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Abstract

In this paper we present some theoretical results concerning to a non-local elliptic

equation with non-linear diffusion arising from population dynamics.
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1 Introduction

There is a lot of phenomena that can be modelled by reaction-diffusion PDE of the general

form

ut −∆u = f(x, u(x, t))
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joint with initial and boundary conditions, x ∈ Ω, Ω is a bounded and regular domain of

IRN , N ≥ 1; t ≥ 0, f a regular function and the unknown function u : Ω × IR+ 7→ IR.

In this kind of equation the relation between u and its derivatives is local, that is, all the

functions are taken at the same point x.

There are some phenomena where a non-local spatial term has to be included in this

model. In this case, the equation has the form

ut −∆u = f(x, u,B(u))

where B is a non-local operator, for instance

B(u) =
∫

Ω
g(y, u(y, t))dy,

see [18] for a general survey of these equations.

In this paper we are interested in the stationary problem associated with the above

problem. In fact, due to these motivations, we study the existence, uniqueness or multi-

plicity, and stability of positive solutions of the equation
−∆u = f(x, u,B(u)) in Ω,

u = 0 on ∂Ω,

(1.1)

where f is a regular function specified later and

B(u) =
∫

Ω
b(x)uβ(x)dx, β > 0.

Roughly speaking, there are several difficulties that appear when one introduces a non-

local term in (1.1). Let us point some of them:

a) In general, (1.1) has not a variational structure and so we can not apply the powerful

tool of “variational methods” to attack (1.1). See [11] where a problem with a non-

local term has a variational structure.

b) In general, the equation (1.1) does not satisfy a maximum principle, and as main con-

sequences, we can not apply directly some classical methods as sub-supersolutions,

see Section 4 for more details.

c) In general, the linearized operator of (1.1) at a stationary solution is an integral-

differential operator and it will not be self-adjoint, see Section 2 for more details.
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Specifically, in this paper we study the following equation, arising in some cases from

the population dynamics, of the form
−∆wm = wf

(
x,

∫
Ω
wr
)

in Ω,

w = 0 on ∂Ω,

(1.2)

with r > 0, f is a regular function and m ≥ 1. Here, we are assuming that Ω is fully

surrounded by an inhospitable area, since the population density is subject to homogeneous

Dirichlet boundary conditions. The real parameter m represents the velocity of diffusion,

the rate of movement of the species from high-density regions to low-density ones. In

this context, m > 1 means that the diffusion is slower than in the linear case (m = 1),

which seems to give more realistic models, see [22]. The term m > 1 was introduced

in [22], see also [25], by describing the dynamics of biological population whose mobility

depends upon their density. Finally, f denotes the crowding effect. Observe that this

term includes a non-local term. Non-local terms have been introduced at least to our

knowledge, in population dynamic models in [21]. The presence of the nonlocal terms in

(1.2), from the biological point of view means that the crowding effect depends not only

on their own point in space but also depends on the entire population.

The change wm = u transforms the problem (1.2) into
−∆u = uq f

(
x,

∫
Ω
up
)

in Ω,

u = 0 on ∂Ω,

(1.3)

with 0 < q < 1, p > 0. Specifically, in this note, we are concerned with the the nonlocal

elliptic problem



−∆u = uq
(
λ+ a(x)

∫
Ω
b(x)up

)
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.4)

where Ω is a bounded and regular domain of IRN , N ≥ 1, a, b ∈ C(Ω), b ≥ 0, b 6≡ 0,

λ ∈ IR, 0 < q < 1, p > 0,
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and a verifies either a > 0 or a < 0.

The above equation is a nonlocal counterpart of the well known logistic equation, whose

more general version is given by

−∆u = uq (λ+ a(x)up) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.5)

where λ, p, q and a are as above.

Let us point an important fact on equations (1.5) and (1.4). When q = 1, the strong

maximum principle implies that any positive solution u (positive means non-negative and

non-trivial) is strictly positive (u(x) > 0 for all x ∈ Ω.) This means that there are uniquely

two kinds of solutions in this case: the trivial solution (the species is dead) and the strictly

positive solution (the species survives in whole domain). However, when q < 1 a new type

of solution appears: a non-negative and non-trivial solution u but vanishing in a part of

the domain Ω0 ⊂ Ω, that is u(x) = 0 for x ∈ Ω0. This set is called dead-core, see [26] and

[12] where conditions on the coefficients are given to assure the existence of dead cores.

On the other hand, when q < 1 the nonlinear reaction term is not derivable at u = 0.

This entails some theoretical problems to linearize: we can not linearize at u ≡ 0 and some

singular terms appear when one linearizes at a positive solutions u > 0.

With respect to the mathematical analysis of (1.4) we consider two situations:

(i) The Homogeneous Case. Here we suppose that a is a constant and we use fixed

point to obtain existence results. In this case we are able to describe exactly the set

of positive solution of (1.4).

(ii) The Non-Homogeneous Case. Here we consider the situation in which a depends

on x ∈ Ω. In this case, bifurcation theory and sub-supersolution method plays a key

role.

When q = p = 1 and a = −1 in [5] the authors proved the existence, uniqueness and

stability of positive solution when λ > λ1, λ1 stands for the principal eigenvalue of the

operator −∆ in Ω under homogeneous Dirichlet boundary conditions. In this case, the
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solution can be explicitly built, it is proportional to a positive eigenfunction associated to

λ1. More recently, and again with q = p = 1 but a a function such that a ≤ a0 < 0, in [7]

the authors proved the existence and uniqueness of positive solution for λ > λ1. In this

paper, the authors used bifurcation methods to prove the results. See also [8] for a related

problem.

We study questions of stability of positive solutions by using heavily the results on

nonlocal and singular eigenvalue problems contained in section 2 of this work. In sections

3 and 4 we study the local (1.5) and (1.4) equations, respectively. In the last section

we discuss the main results of this paper and the differences between the local and the

non-local equations.

2 Non-local eigenvalue problems

In this section we study a non-local and singular eigenvalue problem, which appears when

one linearizes around a positive solution of (1.4). Specifically, we study the following

problem 
−∆u+m(x)u− h(x)

∫
Ω
g(x)u = λu in Ω,

u = 0 on ∂Ω,

(2.1)

where m ∈ C1(Ω), h ∈ C(Ω) and g ∈ C1(Ω) and verify: for some α ∈ (−1, 1) and β < 1

(Hm) |∂im|d(x, ∂Ω)2−α are bounded for all x ∈ Ω and i = 1, ..., N ;

(Hg) there exists K > 0 such that g(x) ≤ Kd(x, ∂Ω)−β,

where d(x, ∂Ω) := dist(x, ∂Ω).

Basically, in (2.1) there is a combination between a differential and an integral operator.

Moreover, (2.1) has different difficulties: the existence of singular terms and that the

operator is not self-adjoint (in fact it is self-adjoint if and only if h and g are proportional).

When the coefficients are bounded, in [17] (see also [19]) the authors proved the exis-

tence of a sequences {λi} in the complex plane with finite multiplicity.

Since we are interested in the existence of positive solution of (1.4), with respect to

(2.1) we want to prove the existence of a principal eigenvalue of (2.1), that is, a real and

simple eigenvalue with positive eigenfunction associated to it. Moreover, it is less than
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all the real parts of the other eigenvalues. In order to prove the existence of a principal

eigenvalue for a non self-adjoint operator, the Krein-Rutman Theorem is a powerful tool,

see [1] for a general version of this result. In our setting, this theorem says: consider f ≥ 0,

f 6= 0, and consider the solution v of the linear integro-differential problem
−∆v +m(x)v − h(x)

∫
Ω g(x)v = f(x) in Ω,

v = 0 on ∂Ω.

If v is strictly positive, then there exists the principal eigenvalue, λ1 ∈ IR.

The following results are consequences of [4]:

a) If h > 0, then v is strictly positive, and the existence of a principal eigenvalue follows.

b) Given f ≥ 0, f 6= 0 there exists h < 0 such that the solution v becomes negative in

some part of Ω.

c) There exists h0 > 0 such that if ‖h‖∞ ∈ (0, h0) then v is strictly positive.

What happens if ‖h‖∞ large? In [4] the authors showed an example, with homogeneous

Neumann boundary conditions, in which for ‖h‖∞ large there are several eigenvalues less

than an eigenvalue having a positive eigenfunction associated.

Using the Krein-Rutman Theorem and results from [23], the next theorems were proved

in [9]:

Theorem 2.1. Assume that m verifies (Hm), h ∈ C1(Ω) ∩ C(Ω), a non-negative and

non-trivial function, g ∈ C1(Ω) is a non-negative and non-trivial function and verifies

(Hg). Then, there exists a principal eigenvalue of (2.1), denoted by λ1(−∆ + m;h; g),

which has an associated positive eigenfunction ϕ1 ∈ C2(Ω) ∩ C1,δ
0 (Ω) for some δ ∈ (0, 1).

Moreover, λ1(−∆+m;h; g) is simple, and it is the unique eigenvalue having an associated

eigenfunction without change of sign.

As we said before, we need to study the sign of the principal eigenvalue in order to

know the stability of a positive solution of (1.4).

In the following result we give a criteria to ascertain the sign of λ1(−∆ +m;h; g).
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Proposition 2.2. Assume that there exists a positive function u ∈ C2(Ω) ∩ C1,δ
0 (Ω),

δ ∈ (0, 1), such that

−∆u+m(x)u− h(x)
∫

Ω
g(x)u > 0 in Ω (resp. < 0 in Ω).

Then,

λ1(−∆ +m;h; g) > 0 (resp. λ1(−∆ +m;h; g) < 0 ).

3 The local problem

In this section we collect the main results concerning to the local equation (1.5). We

employ the following notation

σ1(−∆ +m) := λ1(−∆ +m; 0; 0).

From the results of [26], [2], [13], [14], [15] and references therein, the results can be

summarized in the following way:

Theorem 3.1. a) Assume a < 0. Then, there exists a positive solution of (1.5) if and

only if λ > 0. When λ > 0 the solution is strictly positive, unique and stable.

b) Assume a > 0.

(a) Assume p + q < 1. Then, there exists a value λ < 0 such that there exists a

positive solution of (1.5) if and only if λ ≥ λ. Moreover, if λ ≥ 0 the solution

is strictly positive, unique and stable.

(b) Assume p+ q = 1.

i. If σ1(−∆ − a) > 0 there exists a positive solution of (1.5) if and only if

λ > 0. The solution is strictly positive, unique and stable.

ii. If σ1(−∆ − a) = 0 there exists a positive solution of (1.5) if and only if

λ = 0. Moreover, there exist infinite solutions and any positive solution is

neutrally stable.

iii. If σ1(−∆ − a) < 0 there exists a positive solution of (1.5) if and only if

λ < 0.
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(c) Assume 1 < p+q < (N +2)/(N −2). Then there exists a value λ > 0 such that

(1.5) possesses a positive solution if and only if λ ≤ λ. Moreover, for λ ∈ (0, λ)

the problem (1.5) possesses at least two positive solution, one of them is the

minimal solution and this is the unique stable solution.

In Figure 1 we have represented the bifurcation diagrams of (1.5). The case a < 0 is

shown in Case 1. Assume now that a > 0. Cases 1, 2 and 3 show the case p+ q = 1 and

σ1(−∆− a) > 0, σ1(−∆− a) = 0 and σ1(−∆− a) < 0, respectively. In Cases 4 and 5 we

have drawn the cases p+q < 1 and 1 < p+q < (N +2)/(N −2). We remark that in Cases

3, 4 and 5 the drawings are simple representations of the set of solutions, for example in

Case 3 the solutions need not be unique in spite of the figure.

caso1.pdf

Figure 1: Bifurcation diagrams.
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4 The non-local problem

Before we state the main results in this case we need some notations. Consider a ∈ C(Ω),

a > 0 and denote by ωa the unique positive solution of
−∆u = a(x)uq in Ω,

u = 0 on ∂Ω,

(4.1)

and

A :=
∫

Ω
b(x)ωpa. (4.2)

As we said in the introduction, in the non-local case the results and techniques used

depend on the a. We distinguish two cases:

4.1 The homogeneous case

Assume that a is constant, that is a ∈ IR. In this case, we denote by

R :=
∫

Ω
b(x)up(x)dx.

We study the equation 
−∆w = wq (λ+ aR) in Ω,

w = 0 on ∂Ω.

(4.3)

It is well-known that (4.3) possesses a unique positive solution, denoted by uR, if and only

if λ+ aR > 0 and in fact

uR = ((λ+ aR)+)1/(1−q)ω1.

Then, to find positive of (1.4) is equivalent to study the unidimensional equation

R = ((λ+ aR)+)p/(1−q)
∫

Ω
b(x)ωp1 = ((λ+ aR)+)p/(1−q)A.

We prove in [9]:

Theorem 4.1. a) Assume a < 0. Then, there exists a positive solution of (1.4) if and

only if λ > 0. Moreover, the solution, uλ, is unique and

lim
λ→0
‖uλ‖∞ = 0, lim

λ→+∞
‖uλ‖∞ = +∞.
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b) Assume a > 0.

(a) Assume p + q < 1. Then there exists a value λ = λ(q, p, a, A) < 0 such that

(1.4) possesses a positive solution if and only if λ ≥ λ. Moreover, if λ = λ or

λ ≥ 0 the solution, uλ, is unique and stable when λ ≥ 0 and neutrally stable

for λ = λ. If λ ∈ (0, λ) there exist exactly two positive solutions u2 < u1; u2 is

unstable and u1 is stable. Furthermore,

lim
λ→+∞

‖uλ‖∞ = +∞.

(b) Assume p+ q = 1.

i. If A < 1 there exists a positive solution of (1.4) if and only if λ > 0. The

solution, uλ, is unique and stable, and

lim
λ→0
‖uλ‖∞ = 0, lim

λ→+∞
‖uλ‖∞ = +∞.

ii. If A = 1 there exists a positive solution of (1.4) if and only if λ = 0.

Moreover, there exist infinitely many solutions and any positive solution is

neutrally stable.

iii. If A < 1 there exists a positive solution of (1.4) if and only if λ < 0. The

solution, uλ, is unique, unstable and

lim
λ→0
‖uλ‖∞ = 0, lim

λ→−∞
‖uλ‖∞ = +∞.

(c) Assume p + q > 1. Then there exists a value λ = λ(q, p, a, A) > 0 such that

(1.4) possesses a positive solution if and only if λ ≤ λ. Moreover, if λ = λ or

λ ≤ 0 the solution is unique and unstable when λ ≤ 0 and neutrally stable for

λ = λ. If λ ∈ (0, λ) there exist exactly two positive solutions u2 < u1; u2 is

stable and u1 is unstable. Moreover,

lim
λ→−∞

‖uλ‖∞ = +∞.

Again, the set of positive solutions is represented in Figure 1. However, in this case

the figures represent exactly the set of positive solutions.
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4.2 The non-homogeneous case

In this case, the argument above can not be applied due to the equation (4.3) with a

a variable function, it is not completely well-known. Hence, we need to apply another

arguments. We have used a combination of bifurcation and sub-supersolution methods.

Let us point some facts with respect to both methods. First, observe that, due to the

presence of the term uq, q < 1, we can not apply directly the classical bifurcation results

of [27]. So, in order to apply the global bifurcation result (the existence of an unbounded

continuum C of positive solutions of (1.4) bifurcating from the trivial solution u ≡ 0 at

λ = 0) we have to compute the Leray-Schauder degree of the isolated solution u ≡ 0 by

using appropriate homotopies, see [3] and [6]. Let us mention that bifurcation arguments

have been used used previously in non-local problems in [16], [24], [7], [21] and [8].

On the other hand, it is well-known that the existence of a pair of sub-supersolution of

(1.4), when this pair satisfies the classical definition of sub-supersolution, does not imply

the existence of a solution of (1.4) between the sub and supersolution. Indeed, this result is

only true when f and B satisfy specific monotony properties, see [20]. In [10] we introduce

a modified definition of a pair of sub-supersolution, which coincides with the classical one

under monotony of the function f and the non-local operator B, for which, if we have a

pair of sub-supersolution it follows the existence of a solution between them.

With these two arguments, we show in [10] the following two results:

Theorem 4.2. Assume a < 0. Then, there exists a positive solution of (1.4) if and only

if λ > 0. Moreover,

lim
λ→0
‖uλ‖∞ = 0.

Furthermore, there exist 0 < λ < λ < ∞ such that if some of the following conditions

holds:

a) p+ q < 1 and λ ≥ λ or;

b) p+ q = 1 and |minx∈Ω a(x)| small or;

c) p+ q > 1 and λ ≤ λ;

problem (1.4) possesses a unique strictly positive solution.

Theorem 4.3. Assume a > 0 and 0 < q < 1.
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a) Assume p+ q < 1. Then, there exists a value λ < 0 such that there exists a positive

solution of (1.4) if and only if λ ≥ λ. Moreover, if λ ≥ 0 the solution is strictly

positive, unique and stable. Furthermore,

lim
λ→+∞

‖uλ‖∞ = +∞.

b) Assume p+ q = 1.

(a) If A < 1 there exists a positive solution of (1.4) if and only if λ > 0. The

solution is strictly positive, unique and stable and

lim
λ→0
‖uλ‖∞ = 0, lim

λ→+∞
‖uλ‖∞ = +∞.

(b) If A = 1 there exists a positive solution of (1.4) if and only if λ = 0. Moreover,

there exist infinite solutions and any positive solution is neutrally stable.

(c) If A > 1 there exists a positive solution of (1.4) if and only if λ < 0. Moreover,

lim
λ→0
‖uλ‖∞ = 0, lim

λ→−∞
‖uλ‖∞ = +∞.

c) Assume p + q > 1. Then there exists a value λ > 0 such that (1.4) possesses a

positive solution if and only if λ ≤ λ. Moreover,

lim
λ→−∞

‖uλ‖∞ = +∞.

5 Concluding remarks

We have considered problem (1.4) for 0 < q < 1, p > 0 and λ ∈ IR, and we have

distinguished two cases in our study.

The first case is the homogeneous one, i.e., when a is constant. In this case, we know

that the solution of (1.4) must be of the form u = αω1, ω1 is defined in (4.1) and α the

solution of a nonlinear equation; so, the results of the existence and the uniqueness of the

solution follow from the study of this equation. The stability of the solution depends on

the sign of the principal eigenvalue of an eigenvalue problem which is singular due to the

Dirichlet boundary condition; we are able to give the results of stability of the solution

when a > 0. In fact, we can describe exactly the set of positive solution in this case.
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The second case is the nonhomogeneous one, i.e., when a(x) is a function which does

not change of sign and it can be zero on a subdomain with positive measure. In this case,

we do not know the structure of the solution and the results of the existence and the

uniqueness of the solution follow from the sub-supersolution method (whose validity we

have checked) and the bifurcation method. We also obtain some results of stability with

a method similar to the used in the first case.

This problem presents interesting differences with respect to the local problem, mainly

in the case a > 0. For example, in the nonlocal problem, the strong maximum principle

holds and any non-negative and non-trivial solution is a positive solution; in the local

problem, the existence of dead cores in the solution can not be dismissed. We can also

observe that in the nonlocal problem, we give exactly the number of the solutions unlike

the local problem. And finally, observe that in the superlinear case p+ q > 1, in order to

assure the existence of solution we have to impose that p+ q < (N + 2)/(N − 2), to have

a priori bounds of the solutions. However, this condition is not required in the non-local

case. Finally, observe that is some cases we obtain results of the existence of a unique

solution unstable, a not very usual result, in our knowledge, in non-linear elliptic equation.
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