we have that V;,, — V > 0 and non-trivial in C?(2) with

ov

_AV4V =0 inQ -
on

=0 onl}y, =uV on Iy,

0
aon
and so p = 1, a contradiction.

Fixed p > p1, we know by Proposition 3.5 that (3.1) does not possess positive solution
if A\ < 0 or X is large. Moreover, by Proposition 3.3 it follows that C* is bounded in X
uniformly on compact subintervals of A\. Hence, alternative i) does not occur. Therefore,
alternative ii) holds. When this alternative occurs, there exists a sequence (Ay, up, vy,) of
solutions of (3.1) such that (A, un, vn) — (Asc, Aso, 0). Denoting by
V, = —n

- 9
|Vl

we obtain that V,, — V in C?(Q) with
(—A+14+cA)V=0 inQ, 9V/On=0 only, OV/On=uV on s,
that is, = p1(Aso). So, we can conclude the existence of a coexistence state for

A € (minf (A1), Aoo) }, max{ (A1), Aoo) ).
Observe that if V/(0) = 0 then A(u) = 0. This completes the proof of the theorem. O
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3.2 Local stability

We study the local stability of the trivial and semi-trivial solutions.

Proposition 3.8. 1. The trivial solution of (3.1) isl. a. s. if A\ <0 and p < p1 and
unstable if A >0 or p > .

2. Assume that X > 0. The semi-trivial solution (X\,0) is . a. s. if p < p1(X) and
unstable if > p1 ().

3. Assume that 1 > pi. The semi-trivial solution (0,60,) is . a. s. if A < A(un) and
unstable if X > A(p).

Proof. We prove only the third paragraph of the result, the other ones follow similarly.
Observe that the stability of (0,6,) is given by the real parts of the eigenvalues for which
the following problem admits a solution (§,7) € X \ {(0,0)}

—AE + div(V/(0)V8,€) — A = o€ in Q,
(A +1+clu)n=o0n in , (3.14)
on _ Lo

on FQ.

Assume that £ = 0, then for some j > 1 and we have

1
1+6,

o =XN(—A+1+c,; N,N — u )?) > A (=A+ 1N, N — u )?) > 0.

1+6,

Suppose now that £ # 0, then from the first equation of (3.14) we get that A 4 o is a real
eigenvalue associated to (3.11). Since A < A(p) it follows that o > 0.
Assume now that A > A(u). Then,

o1 := M (—A+div(V'(0)V6,) — \; N,N) < 0.
Denote by £ a positive eigenfunction associated to o1, that is
—AE+ div(V'(0)VO,E) — A =1& inQ,  9E/dn =0 on dQ.

Since o1 < 0, then

~A+1 —o1;N,N — 2
/\1( + +09/L 0154V, M(l—f—e#) ))>07
and so there exists n solution of
) on 1
(A +1+ch)n=01n inQ, e u(l n 0#)277 on I's.

Then, 01 < 0 is an eigenvalue of (3.14) with the eigenfunction associated (&,7), so (0,6,,)
is unstable.
O
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4 Convergence to the semi-trivial solution (), 0)

Now, we deal with the convergence to the steady-states.

Lemma 4.1. Let 0 < p < py and ap) € [0,1] the application
a(p) = M(-A+1;N,N — p).

Then, there exists C > 0 such that, fort > 0, the v-solution to (1.1) satisfies
[o@llr < Ceunller
lo@llwre < CEY2eHjug | 1.

for all B < a(p).

Proof. The solutions to the problem

we—Aw+w=0 1inQ x (0, Thaez),

8£ =0 on Fl X (O,Tmax)a

In (4.15)
% = pw on FQ X (O,Tmax)v

w(x7 0) = 1)0(([,') in Q

are supersolutions to the v-equation of (1.1), therefore v < w. Now, we define the sectorial
operator
Ap —A+1.

Therefore,

w(z, t) = e ey

Picking D(4,) = WP » where

0 0
B(u):{an:()oth an—uI:OonI‘g}
and thanks to [10, Theorem 1.3.4] we have the first assertion. For the second assertion we

pick D(4,) = HZ,’(IL), and we apply [3, (7.10)] together with [10, Theorem 1.3.4] (look the

proof of Lemma 2.4 and take into account [3, (5.2)]). O

Our purpose is to show the convergence to the steady states for u. To this end we
distinguish separately the cases A =0, A > 0.

4.1 Case A =0.
Lemma 4.2. Let 7,k > 0 and y € C(1,+00) N LY(1,+00), v € L (7, +00). If
t+k

lim (ly(s)[+1y'(s))ds = 0

t——+00 ¢

then lim |y(t)| =0.

t——+00
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Proof. Let us assume that tliin ly(t)| # 0, then there exists a sequence {t,}nen, tn —
—T 00

400, such that
ly(tn)| > C >0, Vn > np.

We pick 6 € (0, k], then for all n > ng we have

tn+0 tn+k
[5(tn + 6)] — ly(ta)l| < ly(tn +0) — y(tn)] < / 1/ (s)|ds < / 1y (s)lds.

Therefore |y(s)| > C/2 for all s € [ty,ty, + k], n > ng. The last assertion contradicts the

fact that
tntk

lim ly(s)|ds = 0.
n—-+o0o tn
Theorem 4.3. Assume that 0 < p < py and A =0, then

tl}gloo HU('at)||c(§) = 0.
Proof. After integrating in the space variable the u-equation of (1.1) we get
v
fi / [y Vo) - [
o0 n Q

V(u) v 9

u”.
Ty 1+v g

So, integrating the last expression in the time variable between (7,t) we obtain

u/:/m‘I(f:):Jr/:/QUQ:/Qu(r)—/Qu(t) (4.16)

In particular from (4.16) we have

//u2§ ()l Ve > T (4.17)
T JQ

On the other hand, multiplying the u-equation of (1.1) by w and integrating in the space
variable we obtain

V(u)uv
J— 2 J— — S —
th/ / [Vul?> + V(u)Vo - Vu — u?) L 1

<(e—1) /]Vu\Q—i—C /yw? (“)“”—/u3
Ty 1+”U 0

Therefore, we infer

(4.18)

o |+ 1= [ 1Val < COlolies

and after integrating in time, thanks to Lemma 4.1 we obtain

w@?— [um 1o [ [ Va2 <o [ e ull,
fwer- ) L) /
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t
//|Vu]2§0 Vit > T.
T JQ

Now, using the fact that |[u(t)||oq) < C for all t > 0, we have

d
/uz
2dt Jq

Thanks to (4.16), we get

In particular we deduce

y
< c/ Vu|2+C(e)||vH12,V1,2+C’u/ (“)Ho/ 2
Q r, 1L+v Q

t
/d/u2
_ 24t Jq

Finally, estimates (4.17) and (4.19) together with Lemma 4.2 entail

<C Vt>r (4.19)

lim [Ju(-,t)||;2=0 (4.20)

t——+o0

Also thanks to [|u(t)[| o) < C for all £ > 0 we obtain

lim |Ju(-,t)|z» =0, Vp>2. (4.21)

t—+00

We observe that Lemma 2.9 together with [10, Theorem 1.6.1] assures that
lu(-, t) e <C Vk <1, p>2. (4.22)
Next, the Gagliardo-Nirenberg inequality entails
-, Ollwmr < Cllul, 1)l lul Bl
for m < k6, 6 € (0,1). Therefore, we have

lim [lu(, &)lwms < C lim lu(-, Ol =0 (4.23)

t——+o00
and the Theorem can be easily concluded picking m such that m — N/p > 0 thanks to the
Sobolev embedding. O
4.2 Case A > 0.

In order to do that we impose the following condition. Assume that there exists ty such
that

(H) u(-,t) > oo >0, Yt > to > 0.

Next, we show the long time behavior for v under the hypothesis (H) and after we will
give sufficient conditions on V' (u) that imply (H).

Theorem 4.4. Let 0 < p < p1 and assume the the hypothesis (H) is satisfied, then there
exists 6 > 0 such that
lu(+8) = Mg < Ce ™, (4.24)

for allt > tg.
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Proof. On multiplying the u-equation by u — A we have

d 2,
o - /|Vu| /v Vo - Vut

u/ —V )\) /u(u—)\)Q

TV (u >< Ml (/F M)m—/guw_m

Having in mind that (1 + v)? > 1, the hypothesis (H) and the Sobolev trace embedding
W2(Q) — L*(0Q)

we get
d
dt

Easily, from Lemma 4.1 we can deduce

(=22 +260 [ (=22 < Clolfyns + nCllolhyn: (4.26)

u(-t) = A7 < Ce

for 0 < 0; < min{2dg, 5}. At this point we can argue exactly as in the end of Theorem
4.3 to conclude O

In the rest of the paper we give conditions on V' that imply (H). Such conditions on
V involve only the behavior of V around zero. Roughly speaking we require a superlinear
grow of V around zero. From now on we assume that there exist C,d9 > 0, k > 1+ N/2,
j > N/2 such that
(H1) 0<V(s)<Cs", V'(s)| < Cs?
for all s € (0,0dp).

ua

Remark 4.5. The condition (H1) is satisfied, for example, for functions V(u) = e
u

with a« > 1+ N/2.
Lemma 4.6. Assume that 0 < pu < p1 and that (H1) is satisfied then (H) is verified.

Proof. Let 6 > 0 a constant to be fixed. After multiplying the u-equation by (u—¢)_ and
integrating in the space variable we have

d ou ov
adt om0 :—/Q(VU—V(WW)~V(u—5)—+/8Q (M—Vm)an) (u—8)_+
—u)(u—6)-
/\vu— )P + / V() Vo - V(u—5)_—
/1“1 )H1+U(U—5) Qu()\—u)(u 5)_

_+ -
/\V(u— 5)_2 + /Q& V() Vo - V(- 6)_—

—u/ u—5)_+/u(z\—u)(u—6)_,

F5 Q
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where

Qs ={zeQ: ulx)<d}, TI's:={zeli: ulxr) <d}
Next, we apply the Cauchy-Schwartz inequality and we get

% Q(““S)Qf S(6_1)/Q’V(“_5>—’2+C(6)/95V2(u)]vu|2—
_“/r51+vv<“><“—5>—+ u(h = w)(u—9)
S(G—l)A’V( 5)— ’2—‘1-0( :%pé)VQ /’VU|2
_“/F5 1+vv<“)(“—5)—+/ﬂu(/\ u)(u = 0)-

Let

f(6) == sup V3(s)
s€(0,0)

After applying the Cauchy-Schwartz inequality to the boundary we obtain

d —5)? _ _ 2 2 / v’
T Q(u ° (e—1) /\Vu ="+ Cle)f /|Vv\ + e AGpne 5t
+u0(a/ Vi —I—/u )

Ty Q

Thanks to the Sobolev trace embedding W12(Q2) — L?(9Q) and having in mind that
(v+1)2 > 1, we have

/ V- o) < ( [ viw=a7 + [ (=2 Viw? + 272 w) V(- 5)42),

2
v
Mﬁ/rl 1+o)2 = €llvl[y1.2

Therefore, we obtain

Qidt Q(u—5)2_ (e—1) /|Vu— 8)-I*+C(e) /|VU|Q+C€HU||W12—|—
V/Vz +C~)/ (u=0)2V"(u)? + 2V2(u))|V (u — 6) |+
—u)(u—9)-.
Q
Let

g(0) := sup (2(s —6)2V'(s)? +2V2(s))
s€(0,9)

Hence, taking into account that —§ < (u — d)_, we get

o =07 <+ c@ee) 1) [ V(=04 (€
+/ w(u—6)_ (A—u—C(aV (“)5>

Q u

; (€)£(8) + pe)vllyr.2+
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Observe that if

C(e)g(d) <1—ce¢ (4.27)
and
C(E)VZ(S)(S <A-90 (4.28)

then, thanks to the strong maximum principle for the u-equation and Lemma 4.1 we have
that

I(u = &)-(B)II5 < (2C(€) f(8) + 2u&)C(B)
We try to prove that
5204
20,
for any > 1 and Cp, > 1 is a constant to be given. To this end, we impose the following
conditions

1(u = 8)-[3 <

2a
20(e) F(8)C(B) < jfc (4.29)
and .
HEC(B) < G (4.30)

We have to check that there exist €, €, > 0 such that conditions (4.27)-(4.30) are satisfied

simultaneously. Let us observe that the inequality (4.30) is satisfied for
520{

€< —————,

B 4Cpﬂc(/8)

S0,
C(€) = C (B, p)o .
Then, we pick € = 1/2, thus C'(¢) = 1/2. Thanks to (H1), we have

FB)C(B) = sup VZ(s)C(B) < C*C(B).
4€(0,0)

Hence, for oo < k and ¢ sufficiently small the inequality (4.29) is satisfied . Now, owing to
(H1), we observe that

C(e) @6 < C(€) supse(o,5) st(s)d
< C(8)5%,

So, condition (4.28) can be assured for a < k and § small enough. Now, it is straightfor-
ward to see that condition (4.27) it is also satisfied for 1 < a < min{k, 1+ j}. Next we
use interpolation between LP spaces to obtain

= 8l < I — - s — 8)- 15
< §ad1gl—01 — s1+(a—1)61

Next, we apply [3, Theorem 7.2] for sy = 0 and s; = 1. So, we infer

1w = 8)~llyozror < Cll(u = 0)=Ilfyr./0, I (w = O)=Il737n,
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In order to have W%2/01 — [ we pick 6, such that

N
60— % >0 (4.31)

Thus, 6 > %. It should be satisfied also that
(1-0)(1+ (a—1)0;)>1 (4.32)

So,

NO
1< (1 —~ 21> (14 (e —1)61),
After some algebra, it is possible to find 6,6, € (0, 1) satisfying (4.31) and (4.32) if and
only if @ > 1+ 4. Therefore using the uniform bound in time in W1P(Q) (that is a
consequence of [3, Theorem 15.5]), the Sobolev embedding and picking C) properly we
obtain

[N

(= 0)—(#)[|oo <

I

for t >ty > 0. The last estimate concludes easily the Lemma.

5 Interpretation

In this paper we have analyzed a problem modelling the angiogenesis. For that, we have
included a nonlinear chemotactic sensitivity, a logistic term to model the growth rate of
the CEs and a nonlinear term at the boundary of the tumor. We have shown the validity
of the model proving the existence and uniqueness of positive solution of the model.

Let us interpret some of our results. Fix the growth rate of CEs, that is, fix A > 0.
Then, we can define pg(A) as

p2(A) := max{p : A = A(u)}.

It is clear that p2(\) = +oo if V/(0) = 0.

With this notation, we know that for 1 € (u1 (), u2(X)) there exists a coexistence state,
and so the angiogenesis occurs. However, in the case V/(0) > 0, for u large there does not
exist coexistence state and (0,0,) is stable, that is, we can avoid the angiogenesis, i.e., if
the tumor generates a lot of TAF, this competes with the CEs and CEs death. However,
this does not occur when V’(0) = 0, due to the fact that in this case the chemotactic
sensitivity is too small and then CEs does not move quickly and they do not come into
contact with TAF.
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