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Abstract

The main goal of this paper is to study the existence and non-existence of coexis-
tence states for a Lotka-Volterra symbiotic model with cross-diffusion. We use mainly
bifurcation methods and a priori bounds to give sufficient conditions in terms of the
data of the problem for the existence of positive solutions. We also analyze the profiles
of the positive solutions when the cross-diffusion parameter goes to infinity.
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1 Introduction

In this paper we study the problem
−∆u = u(λ− u + bv) in Ω,

−∆[(1 + βu)v] = v(µ− v + cu) in Ω,

u = v = 0 on ∂Ω,

(1.1)

where Ω ⊂ IRN , N ≥ 1, is a bounded domain with a smooth boundary, β, b, c > 0 and
λ, µ ∈ IR. This system was introduced by Shigesada et al. [22] to model the segregation
phenomenon of two species, where u and v are their densities, which are interacting and
migrating in the same habitat Ω. Since b and c are positive, it is assumed in this model
that both species cooperate. Here, b and c are the interaction rates between the species,
λ and µ are the growth rates of the species, and the cross-diffusion parameter β describes
the interference of the population u into v. So, v diffuses obeying, in addition to a random
movement, a repulsive force due to the population pressure by u.

When β = 0, problem (1.1) is reduced to the classical Lotka-Volterra symbiotic model
with linear diffusion which has been studied in [2], [5], [13], [17] and references therein.
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2 Symbiotic and cross-diffusion

When β > 0, that is, when the cross-diffusion is present, the competition (b < 0
and c < 0) and prey-predator (bc < 0) cases have been studied in more detail than the
symbiotic case (b > 0 and c > 0), see for instance [4], [6], [9], [14], [15], [16], [19], [20], [21],
[23]. Basically, in these papers the authors study existence, non-existence, uniqueness or
multiplicity of positive solutions using fixed point index in positive cones, global and local
bifurcation techniques; and also sub-supersolution methods in [18].

The symbiotic interaction has received less attention, in fact, to our knowledge, only
Pao in [18] has analyzed the model, see also [11] for a different cross-diffusion nonlinearity.

Our attention here will be focused on the problem of analyzing the existence and non-
existence of non-negative solution pairs (u, v) of (1.1). System (1.1) admits three types of
non-negative componentwise solution pairs, namely:
(i) the trivial solution (0, 0);
(ii) the semi-trivial solutions, that is, those with one positive component and the other
zero, as (u, 0) or (0, v);
(iii) the coexistence states, those with both positive components (u, v).

We introduce some notations to show our main results and the differences with respect
to the linear diffusion case. Given two functions a, b ∈ Cν(Ω), ν ∈ (0, 1), with a strictly
positive (i.e. a(x) ≥ const > 0), we denote by λ1(a; b) the principal eigenvalue of the
problem

−∆[a(x)u] + b(x)u = λu in Ω, u = 0 on ∂Ω.

Moreover, we observe that when one of the species is zero, the other one satisfies the
logistic equation

−∆w = γw − w2 in Ω, w = 0 on ∂Ω.

It is well-known that this equation possesses a unique positive solution, denoted by θγ , if
and only if, γ > λ1 := λ1(1; 0). For γ ≤ λ1 we define θγ ≡ 0.

Observe that the trivial solution (0, 0) exists for all (λ, µ) ∈ IR2; and the semi-trivial
solutions (θλ, 0) and (0, θµ) if λ > λ1 and µ > λ1, respectively. Hence, we focus our
attention on the existence or non-existence of coexistence states of (1.1).

Roughly speaking, the presence of the species v is beneficial to u, due to the cooperative
character of the system; however in the equation of v there is a balance between the
cooperation (term +cuv) and the repulsive force in the diffusion (term +βuv). So, it is
interesting to look at the necessary balance between both terms to obtain existence or
non-existence of coexistence states to (1.1).

In order to show our results we need some notations:

F (µ) =

{
λ1(1;−bθµ) for µ > λ1,

λ1 for µ ≤ λ1,
(1.2)

H(λ) =

{
λ1(1;−cθλ) for λ > λ1,

λ1 for λ ≤ λ1,
(1.3)

and

G(β, λ) =

{
λ1(1 + βθλ;−cθλ) for λ > λ1,

λ1 for λ ≤ λ1,
(1.4)

(see Section 2, Lemma 4.1, where we have studied in detail these curves). We state now
our main result concerning existence and non-existence of coexistence states.
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Theorem 1.1 (1) If µ ≤ λ1 and βλ1 ≥ c, (1.1) does not have coexistence states.
(2) If µ, λ ≤ λ1 and b(c− βλ1) < 1, (1.1) does not have coexistence states.
(3) If bc < 1, then there exists at least one coexistence state of (1.1) if (λ, µ) verifies

the following condition
λ > F (µ) and µ > G(β, λ). (1.5)

(4) There exists β0 > 0 such that for all β > β0 problem (1.1) possesses at least one
coexistence state if (λ, µ) verifies (1.5).

We point out that our existence results improve those of Pao in [18], where the existence
is obtained only for λ, µ > λ1, bc < 1 and β small using the sub-supersolution method.

Here we mainly use the bifurcation method, showing that a continuum of coexistence
states emanates from a semi-trivial solution at some specific values of the parameter λ and
µ. For that matter, we need to prove a priori bounds for the coexistence states of (1.1).
This is an easy task under weak cooperation interaction bc < 1, but more involved in the
general cooperation case bc ≥ 1. The general result of [10] can not be applied to (1.1).
We prove that these a priori bounds are true for β large using a blow-up argument due
to Gidas-Spruck [3]. The strong cooperation case (bc > 1) with β small will be studied
elsewhere. Otherwise, if bc < 1 and the family (uβ, vβ) of coexistence states of (1.1)
converges to a solution of system (1.1) with β = 0, see Remark 3.3.

We compare now the results in the case β = 0 and β > 0. Observe that relation (1.5)
defines a coexistence region in the plane λ− µ (see Figure 1):

Rβ := {(λ, µ) ∈ IR2 : λ > F (µ) and µ > G(β, λ)}.

This region Rβ ⊂ R0 and Rβ ↑ R0 as β ↓ 0 (see Section 2) being

R0 := {(λ, µ) ∈ IR2 : λ > F (µ) and µ > H(λ)}.

Precisely R0 is a coexistence region when bc < 1 and β = 0, see [2] for example.
We have drawn the coexistence regions in Figure 1. In the Case a) we have represented

only R0, in the other cases we have drawn Rβ and R0 to compare them. In Case a) we
present the coexistence region of (1.1) with β = 0 defined byR0. In Case b) we have drawn
the case β small, specifically 0 < β < c/λ1; the particular case β = c/λ1 is described in
Case c); and finally the case β large (β > c/λ1) is presented in Case d).

Hence, if (λ, µ) ∈ Rβ (and so there exists a coexistence state for (1.1)) then (λ, µ) ∈ R0,
and so there exists a coexistence state for (1.1) and β = 0. On the other hand, if (λ, µ) ∈ R0

then there exists β0 > 0 such that (λ, µ) ∈ Rβ for β ≤ β0. So, when bc < 1 the dynamics
of the system in the cases β = 0 and β small are rather similar.

However, when β is large the behavior of the model is completely different. Indeed,
when β is large and whatever value of bc > 0 is, the coexistence region is still Rβ (see
Figure 1 Cases c) and d)). However, when bc > 1 and β = 0 a coexistence region includes
IR2\R0, see [13] and [2], and there does not exist coexistence states for λ > λ1 and µ > λ1.
We mention that in the case β = 0 and bc > 1 there is absence of a priori bounds for the
coexistence states in high spatial dimensions N > 6 (see [13]), however for N ≤ 5 system
(1.1) possesses uniform a priori bounds in any compact subinterval of (λ, µ).

We give now some examples which reflect the difference between the cases β = 0 and
β > 0. Fix λ > λ1, bc < 1 and (λ, µ) ∈ R0. In this case, for β = 0 the species coexist.
On the other hand, by Theorem 1.2 item (1), there exists β0 > 0 such that for β ≥ β0
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Figure 1: Coexistence regions in: Case a) β = 0; Case b) 0 < β < c/λ1; Case c) β = c/λ1

and Case d) β > c/λ1.

model (1.1) does not possess coexistence state. This fact has a biological interpretation:
if the growth rate of u is large (λ > λ1) and the repulsive force in the diffusion is large (β
large), then v is driven to the extinction by u, hence the repulsive force is stronger than
the cooperation between the species. This is translated into the fact that for β ≥ β0, there
is only one stable semi-trivial solution, that is (θλ, 0), see Proposition 4.2.

Now fix λ ≤ λ1 and µ ≤ λ1; then again by Theorem 1.1, there does not exist coexistence
state if β is large or for any β if bc ≤ 1, that is, if both growth rates are small, then the
species do not coexist if the pressure produced by u is large or if the cooperation is too
weak. This is completely different to the case bc > 1, N ≤ 5 and β = 0, for which there
exists a coexistence state for λ, µ ≤ λ1, see [13].

In the second part of the paper, we have studied the profiles of the solutions when the
cross-diffusion parameter β tends to +∞, this type of study is made in a slight different
problem in [7] and [8], see also [14]. We show the following result.

Theorem 1.2 (1) Fix (λ, µ) ∈ IR2 with λ > λ1. Then, (1.1) does not have coexistence
states if β > 0 is large.

(2) Assume now that λ < λ1. Then any family of positive solutions (uβ , vβ) of (1.1)
verifies that (βuβ, vβ) → (w, z) as β →∞ uniformly in Ω where (w, z) is positive solution
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Figure 2: Bifurcation diagram and coexistence region of (1.6)

of 
−∆z = z(λ + bw) in Ω,

−∆[(1 + z)w] = w(µ− w) in Ω,

z = w = 0 on ∂Ω.

(1.6)

(3) System (1.6) does not possess any coexistence state if λ ≥ λ1 and has at least one
coexistence state for

(λ, µ) ∈ R∞ := {(λ, µ) ∈ IR2 : F (µ) < λ < λ1}. (1.7)

In fact, for µ > λ1 fixed, an unbounded continuum C in IR× (C1
0 (Ω))2 bifurcates from the

semi-trivial solution (0, θµ) at λ = F (µ) and a bifurcation to infinity at λ = λ1 appears
when the parameter λ approaches to λ1.

The paper is organized as follows. In Section 2 we present some preliminary results on
the logistic equation and weighted eigenvalue problems. In Section 3 we prove parts (1)
and (2) of Theorem 1.1. We also prove some a priori bounds. In Section 4 we show the
stability of the trivial and semi-trivial solutions and a very general result of bifurcation of
positive solutions from semi-trivial solutions and no assumption is made on the product bc,
we just need b, c > 0. In Section 5 we prove the existence result for bc < 1 corresponding
to item (3) of Theorem 1.1. Section 6 is devoted to show the existence result for β large
and any b, c > 0, we then prove item (4) of Theorem 1.1. For that mater we perform
a blow-up argument from [3]. Finally, in Section 7 we study the profiles of the positive
solutions when β →∞. Theorem 1.2 is proved in this section.

2 Preliminaries

We are interested in non-negative solutions (u, v) of (1.1) in a classical sense, that is,
u, v ∈ C2(Ω). Recall that (1.1) has three kinds of solutions: the trivial one (0, 0); the semi-
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trivial solutions (u, 0) and (0, v); and the solutions with both components non-negative
and non-trivial. Thanks to the strong maximum principle, if a solution (u, v) of (1.1) is
such that u and v are non-negative and non-trivial then both are positive in whole domain
Ω. We call coexistence state this third type of solution.

Given a, b ∈ Cν(Ω), ν ∈ (0, 1), with a ≥ const > 0 we denote by λ1(a; b) the principal
eigenvalue of the problem −∆[a(x)u] + b(x)u = λu in Ω,

u = 0 on ∂Ω.
(2.1)

This eigenvalue is simple and any positive eigenfunction φ associated to it, belongs to
C2,ν

0 (Ω). Moreover, λ1(a; b) is increasing in b. When a ≡ 1 we write λ1(b) instead of
λ1(1; b) and λ1 := λ1(1; 0). Finally, given a function a ∈ C(Ω) we denote

aM := max
x∈Ω

a(x).

The change of variable a(x)u = z transforms (2.1) into −∆z +
b(x)
a(x)

z = λ
1

a(x)
z in Ω,

z = 0 on ∂Ω.
(2.2)

The equality

−∆z +
(

b(x)− λ

a(x)

)
z = 0

implies that λ1(a; b) is the unique root of the map

λ 7→ λ1

(
b(x)− λ

a(x)

)
,

that is, λ1(a; b) is the unique real number such that

λ1

(
b(x)− λ1(a; b)

a(x)

)
= 0. (2.3)

We will also need to know the properties of the problem −∆w = γw − w2 in Ω,

w = 0 on ∂Ω.
(2.4)

We remember that there exists a positive solution of (2.4) if, and only if,

γ > λ1.

Moreover, the positive solution is unique, and denoted by θγ . We extend θγ ≡ 0 as γ ≤ λ1.
Furthermore, θγ/γ → 1 uniformly over compacts of Ω as γ → +∞.
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3 Non-existence of coexistence states and a priori bounds

We begin by proving results of non-existence of coexistence states.
Proof of Theorem 1.1 items (1) and (2). Let ϕ1 be a positive eigenfunction associated
to λ1. If we multiply the first equation of (1.1) by kϕ1 and the second one by ϕ1, integrate
and add both equations, we obtain∫

Ω
ϕ1 [(λ1 − λ)ku + (λ1 − µ)v] =

∫
Ω

ϕ1u
2

[
−

(v

u

)2
+ (kb + c− βλ1)

v

u
− k

]
. (3.1)

Denote f(r) = −r2 + (kb + c− βλ1)r− k. Then f(0) = −k, f ′(0) = kb + c− βλ1, and the
maximum is reached in the point rM = 1

2(kb + c− βλ1). Hence
(1) If βλ1 ≥ c, then for k = 0, f(r) < 0 ∀r > 0. The first member of (3.1) is negative and
so λ1 − µ < 0.
(2) We look for k > 0 such that f(r) < 0, ∀r > 0. Since f(0) < 0, it is enough to
find k > 0 such that (kb + c − βλ1)2 − 4k < 0. It is easy to see that this is reached if
b(c− βλ1) < 1. So, with this condition, there exists k0 > 0 such that

(λ1 − λ)k0

∫
Ω

ϕ1u + (λ1 − µ)
∫

Ω
ϕ1v < 0,

and if λ, µ ≤ λ1 there does not exist any coexistence state of (1.1). �

In the next sections we need estimates for the coexistence states, which also give other
regions of non-existence of coexistence states of (1.1). We perform the change of variable

w := (1 + βu)v,

which transforms system (1.1) into
−∆u = u

(
λ− u +

bw

1 + βu

)
in Ω,

−∆w =
w

1 + βu

(
µ− w

1 + βu
+ cu

)
in Ω,

u = w = 0 on ∂Ω.

(3.2)

For each b ∈ L∞(Ω) we denote by ξ[b] the unique solution of −∆ξ = b(x) in Ω,

ξ = 0 on ∂Ω.

It is clear that the map b 7→ ξ[b] is increasing and that for any positive constant R > 0
there holds ξ[b] = Rξ[b/R].

The following result provides us a priori bounds of coexistence states of (3.2) for every
b > 0 and c > 0.

Proposition 3.1 Let (u, w) be a coexistence state of (3.2). Then

(1) θλ ≤ u ≤ uM ≤ λ +
bwM

1 + βuM
.

(2) wM ≤ (1 + βuM )(µ + cuM ).
(3) w(x) ≤ ξ[(µ+cu)2/4](x) for all x ∈ Ω.
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Proof. The inequality θλ ≤ u follows because u is a supersolution of (2.4) with γ = λ
and the fact that (2.4) has a unique non-negative solution.

Let (u, w) be a coexistence state of (3.2) and xu, xw ∈ Ω the points such that

u(xu) = max
x∈Ω

u(x) := uM , w(xw) = max
x∈Ω

w(x) := wM .

Then, −∆u(xu) ≥ 0 and −∆w(xw) ≥ 0 and it is easy to obtain that uM ≤ λ +
bwM

1 + βuM
,

wM ≤ (µ + cuM ) (1 + βuM ).
(3.3)

From these considerations (1) and (2) follow. To show (3), observe that

w

(
µ + cu

1 + βu
− w

(1 + βu)2

)
≤ (µ + cu)2

4
. (3.4)

Since w is a solution of

−∆w = w

(
µ + cu

1 + βu
− w

(1 + βu)2

)
,

it follows that ξ[(µ+cu)2/4] is a supersolution of the above equation in w, whence the result
follows. �

The values (uM , wM ) described by (3.3) verify

(1− bc)uM ≤ λ + bµ, (1− bc)wM ≤ (µ + cλ) (1 + βuM ).

Therefore, because uM > 0 and wM > 0, we can establish the following region of non-
existence and a priori bounds for coexistence states in the case bc < 1:

Proposition 3.2 (1) If there exists a coexistence state of (3.2) and bc < 1, then

λ + bµ > 0 and µ + cλ > 0.

(2) If bc < 1 and (u, w) is a coexistence state of (3.2), then the following estimates are
true in Ω:

θλ ≤ u ≤ µb + λ

1− bc
, w ≤ (µ + cλ)[1− bc + β(µb + λ)]

(1− bc)2
. (3.5)

Remark 3.3 If bc < 1 and (uβ, vβ) is a family of coexistence states of (1.1). Then,
(uβ, vβ) → (u0, v0) uniformly in Ω as β → 0, where (u0, v0) is a solution of

−∆u = u(λ− u + bv) in Ω,

−∆v = v(µ− v + cu) in Ω,

u = v = 0 on ∂Ω.

(3.6)

Indeed, by Proposition 3.2 item (2), uβ and wβ are bounded in L∞(Ω) independently of
β, and by the elliptic regularity, are bounded in W 2,p(Ω), for all p > 1. We deduce that
(uβ, wβ) → (ū, w̄) in C2,γ(Ω), for (ū, w̄) a non-negative and non-trivial solution of (3.6).
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4 A general bifurcation result

First we need to study the functions F and G defined in (1.2) and (1.4).
Observe there exists z > 0 in Ω such that G(β, λ) verifies

−∆[(1 + βθλ)z]− cθλz = G(β, λ)z in Ω, z = 0 on ∂Ω.

Multiplying by ϕ1 and integrating, we obtain

(λ1 −G(β, λ))
∫

Ω
zϕ1 = (c− βλ1)

∫
Ω

θλzϕ1

and so,

βλ1 > c =⇒ G(β, λ) > λ1, βλ1 = c =⇒ G(β, λ) ≡ λ1, βλ1 < c =⇒ G(β, λ) < λ1. (4.1)

In the following result, we prove the main properties of F and G, see Figure 1.

Lemma 4.1 (1) F is a decreasing map and limµ→+∞ F (µ) = −∞.
(2) Fix β ≥ 0. Then,
(a) If βλ1 > c, then G is increasing in λ and limλ→+∞G(β, λ) = +∞.
(b) If βλ1 = c, then G(β, λ) = λ1.
(c) If βλ1 < c, then G is decreasing in λ and limλ→+∞G(β, λ) = −∞.
(3) Fix λ > λ1. Then G is increasing in β and limβ→+∞G(β, λ) = +∞.

Proof. The properties (1) of F follow from [2]. With respect to item (2), see the Appendix
of [9] and [16]. To prove (3), we fix λ > λ1. As we mentioned before, see (2.3), G(β, λ) is
the unique solution in µ of

0 = λ1

(
− cθλ + µ

1 + βθλ

)
.

This map is increasing in β, and so G(β, λ) is also increasing in β. On the other hand,
assume that G(β, λ) ≤ C for β large. Then

0 = λ1

(
−cθλ −G(β, λ)

1 + βθλ

)
≥ λ1

(
−cθλ − C

1 + βθλ

)
→ λ1 > 0,

as β → +∞, a contradiction. �

We state now a result showing the stability of the trivial and semi-trivial solutions of
(1.1). Its proof is rather similar to Proposition 4.1 in [2], and so we omit it.

Proposition 4.2 1. The trivial solution of (1.1) is linearly asymptotically stable if
λ < λ1 and µ < λ1 and unstable if λ > λ1 or µ > λ1.

2. Assume that λ > λ1. The semi-trivial solution (θλ, 0) is linearly asymptotically stable
if µ < G(β, λ) and unstable if µ > G(β, λ).

3. Assume that µ > λ1. The semi-trivial solution (0, θµ) is linearly asymptotically stable
if λ < F (µ) and unstable if λ > F (µ).
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We analyze system (3.2) instead of (1.1). Observe that (3.2) has, similarly to (1.1), the
trivial solution (0, 0) and the semitrivial solutions (θλ, 0) and (0, θµ). Since we will apply
repeatedly the bifurcation method to (3.2), we prove a general result which provides us with
existence of coexistence states of (3.2), in fact the existence of a continuum C of positive
solutions, that is, a maximal connected and closed set in the set of positive solutions
of (3.2). Along the following result we denote cl(C) the closure of C in the IR × C2

0 (Ω)
topology.

Proposition 4.3 (1) Fix µ > λ1 and consider λ as bifurcation parameter. Then, a
continuum C of coexistence states of (3.2) bifurcates from the semi-trivial solution (0, θµ)
at λ = F (µ). This is the unique point of bifurcation of positive solutions from (0, θµ).
Moreover, C satisfies some of the following alternative:

(a) C is unbounded in IR× (C1
0 (Ω))2, or

(b) there exists λ∗ ∈ IR such that (λ∗, θλ∗ , 0) ∈ cl(C).
(2) Fix λ > λ1 and consider µ as bifurcation parameter. Then, an unbounded con-

tinuum C of coexistence states of (3.2) bifurcates from the semi-trivial solution (θλ, 0) at
µ = G(β, λ). This is the unique point of bifurcation of positive solutions from (θλ, 0).

(3) Fix λ < λ1 and consider µ as bifurcation parameter. Then, an unbounded con-
tinuum C of coexistence states of (3.2) bifurcates from the semi-trivial solution (0, θµ) at
µ = µλ > λ1, the unique value such that λ = F (µλ). This is the unique point of bifurcation
of positive solutions from (0, θµ).

Proof. (1) Fix µ > λ1 and consider λ as a bifurcation parameter. We apply the Crandall-
Rabinowitz theorem [1] (see also Section 2 of [9] and [20]) to conclude that λ = F (µ) is
a simple bifurcation point from the semi-trivial solution (0, θµ), in fact it is the unique
bifurcation point of positive solutions of (3.2) from (0, θµ). Moreover, from Theorem 4.1
in [12] there exists a continuum C of coexistence states of (3.2) emanating from (0, θµ) at
λ = F (µ) which verifies at least one of the following alternatives:

(A1) C is unbounded in IR× (C1
0 (Ω))2, or

(A2) there exists λ0 ∈ IR, λ0 6= F (µ), such that (λ0, 0, θµ) ∈ cl(C), or

(A3) there exists λ∗ ∈ IR such that (λ∗, θλ∗ , 0) ∈ cl(C), or

(A4) there exists λ2 ∈ IR such that (λ2, 0, 0) ∈ cl(C).

Since λ = F (µ) is the unique point of bifurcation from (0, θµ), alternative (A2) is not
possible. Assume (A4) and consider a sequence (λn, un, wn) ∈ C such that λn → λ2 and
(un, wn) → (0, 0) in (L∞(Ω))2. Then, denoting by

Wn :=
wn

‖wn‖∞
,

it is easy to show that Wn → W in C2(Ω) for some W ≥ 0 and non-trivial with

−∆W = µW in Ω, W = 0 on ∂Ω,

a contradiction because µ > λ1. So, only (A1) or (A3) is possible. This shows item (1).
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(2) Fix now λ > λ1. Again, with a similar argument to the one employed to prove (1), it
follows that the existence of a continuum C of coexistence states of (3.2) emanating from
(θλ, 0) at the value µ such that

0 = λ1

(
−µ + cθλ

1 + βθλ

)
,

that is µ = G(β, λ).
Moreover, by Theorem 4.1 in [12] the continuum C verifies at least one of the following

alternatives:

(A1) C is unbounded in IR× (C1
0 (Ω))2, or

(A2) there exists µ0 ∈ IR, µ0 > λ1, such that (µ0, 0, θµ0) ∈ cl(C), or

(A3) there exists µ1 ∈ IR, µ1 6= G(β, λ), such that (µ1, θλ, 0) ∈ cl(C), or

(A4) there exists µ2 ∈ IR such that (µ2, 0, 0) ∈ cl(C).

Again, it is clear that (A3) and (A4) are not possible. Now, assume (A2) and so the
existence of a sequence (µn, un, wn) ∈ C such that µn → µ0 and (un, wn) → (0, θµ0) in
(L∞(Ω))2. Then, denoting by

Un :=
un

‖un‖∞

it is clear that Un → U in C2(Ω) with U ≥ 0 and non-trivial and

−∆U = U(λ + bθµ0) in Ω, U = 0 on ∂Ω,

and so λ = F (µ0) < λ1, a contradiction.
(3) Now fix λ < λ1. By Lemma 4.1 it is clear that there exists a unique value µλ > λ1

such that λ = F (µλ).
Again, µ = µλ is the unique point of bifurcation from (0, θµ) and a continuum C of

coexistence states of (1.1) emanates at µ = µλ from (0, θµ). This continuum C verifies at
least one of the following alternatives:

(A1) C is unbounded in IR× (C1
0 (Ω))2, or

(A2) there exists µ0 6= µλ such that (µ0, 0, θµ0) ∈ cl(C), or

(A3) there exists µ1 ∈ IR, such that (µ1, 0, 0) ∈ cl(C).

Now, it is not hard to show that only (A1) is possible. �

Observe that only in case (2) of the above result, there exists the possibility of the
existence of a continuum of coexistence states connecting the two semi-trivial solutions.
We will show in the next section, that in fact this occurs.
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5 Weak cooperation

This section is devoted to study the weak cooperation interaction, that is bc < 1. The
results of Theorem 1.1 items (1) and (2) as well as Proposition 3.2 are valid for every b > 0
and c > 0, this allows us to conclude that there does not exist any coexistence state of
(1.1) if one of the following properties hold: (i) λ, µ ≤ λ1; (ii) λ + bµ ≤ 0; (iii) µ + cλ ≤ 0.
If βλ1 ≥ c, then there does not exist any coexistence state if µ ≤ λ1. The coexistence
states have a priori bounds given by (3.5).

Next we prove the existence of coexistence states corresponding to item (3) of Theorem
1.1.

Proof of Theorem 1.1 item (3). We apply Proposition 4.3 item (1), taking into
account the a priori bounds for the solutions. In fact, fix µ > λ1 and consider λ as
bifurcation parameter. Then, from the semi-trivial solution (0, θµ) bifurcates a continuum
C of coexistence states of (3.2) at λ = F (µ). The continuum C verifies some of the following
alternatives: C is unbounded or there exists λ∗ such that (λ∗, θλ∗ , 0) ∈ cl(C).

Assume that the second alternative occurs. This means that there exist (λn, un, wn) ∈
C such that

λn → λ∗ in IR, un → θλ∗ in C(Ω), wn → 0 in C(Ω).

If we denote
Wn =

wn

‖wn‖∞
,

it is not hard to check that Wn → W in C2(Ω), with W the non-negative and non-trivial
solution of  −∆W =

µ + cθλ∗

1 + βθλ∗

W in Ω,

W = 0 on ∂Ω.

Hence

λ1

(
−µ + cθλ∗

1 + βθλ∗

)
= 0 =⇒ µ = λ1(1 + βθλ∗ ;−cθλ∗) = G(β, λ∗). (5.1)

Therefore, if βλ1 ≤ c, then G(β, λ∗) ≤ λ1. And (4.1) leads to a contradiction. Thus
C is unbounded in IR × (C1

0 (Ω))2 and thanks to the a priori bounds of the solutions, the
existence of coexistence states follows for all λ > F (µ) (see Figure 2 Case d)).

However, if βλ1 > c, we can prove that system (3.2) has no nontrivial solution if λ is
big enough. Indeed,

−∆w = w

(
µ

1 + βu
− w

(1 + βu)2
+

cu

1 + βu

)
≤ w

(
µ

1 + βθλ
+

c

β

)
.

This implies that

λ1

(
− µ

1 + βθλ
− c

β

)
≤ 0.

But

λ1

(
− µ

1 + βθλ
− c

β

)
→ λ1 −

c

β
> 0, as λ →∞.
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Figure 3: Bifurcation diagrams

In this case, again the a priori bounds, says that C cannot be unbounded, so there exists
λ∗ ∈ IR such that (λ∗, θλ∗ , 0) ∈ cl(C) (see Figure 2 Case c)). Moreover, by (5.1), λ∗ is the
unique value such that

µ = λ1(1 + βθλ∗ ;−cθλ∗) = G(β, λ∗),

which exists and it is unique by Lemma 4.1. Hence, we have coexistence states for λ > F (µ)
and µ > G(β, λ) (see Figure 1).

This completes the study in the case µ > λ1. For µ ≤ λ1 we fix λ > λ1, and consider µ
as bifurcation parameter. In this case, again by Proposition 4.3 the continuum C emanating
from (θλ, 0) at µ = G(β, λ) is unbounded and by the a priori bounds and the non-existence
of coexistence states for µ ≤ λ1, which implies that there exists a coexistence state for all
µ > G(β, λ) (see Figure 2 Case a)). �

6 Large cross-diffusion effect

In this Section we show the existence of at least one coexistence state for the case b > 0,
c > 0 and β large, thus proving Theorem 1.1 item (4). But first we need to show a priori
bounds of the solutions.

Proposition 6.1 Assume that for some α > 0

max { |λ| , |µ| } ≤ α .



14 Symbiotic and cross-diffusion

Then, there exists β0 > 0 such that for all β ≥ β0 a constant C = C(α, Ω, b, c, β) exists
such that

‖u‖L∞(Ω) ≤ C , ‖v‖L∞(Ω) ≤ C ,

for any coexistence state (u, v) of (1.1).

Proof. We are going to use a Gidas-Spruck argument [3]. Assume that there exist a
sequence (βn, λn, µn) with |λn| ≤ α, |µn| ≤ α, βn → ∞ and a sequence of coexistence
states (un, wn) of (3.2) such that ‖un‖∞ + ‖wn‖∞ → ∞. Thanks to Proposition 3.1 we
have that both ‖un‖∞ → ∞ and ‖wn‖∞ → ∞. Indeed, it is clear that if ‖un‖∞ → ∞
then ‖wn‖∞ → ∞ by Proposition 3.1 item (1). Now, suppose that ‖wn‖∞ → ∞ and
‖un‖∞ ≤ C. Then, by Proposition 3.1

wn ≤ ξ[(µ+cun)2/4] ≤ ξ[(µ+cC)2/4] ≤ C

and so wn is bounded, a contradiction.
Denote by

Mn := ‖un‖∞ = u(xn) = max
x∈Ω

un(x)

for some xn ∈ Ω, and so Mn → ∞. By the compactness of Ω we can assume that
xn → x0 ∈ Ω.

We distinguish two cases:
Case 1: x0 ∈ Ω. Define

δ :=
dist(x0, ∂Ω)

2
> 0.

We make now the following change of variable

Un(y) :=
un(yM

−1/2
n + xn)
Mn

, Wn(y) :=
wn(yM

−1/2
n + xn)
M2

n

in Ωn,

where Ωn := {y ∈ IRN : yM
−1/2
n + xn ∈ Ω}.

Observe that if |y| < δM
1/2
n then yM

−1/2
n + xn ∈ Ω. So, given R > 0 there exists

n ∈ IN large enough such that B(0, R) ⊂ B(0, δM
1/2
n ), where B(0, S) stands for the ball

of radius S > 0 centered at the origin.
Observe that

‖Un‖L∞(B(0,R)) = 1 and Un(0) = 1.

On the other hand, from Proposition 3.1 we get that

wn ≤ ξ[(µn+cun)2/4] ≤ ξ[(α+cMn)2/4],

and so,
wn

M2
n

≤ ξ[(α/Mn+c)2/4] ≤ C

for some C > 0 and n large. Hence,

‖Wn‖L∞(B(0,R)) ≤ C.
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It is not hard to show that (Un,Wn) satisfies in B(0, R) the following system
−∆Un = F (Un,Wn) := λnM−1

n Un − U2
n +

b

βn

UnWn
1

βnMn
+ Un

,

−∆Wn = µnM−2
n

Wn

1 + βnMnUn
−Mn

W 2
n

(1 + βnMnUn)2
+ c

UnWn

1 + βnMnUn
.

(6.1)

Since Un and Wn are bounded in L∞(B(0, R)), then

‖F (Un,Wn)‖L∞(B(0,R)) ≤ C,

and so Un is bounded in C1,ν(B(0, R)) for some 0 < ν < 1, which provides bounds in
C2,ν(B(0, R)). Observe also that

b

βn

UnWn
1

βnMn
+ Un

=
b

βn
Wn(

Un
1

βnMn
+ Un

) ≤ b

βn
Wn → 0 as n →∞.

We can pass to the limit in the first equation, or to a subsequence if necessary, and conclude
that Un → U in C2,ν(B(0, R)) where U ≥ 0, U(0) = 1 is solution of

−∆U = −U2

in B(0, R), for any R > 0. An standard argument shows that Un → U in C2
loc(IR

N ), then
U is solution

−∆U = −U2 in IRN , (6.2)

with 0 ≤ U ≤ 1, U(0) = 1. This implies that U ≡ 0, a contradiction.
Case 2: x0 ∈ ∂Ω. Observe that in this case, Ωn → IRN

+ . After a linear change of variable
(which straightens the boundary of Ω near x0, see Theorem 1.1 in [3] and Step 2 in Lemma
4.3 in [13]) we arrive at the equation −∆U = −U2 in IRN

+ ,

U = 0 in ∂IRN
+ ,

(6.3)

for some regular and bounded non-negative function with U(0) = 1, again a contradiction.
�

We are ready to prove the main result of this section.
Proof of Theorem 1.1 item (4). We use Proposition 4.3. First, we fix λ > λ1. Then,
from the semi-trivial solution (θλ, 0) a unbounded continuum C of positive solutions of
(1.1) bifurcates at

µ = G(β, λ).

Thanks to Theorem 1.1 item (1), if β ≥ c/λ1 system (3.2) does not have coexistence states
for µ ≤ λ1, and for Proposition 6.1 we have a priori bounds if β ≥ β0 for µ belonging to
a bounded set. Hence, we have the existence of coexistence state for all µ > G(β, λ) (see
again Figure 2 Case a)).

Now, assume λ < λ1. Again, by Proposition 4.3 for µ = µλ, where µλ is the unique
value such that

λ = λ1(−bθµλ
) = F (µ)
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an unbounded continuum C of positive solutions of (1.1) bifurcates. A similar argument
to the used above shows that there exists a coexistence state for, at least, µ > µλ (see
Figure 2 Case b)).

Finally, assume that λ = λ1 and µ > λ1. Take a sequence λn > λ1, λn → λ1 and a
sequence (un, wn) of coexistence states of (3.2) with λ = λn, which exists thanks to the
first part of the theorem. Then, thanks to the a priori bounds of (un, wn) we can pass
to the limit and conclude that (un, wn) → (u, w) in (C2(Ω))2, with (u, w) a non-negative
solution of (3.2). We show now that in fact (u, w) is a coexistence state of (3.2). We argue
by contradiction. First, suppose that (u, w) = (0, 0). Then denoting by

Wn =
wn

‖wn‖∞
,

it is easy to prove that Wn → W in C2(Ω) with W ≥ 0, non-trivial and satisfies

−∆W = µW in Ω, W = 0 on ∂Ω,

and so µ = λ1, a contradiction.
Now, suppose that (u, w) = (u, 0) for some non-negative function u. In this case, it is

easy to prove that u = θλ1 ≡ 0 and so by the above reasoning we arrive at a contradiction.
Finally, assume that (u, w) = (0, w) for some non-negative function w. In this case,

w = θµ > 0 and denoting

Un :=
un

‖un‖∞

we have that Un → U in C2(Ω), U ≥ 0 and non-trivial and

−∆U = U(λ1 + bθµ) in Ω, U = 0 on ∂Ω,

and so λ1 = F (µ), a contradiction. This completes the proof. �

7 Profiles of the solutions when β →∞

In this section we analyze the behavior of the solutions when the parameter β goes to
infinity and prove Theorem 1.2.

We begin by proving that (3.2) does not possesses coexistence state for β large and
λ > λ1.

Proof of Theorem 1.2 item (1). Assume that λ > λ1 and consider (uβ , wβ) a coexis-
tence state of (3.2). Observe that by Proposition 3.1 we get θλ ≤ uβ and then βθλ ≤ βuβ .
Thus,

µ

1 + βuβ
→ 0 uniformly on compacts of Ω and

uβ

1 + βuβ
≤ 1

β
→ 0 in L∞(Ω).

Moreover, since

−∆wβ = wβ

(
µ

1 + βuβ
−

wβ

(1 + βuβ)2
+ b

uβ

1 + βuβ

)
in Ω, wβ = 0 on ∂Ω,
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if wβ > 0 we conclude that

0 = λ1

(
− µ

1 + βuβ
+

wβ

(1 + βuβ)2
− b

uβ

1 + βuβ

)
> λ1

(
− µ

1 + βuβ
− b

uβ

1 + βuβ

)
→ λ1 > 0

as β →∞, and then wβ ≡ 0 and consequently uβ ≡ θλ. �

Proof of Theorem 1.2 item (2). Denote by zβ = βuβ and wβ = (1 + zβ)vβ. Then,
(zβ, wβ) verifies the system

−∆zβ = zβ(λ− 1
β

zβ + b
wβ

1 + zβ
) in Ω,

−∆wβ =
wβ

1 + zβ
(µ−

wβ

1 + zβ
+

c

β
zβ) in Ω,

zβ = wβ = 0 on ∂Ω.

(7.1)

Observe that
c

β

zβ

1 + zβ
→ 0 uniformly in Ω as β →∞. (7.2)

Take ε > 0 such that λ1(−ε) = λ1 − ε > 0. For such ε > 0, using (7.2) there exists β0

such that for β ≥ β0 we get

(−∆− ε)wβ ≤
wβ

1 + zβ
(µ−

wβ

1 + zβ
) in Ω, wβ = 0 on ∂Ω,

and so with a similar argument to the one used in Proposition 3.1 we get that

wβ ≤ ξ̂[µ2/4],

where now ξ̂[b] is the unique solution of

(−∆− ε)ξ̂ = b(x) in Ω, ξ̂ = 0 on ∂Ω,

for b ∈ L∞(Ω). Hence, wβ is bounded in L∞(Ω).
Now, assume that ‖zβ‖∞ →∞ as β →∞. Then∥∥∥∥ wβ

1 + zβ

∥∥∥∥
∞
→ 0.

Hence

0 = λ1

(
−λ +

1
β

zβ − b
wβ

1 + zβ

)
> λ1

(
−λ− b

wβ

1 + zβ

)
→ λ1 − λ > 0,

and then zβ ≡ 0, a contradiction.
We have that ‖zβ‖∞ ≤ C. By elliptic regularity, zβ and wβ are bounded in W 2,q(Ω)

for any q > 1. We can pass to the limit in (7.1) and conclude that (zβ , wβ) → (z, p) in
(C2(Ω)2) with 

−∆z = z(λ + b
p

1 + z
) in Ω,

−∆p =
p

1 + z
(µ− p

1 + z
) in Ω,

z = p = 0 on ∂Ω.

(7.3)
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After the change of variable p = (1 + z)w, the result follows. �

Proof of Theorem 1.2 item (3). We show first the non-existence result. Assume
that (z, w) is a coexistence state of (1.6). Multiplying the first equation by ϕ1, a positive
eigenfunction associated to λ1, and integrating we get

(λ1 − λ)
∫

Ω
zϕ1 = b

∫
Ω

zwϕ1,

and so λ < λ1.
With the change of variable (1 + z)w = p, (1.6) is equivalent to (7.3). Observe that

p ≤ ξ[µ2/4] in Ω. (7.4)

Now, we show that there does not exist a coexistence state for λ very negative. Indeed,
assume the contrary and denote by xλ ∈ Ω such that z(xλ) = maxx∈Ω z(x). Then, using
(7.4) we get

0 ≤ λ + b
p(xλ)

1 + z(xλ)
≤ λ + bξ[µ2/4](xλ) ≤ λ + C(µ),

and then λ ≥ −C(µ).
Again, we apply the bifurcation method (see Figure 3 a)). Observe that (1.6) possesses

the trivial solution and the semi-trivial one (0, θµ). Then, fix µ > λ1 and regard λ
as a bifurcation parameter. Again, it can be shown that an unbounded continuum C
of coexistence states of (1.6) emanates from (0, θµ) at λ = F (µ). Since, there are no
coexistence states for λ ≤ −C(µ) and for λ ≥ λ1, there exists a sequence λn → λ ≤ λ1

such that ‖(zn, pn)‖∞ → ∞ as n → ∞. We claim that λ = λ1. We know from (7.4) that
pn is bounded, and so ‖zn‖∞ →∞. Then, denoting by

Zn :=
zn

‖zn‖∞

we have that
−∆Zn = Zn(λn + b

pn

1 + zn
)

and so, Zn → Z, Z ≥ 0 and non-trivial and

−∆Z = λZ in Ω, Z = 0 on ∂Ω,

that is λ = λ1.
�

In Figure 3 b) we have represented the coexistence region defined by (1.7).
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