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1 Introduction

In this paper we analyze the long-time behaviour of the non-autonomous com-
petitive Lotka-Volterra system





ut −∆u = u(λ− a(t)u− bv) in Ω× (s, +∞),

vt −∆v = v(µ− cv − du) in Ω× (s, +∞),

u = v = 0 on ∂Ω× (s, +∞),

u(s, x) = u0(x), v(s, x) = v0(x) in Ω,

(1)

where Ω is a bounded domain of RN , N ≥ 1, with a smooth boundary ∂Ω, b,
c, d are positive constants, λ, µ ∈ R and 0 < a(t) ≤ A. Problem (1) models
the interactions between two competing species inhabiting a region Ω: u(x, t)
and v(x, t) represent the population densities at location x ∈ Ω and time t.
Moreover, we are assuming that Ω is completely surrounded by inhospitable
areas, because both population densities are subject to homogeneous Dirichlet
boundary conditions. Here, the operator −∆ takes into account the diffusivity
of the species, λ and µ are the growth rates of the species, b and d describe the
interaction rates between the species and finally, a(t) and c are the limiting
effects of crowding in each population.

The starting point of this paper is the following observation, which forms the
basis of the relatively recent theory of non-autonomous attractors as developed
by Crauel et al. [10], Kloeden & Schmalfuss [19], and Schmalfuss [30]. Suppose
that x(t; s, x0) denotes the solution of some system at time t that is equal to
x0 at time s. For an autonomous system we always have

x(t; s, x0) = x(t− s; 0, x0)

and so considering the time asymptotic behaviour as t → +∞ is exactly the
same as considering what happens as s → −∞. However, in a non-autonomous
system the initial time is as important as the final time, and these two different
types of “time asymptotic behaviour” are not equivalent. We do not aim here
to assert the primacy of one of these approaches over the other, but rather to
demonstrate that the “pullback” procedure (considering the behaviour as s →
−∞) is a useful tool that can add to our understanding of non-autonomous
systems. Similar ideas are applied to the ordinary differential equation version
of (1) in Langa et al. [21] for which more detailed results are possible.

In population dynamics, a basic question is to determine whether the two
species will survive in the long term. This has been formalized as the criterion
of permanence (see Hale and Waltman [12], Hutson and Schmitt [16] and
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references therein). The system (1) is said to be permanent if for any positive
initial data u0 and v0, the solution (u(t, s; u0, v0), v(t, s; u0, v0)) enters in finite
time into a compact set strictly bounded away from zero in each component.

In the autonomous case, that is when a(t) = a > 0, results about permanence
have been obtained using various techniques. These results depend on the
value of λ and µ with respect to certain principal eigenvalues of associated
linear elliptic problems. We need some notation in order to state these results.
Given f ∈ L∞(Ω), we denote by λ1(f) the principal eigenvalue of the problem




−∆w + f(x)w = σw in Ω,

w = 0 on ∂Ω.

We write λ1 := λ1(0). On the other hand, given γ, e ∈ R and e > 0, we denote
by w[γ,e] the unique positive solution of




−∆w = γw − ew2 in Ω,

w = 0 on ∂Ω.

Observe that w is related to the stationary solution when only one species is
present. It is well-known that w[γ,e] exists if, and only if, λ1 < γ, and w[f,e] ≡ 0
if λ1 ≥ γ.
On the other hand, if λ ≤ λ1 or µ ≤ λ1, then one of the two species (or both
of them) will be driven to extinction. This extinction region was enlarged by
López-Gómez and Sabina in [25] (Corollary 4.5) to a region in the (λ, µ)-plane
delimited by the curves λ = λ0(µ) and µ = µ0(λ). However, if λ and µ satisfy

λ > ϕ(µ) and µ > ψ(λ) (2)

where ϕ(µ) = λ1(bw[µ,c]) and ψ(λ) = λ1(dw[λ,a]), then (1) is permanent (see
Cantrell et al. [2], [4], [5] and López-Gómez [24]). We would like to point
out that λ = λ1(bw[µ,c]) and µ = λ1(dw[λ,a]) define two curves in the (λ, µ)-
plane whose behaviour is analyzed in detail in [2] and [24]. In Figure 1 we
have summarized the autonomous case for particular values of the parameters.
In this Figure we have denoted by P := {(λ, µ) : λ, µ satisfy (2)} and by
E := {(λ, µ) : λ < λ0(µ) or µ < µ0(λ)}.

In the non-autonomous case, previous work focuses on nonlinearities that are
periodic in time, or that are bounded by periodic functions. In the first case,
the spectral theory still works and similar results to the autonomous case can
be obtained, see Hess [14] and Hess and Lazer [15]. The second case was studied
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Fig. 1. Autonomous case. E: extinction region, P: permanent region.

by Cantrell and Cosner [3]. In [3] the authors assume that 0 < a0 ≤ a(t) ≤ A
for all t ≥ 0, and using a comparison method, they show that if λ and µ satisfy

λ > λ1 +
µb

a0

and µ > λ1 +
λd

c
,

then (1) is permanent (Corollary 3.1 in [3]).

In this work, we do not assume that a(t) is bounded below by a positive
constant and in fact we are mainly interested in the case a(t) → 0 as t → +∞.
We prove in this case that there is no bounded absorbing set for (1), and so
the system is not “permanent” in any conventional sense. In fact, we analyse
the forward behaviour in time of (1) in detail and we show that one or both
species are driven to extinction when

λ < λ1 or λ > ϕ(µ). (3)

See Figure 2 where we have represented this case. We have denoted by E =
{(λ, µ) : λ, µ satisfy (3)}.

The idea of pullback convergence from the theory of random and non-autono-
mous attractors (cf. Crauel et al. [10], Kloeden and Schmalfuss [19], Schmalfuss
[30]) allows us to ask (and answer) other questions about the behaviour of our
model (1). In particular we define here a notion of pullback permanence: we
say that (1) is pullback permanent if there exists a time-dependent family of
(bounded) absorbing sets that are bounded away from zero in each compo-
nent. This idea is not intended to replace the standard notion of permanence,
but rather to complement it. This definition has an interesting biological in-
terpretation: if we arrive at an island on which two species have already been
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Fig. 2. Forward behaviour in time when a(t) → 0 as t →∞.

competing (according to our model) for a long time then we can guarantee
that neither species will have died out (and their numbers are bounded below
in a uniform way, no matter how long this ecology has been running). This
is new information, not available by considering the behaviour as t → +∞:
indeed, one might expect from the inevitability of extinction as t → ∞ that
such behaviour would not occur.

We get here pullback extinction if λ < λ1 or µ < λ1. Moreover, assuming that
a(t) → a0 > 0 as t → −∞ and λ and µ satisfy

λ > ϕ(µ) and µ > ψ(λ, a0), (4)

where ψ(λ, a0) = λ1(dw[λ,a0]), then (1) is pullback permanent. We have sum-
marized this in Figure 3, where E = {(λ, µ) : λ ≤ λ1 or µ ≤ λ1}.

In fact we can give a bit more information about the structure of the pull-
back attracting states (“the non-autonomous attractor”) by using the order-
preserving property of (1) (we define an appropriate order in section 3, cf. [15],
for example): a result due to Langa and Suárez [22] shows that (1) possesses
two trajectories, maximal and minimal, that are globally stable from above
and below respectively.

Finally, we should mention the use of skew product flows (Hale [11], Sell [29])
in studying non-autonomous problems, particularly in the periodic, quasi-
periodic, or almost periodic case. The idea is to construct an autonomous
semiflow S(t) on the product space H × F , where H is the natural phase
space where the dynamics take place (here the dynamics of u and v) and F
is the hull (see [29]) of all the time dependent terms of the equation. Pro-
vided that F is compact in some appropriate topology the general theory
of dissipative dynamical systems can be applied to study S(t) on the space
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Fig. 3. Non-autonomous case. E: pullback extinction region.

H × F . However, with an entirely general non-autonomous term there is no
clear choice of topology on F that will make it compact, a property crucial
to this approach 3 . This is highlighted in the theory of attractors for non-
autonomous equations developed by Chepyzhov & Vishik (see, for example,
[6] and [7]): while their strongest results require almost periodicity, precisely
in order to obtain a compact F , they study general non-autonomous terms
without appealing to skew product flows using the concepts of a “kernel” and
“kernel sections”, the latter corresponding exactly to the time slices A(t) of
the non-autonomous attractor whose definition we recall below.

An outline of this paper is as follows: in Section 2 we introduce the con-
cept of a process, give the definition of a non-autonomous attractor and state
conditions that guarantee its existence. In Section 3 we study properties of
order-preserving processes and in particular recall a result about their stabil-
ity. In Section 4 we study in detail a non-autonomous logistic equation which
governs the behaviour of one of the species in absence of the other: this sec-
tion plays a crucial role throughout all that follows. In Section 5 we analyse
both the forwards and pullback behaviour of system (1), and finish in section
6 with the existence of a non-autonomous attractor for (1) and conditions for

3 Using uniform convergence on R requires almost periodicity. An interesting ex-
tension should be possible under the assumption that the non-autonomous terms
enjoy a uniform modulus of continuity over R, for then the topology of uniform
convergence on compact subsets of R will make F compact, cf. Johnson & Kloeden
[17], and the recent monograph by Chepyzhov & Vishik [8].
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pullback permanence.

2 Non-autonomous attractors

In this section we introduce the definitions of a non-autonomous attractor and
of pullback permanence.
Let (X, d) be a complete metric space (with metric d) and {S(t, s)}t≥s, t, s ∈ R
be a family of mappings satisfying:

a) S(t, s)S(s, τ)u = S(t, τ)u, for all τ ≤ s ≤ t, u ∈ X,
b) S(t, τ)u is continuous in t, τ and u.
c) S(t, t) is the identity in X for all t ∈ R.

Such a map is called a process. Usually S(t, τ)u will arise as the value of the
solution of a non-autonomous equation at time t with “initial condition” u
at time τ . As remarked in the introduction, for an autonomous equation the
solutions only depend on t− τ , and we can write S(t, τ) = S(t− τ, 0).
Let D be a non-empty set of parameterized families of non-empty bounded
sets {D (t)}t∈R. In particular, D (t) ≡ B ∈ D, where B ⊂ X is a bounded set.
In what follows, we will consider a fixed base of attraction D and throughout
our analysis the concepts of absorption and attraction will be referred to this
fixed base.

For A,B ⊂ X define the Hausdorff semidistances as,

dist(A,B) = sup
a∈A

inf
b∈B

d(a, b) Dist(A,B) = inf
a∈A

inf
b∈B

d(a, b).

Definition 1 a) Given t0 ∈ R, we say that K(t0) ⊂ X is attracting at time
t0 if for every {D (t)} ∈ D

lim
τ→−∞ dist(S(t0, τ)D (τ) , K(t0)) = 0.

A family {K(t)}t∈R is attracting if K(t0) is attracting at time t0, for all
t0 ∈ R.

b) Given t0 ∈ R, we say that B(t0) ⊂ X is absorbing at time t0 if for every
{D (t)} ∈ D there exists T = T (t,D) ∈ R such that

S(t0, τ)D (τ) ⊂ B(t0), for all τ ≤ T.

A family {B(t)}t∈R is absorbing if B(t0) is absorbing at time t0, for all
t0 ∈ R.

Note that every absorbing set at time t0 is attracting.
As discussed in the introduction, this notion takes the final time as fixed
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and moves the initial time backwards towards −∞. We are not evolving one
trajectory backwards in time, but rather we consider the current state of the
system (at the fixed time t0) which would result from the same initial condition
starting at earlier and earlier times. This is called pullback attraction in the
literature (cf. [18], [19], [30]).

Definition 2 Let {B(t)}t∈R be a family of subsets of X. This family is said
to be invariant with respect to the process S if

S(t, τ)B(τ) = B(t), for all (τ, t) ∈ R2, τ ≤ t.

Note that this property is a generalization of the classical property of an
invariant set for a semigroup. However, in this case we have to define the
invariance with respect to a family of sets depending on a parameter.

Definition 3 The family of compact sets {A(t)}t∈R is said to be the global
non-autonomous (or pullback) attractor associated to the process S if it is
invariant, attracts every {D (t)} ∈ D (for all t0 ∈ R) and minimal in the sense
that if {C(t)}t∈R is another family of closed attracting sets, then A(t) ⊂ C(t)
for all t ∈ R.

The general result on the existence of non-autonomous attractors is a gener-
alization of the abstract theory for autonomous dynamical systems (Temam
[32], Hale [11]):

Theorem 4 (Crauel et al. [10], Schmalfuss [30]) Assume that there exists a
family of compact absorbing sets. Then, the family {A(t)}t∈R defined by

A(t) = ∪D∈DΛ(D, t)

is the global non-autonomous attractor, where Λ(D, t) is the omega-limit set
at time t of D ≡ {D (t)} ∈ D,

Λ(D, t0) = ∩s≤t0∪τ≤sS(t0, τ)D(τ).

Using the pullback idea introduced above we can now give the following def-
inition of “pullback permanence”. As in [5] we suppose that X = X0 ∪ ∂X0,
where X0 is open, and X0, ∂X0 are invariant with respect to the process S. In
our application, ∂X0 will be the set of solutions with at least one component
identically zero.

Definition 5 We say that a system has the property of pullback permanence
(or that it is permanent in the pullback sense) if there exists a time-dependent
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family of bounded sets U : R 7−→ X, satisfying

a) U(t) absorbs every bounded set D ⊂ X (cf. Definition 1).
b) Dist(U(t), ∂X0) > 0 for all t ∈ R.

Following Definition 3, we can define a global attractor A+ ⊂ X0 that attracts
every bounded set in X0: its existence follows using Theorem 4.

3 Order-preserving non-autonomous differential equations

In this section we define what it means for a process to be order-preserving. For
such a process we can determine some of the structure of the non-autonomous
attractor and prove the existence of a minimal and maximal trajectory on the
attractor with some particular stability properties.

Definition 6 We say that the process {S(t, s) : X → X}t≥s is order-preserving
if there exists an order relation ‘¹’ in X such that, if w1 ¹ w2, then S(t, s)w1 ¹
S(t, s)w2, for all t ≥ s.

The next definition generelizes the concept of equilibria in Hess [14], (see also
Arnold and Chueshov [1] in the stochastic case and Chueshov [9] in the non-
autonomous case under stronger conditions).

Definition 7 Let S be an order-preserving process. We call the continuous
map w : R→ X a complete trajectory if, for all s ∈ R, we have

S(t, s)w(s) = w(t), for t ≥ s.

From (w, w) such that w(t) ¹ w(t), for all t ∈ R, we can define the “interval”

Iw
w (t) = {w ∈ X : w(t) ¹ w ¹ w(t)}.

The following result was proved in [22] and it gives sufficient conditions for
the existence of upper and lower asymptotically stable complete trajectories,
and provides some information about the structure of the non-autonomous
attractor.

Theorem 8 Let S be an order-preserving process and A(t) its associated pull-
back attractor attracting time-dependent families of sets in a base of attraction
D. Let w, w ∈ D be such that w(t) ¹ w(t), for all t ∈ R, and assume that

A(t) ⊂ Iw
w (t), ∀t ∈ R.

9



Then there exist two trajectories w∗(t), w∗(t) ∈ A(t) such that

i) w∗(t) ¹ w ¹ w∗(t), ∀t ∈ R and ∀w ∈ A(t).
ii) w∗ (w∗) is minimal (maximal) in the sense that there is no complete

trajectory in the interval Iw∗
w (Iw

w∗).
iii) w∗(t) is globally asymptotically stable from below, that is, for all z ∈ D

with w(t) ¹ z(t) ¹ w∗(t), for all t ∈ R, we have

lim
s→−∞ d(S(t, s)z(s), w∗(t)) = 0.

w∗(t) is globally asymptotically stable from above, that is, for all z ∈ D
with w∗(t) ¹ z(t) ¹ w(t), for all t ∈ R, we have

lim
s→−∞ d(S(t, s)z(s), w∗(t)) = 0.

4 The non-autonomous logistic equation

In the absence of one species, the evolution of the other is given by the non-
autonomous logistic equation





wt −∆w = q(x, t)w − b(t)w2 in Ω× (s, +∞),

w = 0 on ∂Ω× (s, +∞),

w(x, s) = w0(x) in Ω,

(5)

where q ∈ L∞(Ω× (s,∞)) and 0 < b(t) ≤ B for all t ∈ R.
Firstly, we introduce some results which will be very useful. Given f ∈ L∞(Ω)
we denote by λ1(f) the principal eigenvalue of the problem




−∆w + f(x)w = σw in Ω,

w = 0 on ∂Ω,
(6)

and by ϕ1(f) the unique positive eigenfunction such that ‖ϕ1(f)‖∞ = 1. It
is well known that λ1(f) is increasing and continuous in f , decreasing and
continuous in Ω and that if f(x) > 0 in Ω then (see Theorem 6.4 in [23])

lim
β→∞

λ1(βf) = ∞ (7)
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We denote λ1 := λ1(0). Finally, given f ∈ L∞(Ω) and e ∈ R, e > 0, we
consider the nonlinear elliptic equation




−∆w = f(x)w − ew2 in Ω,

w = 0 on ∂Ω.
(8)

The next result collects the main results on the existence and uniqueness of a
positive solution for (8) and some important properties of this solution.

Lemma 9 Problem (8) possesses a positive solution if, and only if, λ1(−f) <
0. Furthermore, if such a solution exists then it is unique: we denote it by
w[f,e] and set w[f,e] ≡ 0 if λ1(−f) ≥ 0. In addition,

a) w[f,e] is bounded below:

−λ1(−f)

e
ϕ1(−f) ≤ w[f,e] in Ω, and (9)

b) The maps f ∈ L∞(Ω) 7→ w[f,e] and e ∈ (0,∞) 7→ w[f,e] are continuous.

PROOF. The existence and uniqueness of a positive solution are well-known,
see for instance [14]. Observe that the pair

(w,w) =

(
−λ1(−f)

e
ϕ1(−f),

fM

e

)

is a sub-supersolution of (8), where fM := ess supx∈Ωf(x). Indeed, it is not
hard to prove that w and w satisfy the following inequalities

−∆w ≤ f(x)w − ew2, −∆w ≥ f(x)w − ew2, in Ω,

and

w = −λ1(−f)

e
ϕ1(−f) ≤ −λ1(−fM)

e
=

fM − λ1

e
<

fM

e
= w.

Thus,

−λ1(−f)

e
ϕ1(−f) ≤ w[f,e] ≤ fM

e
(10)

from which (9) follows. Now, by (10), the continuity of the maps f 7→ w[f,e]

and e 7→ w[f,e] can be obtained. ¤
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The following result provides us with the existence and uniqueness of positive
solution for (5), as well as its “forward” and “pullback” asymptotic behaviour.
We consider the Banach space

C0(Ω) := {u ∈ C(Ω) : u = 0 on ∂Ω}

ordered by its positive cone P := {u ∈ C0(Ω) : u ≥ 0 in Ω}.

Proposition 10 Given w0 ∈ P\{0}, there exists a unique positive solution
of (5), denoted by θ[q,b](t, s; w0), which is strictly positive for t > s. Moreover:

a) θ[q,b](t, s; w0) is increasing in q and decreasing in b.

Now, assume that q(x, t) ≡ q(x). Then,

b) If b(t) = b0 > 0, then ‖θ[q,b0](t, s; w0) − w[q,b0]‖∞ → 0 as t → ∞ or
s → −∞.

c) If λ1(−q) > 0, then ‖θ[q,b](t, s; w0)‖∞ → 0 as t →∞ or s → −∞.
d) If λ1(−q) < 0 and b(t) → 0 when t →∞, then ‖θ[q,b](t, s; w0)‖∞ →∞ as

t →∞.
e) Given t ∈ R and λ1(−q) < 0, there exist V ∈ C(Ω), V > 0, and T (t, w0)

such that

V (x) ≤ θ[q,b](t, s; w0) ≤ r(t) for any s ≤ T (t, w0), (11)

where

r(t) =
e‖q‖∞t

1
2

∫ t
−∞ e‖q‖∞τb(τ) dτ

.

PROOF. The existence and uniqueness follow in a standard way. The pos-
itivity of the solution for t > s follows by the strong maximum principle for
parabolic equations.
For part a), take q1(x, t) ≤ q2(x, t) for all x ∈ Ω, t ≥ s. Then, θ[q1,b](t, s; w0) is
a subsolution of (5) with q = q2, and so by the uniqueness of the solution it
follows that

θ[q1,b](t, s; w0) ≤ θ[q2,b](t, s; w0).

A similar reasoning shows the monotony with respect to b.
Part b) has been proved, for instance, in [4] Lemma 5.1 when t → ∞. As we
have indicated before in the autonomous case

θ[q,b0](t, s; w0) = θ[q,b0](t− s, 0; w0),
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and so the result follows when s → −∞.
For part c), since λ1(−q) > 0 and by the continuity of the principal eigenvalue
with respect to the domain, there exists a regular domain Ω1 such that Ω ⊂
Ω ⊂ Ω1 and

0 < λΩ1
1 (−q) < λ1(−q),

where λΩ1
1 (−q) stands for the principal eigenvalue of (6) in Ω1 with f = −q.

We denote by ϕΩ1
1 (−q) its associated positive eigenfunction and take w :=

Keγ(t−s)ϕΩ1
1 (−q). Then, w is a supersolution of (5) provided that

KϕΩ1
1 (−q) ≥ w0 in Ω,

γ + λΩ1
1 (−q) + Kb(t)eγ(t−s)ϕΩ1

1 (−q) ≥ 0 in Ω× (s,∞).

We can take K sufficiently large and −λΩ1
1 (−q) ≤ γ < 0, and so

θ[q,b](t, s; w0) ≤ Keγ(t−s)ϕΩ1
1 (−q)

whence the result is obtained.
We now prove d). Fix M > 0 and λ1(−q) < 0. Taking

ε := −λ1(−q)

2M
,

since b(t) → 0 as t →∞, there exists tε ∈ R such that for any t ≥ tε

b(t) ≤ ε.

Observe that,

θ[q,b](t, s; w0) = θ[q,b](t, tε; zε,s) (12)

where

zε,s = θ[q,b](tε, s; w0).

Now, by part a) we have that

θ[q,b](t, tε; zε,s) ≥ θ[q,ε](t, tε; zε,s) for t ≥ tε. (13)
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By part b), there exists t1 ∈ R such that for t ≥ t1, we get

θ[q,ε](t, tε; zε,s) ≥ w[q,ε] +
λ1(−q)

2ε
≥ −λ1(−q)

ε
ϕ1(−q) +

λ1(−q)

2ε
,

this last inequality thanks to (9). Therefore, by (12) and (13), for t ≥ t1 we
get

θ[q,b](t, s; w0) ≥ −λ1(−q)

ε
ϕ1(−q) +

λ1(−q)

2ε
,

and so, since ‖ϕ1(−q)‖∞ = 1, we obtain

‖θ[q,b](t, s; w0)‖∞ ≥ M.

This completes part d).
For part e), since b(t) ≤ B for all t ∈ R, it follows that

θ[q,B](t− s, 0; w0) = θ[q,B](t, s; w0) ≤ θ[q,b](t, s; w0)

and the existence of a positive function V follows by part b). On the other
hand,

w := y(t, s; ‖w0‖∞)

is a supersolution of (5), where y(t, s; y0) is the solution of

y′ = ‖q‖∞y − b(t)y2, y(s) = y0

which is given explicitly by

y(t, s; y0) =
e‖q‖∞(t−s)

1
y0

+
∫ t
s e‖q‖∞(r−s)b(r) dr

.

Now, it suffices to let s → −∞. This completes the proof. ¤

Proposition 10 provides us with a complete description of the long-time be-
haviour of the positive solution of (5). In the autonomous case, part b), w[q,b0]

is globally asymptotically stable, and so the species is driven to extinction
when λ1(−q) ≥ 0 and (5) is permanent when λ1(−q) < 0.
In the non-autonomous case, the species is driven to extinction in the “for-
ward” and “pullback” senses when λ1(−q) > 0. However, when λ1(−q) < 0
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there is a drastic change of behaviour: by part d), we cannot expect forward
permanence, whereas in [22] it was proved that for λ1(−q) < 0 equation (5)
is permanent in the pullback sense.

5 Non-autonomous Lotka-Volterra competition model

Our first result in this section guarantees the existence and uniqueness of a
positive solution of (1) and provides some helpful estimates.

Theorem 11 Given u0, v0 ∈ P\{0}, there exists a unique positive solution of
(1), denoted by (u(t, s; u0, v0),v(t, s; u0, v0)), which is strictly positive for t > s.
Moreover,

θ[λ−bθ[µ,c],a] ≤ u ≤ θ[λ,a] θ[µ−dθ[λ,a],c] ≤ v ≤ θ[µ,c]. (14)

PROOF. We take

(u, u) := (θ[λ−bθ[µ,c],a], θ[λ,a]) (v, v) := (θ[µ−dθ[λ,a],c], θ[µ,c]).

Firstly, by Proposition 10 a), it is clear that u ≤ u and v ≤ v. Moreover, it is
not hard to prove that this couple satisfies

ut −∆u = u(λ− a(t)u− bv), ut −∆u = u(λ− a(t)u) ≥ u(λ− a(t)u− bv),

vt −∆v = v(µ− cv − du), vt −∆v = v(µ− cv) ≥ v(µ− cv − du).

Thus the existence of a positive solution of (1) follows from Theorem 8.3.2 in
[31]. Uniqueness follows by a standard argument to complete the proof. ¤

5.1 Asymptotic behaviour forward in time

The asymptotic behaviour of (1) depends on the values of λ and µ. The next
result shows cases where the trivial solution and the semi-trivial one are glob-
ally asymptotically stable, and so at least one species is driven to extinction.

Proposition 12 Suppose λ < λ1.

a) If µ ≤ λ1, then (u(t, s; u0, v0), v(t, s; u0, v0)) → (0, 0) as t →∞.
b) If µ > λ1, then (u(t, s; u0, v0), v(t, s; u0, v0)) → (0, w[µ,c]) as t →∞.
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PROOF. If λ < λ1, then observe that λ1(−λ) = λ1 − λ > 0. Hence, from
(14) and Proposition 10 c) we get that u(t, s; u0, v0) → 0 as t →∞. Similarly,
when µ ≤ λ1 we get that v(t, s; u0, v0) → 0 as t →∞.
Now, we assume µ > λ1. Let δ > 0 be such that µ > λ1 + dδ. For such δ there
exists t0 ∈ R such that

‖u(t, s; u0, v0)‖∞ < δ for any t ≥ t0.

On the other hand, using the definition of θ[q,b] we obtain

u = θ[λ−bv,a] and v = θ[µ−du,c]. (15)

Then, by (14) and Proposition 10 a), we have

θ[µ−dδ,c] ≤ θ[µ−du,c] = v ≤ θ[µ,c], for t ≥ t0.

It is sufficient to apply Proposition 10 b) and the continuity of the map f 7→
w[f,e]. ¤

The following result shows that the system is not permament when λ and µ
satisfy an easily verifiable condition. The system is not permanent because
one species (u) increases indefinitely and drives the other to extinction.

We note here that although under the condition a(t) → 0 the equation is
“asymptotically autonomous” in the sense of Markus [26] (see also more re-
cent works by Thieme [33], Mischaikow et al. [27]) the general results that
are available for such systems are not sufficiently detailed to give us all the
information we need: for example, it is known that if all the solutions of the
limit equation are unbounded then so are the solutions of the non-autonomous
equation [26], but we wish to show that while one species grows without bound
the other is driven to extinction.

Proposition 13 Suppose a(t) → 0 as t →∞. If λ > λ1(bw[µ,c]), then

(u(t, s; u0, v0), v(t, s; u0, v0)) → (∞, 0) as t →∞.

Observe that w[µ,c] = 0 if µ ≤ λ1, so λ > λ1(bw[µ,c]) means λ > λ1 when
µ ≤ λ1.

PROOF. Assume µ ≤ λ1, then by Proposition 10 c) we have that v ≤ θ[µ,c] →
0 as t →∞. Moreover, since λ > λ1, we can obtain that

λ− bθ[µ,c] > λ1 for t ≥ t1.
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Hence,

λ1(−λ + bθ[µ,c]) < λ1(−λ1) = 0,

and so, by Proposition 10 d)

θ[λ−bθ[µ,c],a] →∞,

and the result follows by (14).
Now, suppose µ > λ1 and λ > λ1(bw[µ,c]). We define

ε :=
λ− λ1(bw[µ,c])

2b

Since v ≤ θ[µ,c] → w[µ,c] as t →∞, then there exists tε such that for t ≥ tε

v ≤ w[µ,c] + ε,

and so, by (15)

u = θ[λ−bv,a] ≥ θ[λ−b(w[µ,c]+ε),a], for t ≥ tε.

Since, a(t) → 0 as t →∞, given δ ∈ (0, 1] there exists tδ such that for t ≥ tδ
we have a(t) ≤ δ, and so,

u ≥ θ[λ−b(w[µ,c]+ε),a] ≥ θ[λ−b(w[µ,c]+ε),δ], t ≥ max{tε, tδ}. (16)

Now, observe that

λ1(−λ + bw[µ,c] + bε) = λ1(bw[µ,c])− λ + bε = −λ− λ1(bw[µ,c])

2
< 0. (17)

Taking account (16) and (17), a similar argument to the used in the proof of
Proposition 10 d) shows that given a small positive σ > 0 there exists tσ such
that for t ≥ tσ, we have

u ≥ Φ :=
λ− λ1(bw[µ,c])

2δ
ϕ1(−λ + b(w[µ,c] + ε))− σ. (18)

Taking σ such that

0 < σ <
λ− λ1(bw[µ,c])

4
≤ λ− λ1(bw[µ,c])

4δ
(19)
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we get that

‖u‖∞ ≥ ‖Φ‖∞ ≥ λ− λ1(bw[µ,c])

4δ
.

Hence, it is sufficient to take δ sufficiently small in order to show that u
approaches infinity.
Finally, observe that by (18) we get

v = θ[µ−du,c] ≤ θ[µ−dΦ,c], t ≥ tσ,

and if we can take µ < λ1(dΦ), by Proposition 10 b) we obtain that v goes to
0. But, µ < λ1(dΦ) is equivalent to

µ < λ1

(
λ− λ1(bw[µ,c])

2δ
ϕ1(−λ + b(w[µ,c] + ε))

)
− σ,

which is true by (19) and (7) taking δ sufficiently small. This completes the
proof. ¤

5.2 Pullback asymptotic behaviour

The next two results show “pullback” extinction for some values of λ and µ.
The first one is similar to Proposition 12 and so we omit the proof.

Proposition 14 Suppose λ < λ1.

a) If µ ≤ λ1, then (u(t, s; u0, v0), v(t, s; u0, v0)) → (0, 0) as s → −∞.
b) If µ > λ1, then (u(t, s; u0, v0), v(t, s; u0, v0)) → (0, w[µ,c]) as s → −∞.

Hereafter, we denote A : D(A) 7→ C0(Ω) the linear operator associated to the
Laplacian.

Proposition 15 Given t ∈ R, λ > λ1 and µ ≤ λ1, then

(u(t, s; u0, v0), v(t, s; u0, v0)) → (θ[λ,a](t, s; u0), 0) as s → −∞.

PROOF. Since µ ≤ λ1, then v ≤ θ[µ,c] → 0 as s → −∞. Now, given δ > 0
there exists sδ such that

v(t, s; u0, v0) ≤ δ for s ≤ sδ.
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Hence, by (15), we get

θ[λ−bδ,a] ≤ θ[λ−bv,a] = u ≤ θ[λ,a], for s ≤ sδ,

and so,
θ[λ−bδ,a] − θ[λ,a] ≤ u− θ[λ,a] ≤ 0, for s ≤ sδ.

Thus, it suffices to prove that

wδ := θ[λ−bδ,a] − θ[λ,a] → 0, as δ → 0. (20)

It is not hard to prove that wδ satisfies

(wδ)t −∆wδ = λwδ − bδθ[λ−bδ,a] − a(t)wδ(θ[λ−bδ,a] + θ[λ,a]).

Now, if we denote by

gδ(r, s) = λ− a(r)(θ[λ−bδ,a](r, s; u0) + θ[λ,a](r, s; u0))

and writing wδ from the variation of constants formula, we obtain

wδ(t, s; u0) =

t∫

s

e−A(t−r)(gδ(r, s)wδ(r, s; u0)− bδθ[λ−bδ,a](r, s; u0)) dr,

and so, since
∥∥∥e−A(t−r)

∥∥∥
op
≤ 1, we get

‖wδ(t, s; u0)‖∞ ≤
t∫

s

‖gδ(r, s)‖∞‖wδ(r, s; u0)‖∞ dr+bδ

t∫

s

‖θ[λ−bδ,a](r, s; u0)‖∞ dr,

and by Gronwall’s lemma we obtain

‖wδ(t, s; u0)‖∞ ≤ bδ

t∫

s

‖θ[λ−bδ,a](r, s; u0)‖∞ dr · e
∫ t

s
‖gδ(r,s)‖∞ dr. (21)

On the other hand, by Proposition 10 we have

‖θ[λ−bδ,a](t, s; u0)‖∞ ≤ ‖θ[λ,a](t, s; u0)‖∞ ≤ r(t) for s ≤ T (t),

for some T (t) and r(t) independent of δ. Now, (20) follows by taking δ to zero
in (21). ¤

The next result shows that for a fixed final time t0, the positive solution of
(1) is bounded away by positive functions for s sufficiently small.
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Proposition 16 Fix t0 ∈ R. Assume that

inf
s∈(−∞,t0]

a(s) = α(t0) > 0,

λ > λ1(bw[µ,c]), and µ > λ1(dw[λ,α(t0)]).

Then, there exist s0 ≤ t0 and ei ∈ C0(Ω) positive functions (depending on t0),
such that for all s ≤ s0:

u(t0, s; u0, v0) ≥ e1 and v(t0, s; u0, v0) ≥ e2.

PROOF. Since α(t0) ≤ a(t) ≤ A for all t ≤ t0, we have

θ[λ,A](t0, s; u0) ≤ θ[λ,a](t0, s; u0) ≤ θ[λ,α(t0)](t0, s; u0) for s ≤ t0.

Since λ > λ1(bw[µ,c]), µ > λ1(dw[λ,α(t0)]), we can choose ε > 0 sufficiently small
such that

λ > λ1(b(w[µ,c] + ε)), and µ > λ1(d(w[λ,α(t0)] + ε)). (22)

For such ε > 0, and by Proposition 10 b), we obtain

w[λ,A] − ε ≤ θ[λ,a](t0, s; u0) ≤ w[λ,α(t0)] + ε for s ≤ s0,

for some s0. Using again Proposition 10 a) and (14), we get

θ[µ−d(w[λ,α(t0)]+ε),c] ≤ v, for s ≤ s0. (23)

On the other hand, by Proposition 10 a)

θ[λ−bθ[µ,c],A] ≤ θ[λ−bθ[µ,c],a] ≤ u

and by part b),

w[µ,c] − ε ≤ θ[µ,c](t0, s; u0) ≤ w[µ,c] + ε for s ≤ s0,

and so,

θ[λ−b(w[µ,c]+ε),A] ≤ u. (24)
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Now, by Proposition 10 b), we have that as s → −∞,

θ[µ−d(w[λ,α(t0)]+ε),c] → w[µ−d(w[λ,α(t0)]+ε),c],

θ[λ−b(w[µ,c]+ε),A] → w[λ−b(w[µ,c]+ε),A].

Proposition 10 b), (22), (23) and (24) complete the proof. ¤

Assuming that a(t) tends to a positive constant as t → −∞, we obtain a
similar result to Proposition 16 but where the conditions on λ and µ do not
depend on t.

Corollary 17 Assume a(t) → a0 > 0 as t → −∞, for each t ∈ R

inf
s∈(−∞,t]

a(s) = α(t) > 0,

λ > λ1(bw[µ,c]) and µ > λ1(dw[λ,a0]).

Then, for all t ∈ R, there exist s0(t) ≤ t and fi ∈ C0(Ω) positive functions
(depending on t), such that for all s ≤ s0 it holds:

u(t, s; u0, v0) ≥ f1 and v(t, s; u0, v0) ≥ f2.

PROOF. Since µ > λ1(dw[λ,a0]) and from the continuity of the map e 7→
w[λ,e], there exists ε > 0 such that µ > λ1(dw[λ,a0−ε]). On the other hand,
since a(t) → a0 as t → −∞, there exists T ∈ R such that for all t ≤ T ,
a0 − ε ≤ α(t) ≤ a(t) ≤ A. Then, for any t0 ≤ T we have that

µ > λ1(dw[λ,α(t0)]),

and so by Proposition 16, we get that there exist two positive functions ei

such that

u(t0, s; u0, v0) ≥ e1 and v(t0, s; u0, v0) ≥ e2.

Furthermore, for all t ≥ t0 we have

u(t, s; u0, v0) = u(t, t0; u(t0, s; u0, v0), v(t0, s; u0, v0))

from which, by the strong maximum principle, we obtain the result. ¤
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6 Existence of a non-autonomous attractor and pullback perma-
nence for the Lotka-Volterra competition model

We define X := C0(Ω) × C0(Ω) and the following process in X: for t, s ∈ R,
t ≥ s,

S(t, s) : X 7→ X; S(t, s)(u0, v0) = (u(t, s; u0, v0), v(t, s; u0, v0)),

where (u(t, s; u0, v0), v(t, s; u0, v0)) is the unique positive solution of (1) for
u0, v0 ∈ P . Moreover, in X we define the following order: given (u1, v1), (u2, v2) ∈
X,

(u1, v1) ¹ (u2, v2) if, and only if, u1 ≤ u2 and v1 ≥ v2,

where “≤” is the order defined by P in C0(Ω). It is well-known, see [15],
that S(t, s) is an order-preserving process, that is, if (u1, v1) ¹ (u2, v2), then
S(t, s)(u1, v1) ¹ S(t, s)(u2, v2). Moreover, we consider the norm |(u, v)|∞ =
‖u‖∞ + ‖v‖∞ in X.

In the next two sections we will prove the existence of a non-autonomous
attractor for (1).

6.1 Absorbing set in X

Let D ⊂ X be bounded, i.e., supd∈D |d|∞ ≤ M, for M > 0, and (u0, v0) ∈ D.
By (14) and Proposition 10 e), there exists T (t, u0, v0) ∈ R such that

‖u(t, s; u0, v0)‖∞ ≤
∥∥∥θ[λ,a](t, s; u0)

∥∥∥∞ ≤ rλ(t) for s ≤ T (t), (25)

where

rλ(t) =
2eλt

∫ t
−∞ eλτa(τ) dτ

.

Similarly,

‖v(t, s; u0, v0)‖∞ ≤ rµ(t) for s ≤ T (t), (26)

where

rµ(t) =
2eµt

c
∫ t
−∞ eµτ dτ

=
2µ

c
.
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Clearly, this means that the ball in X with radius r1(t) = rλ(t) + rµ(t),
BX(0, r1(t)), is absorbing for the process S(t, s).

6.2 Absorbing set in C1
0(Ω)× C1

0(Ω)

In order to obtain a family of absorbing sets in C1
0(Ω) we need the following

result from [28], see also Lemma 3.1 in [4]. Here, for a Banach space Y, Y β

will denote the usual fractional power spaces with norm |·|β. Recall that A :

D(A) 7→ C0(Ω) is the linear operator associated to the Laplacian.

Lemma 18 The operator A generates an analytic semigroup on Y = Ck
0 (Ω)

for k = 0, 1. Moreover

Y β ↪→ Ck+q
0 (Ω) for q = 0, 1 and 2β > q.

Given D ⊂ X bounded, we define for r ≥ s

h(r, s) = λu(r, s; u0, v0)− a(r)u2(r, s; u0, v0)− bu(r, s; u0, v0)v(r, s; u0, v0).

Then, writing u from the variation of constants formula, we obtain

u(t, s; u0, v0) = e−A(t−s)u0 +

t∫

s

e−A(t−r)h(r, s) dr.

Hence, between t− 1 and t, we get

u(t, s; u0, v0) = e−Au(t− 1, s; u0, v0) +

t∫

t−1

e−A(t−r)h(r, s) dr.

Hence,

|u(t, s; u0, v0)|β =
∥∥∥Aβu(t, s; u0, v0)

∥∥∥∞ ≤
∥∥∥Aβe−A

∥∥∥
op
‖u(t− 1, s; u0, v0)‖∞ +

supr∈[t−1,t] ‖h(r, s)‖∞
∫ t
t−1

∥∥∥Aβe−A(t−r)
∥∥∥

op
dr.

Now, using the estimate

∥∥∥Aβe−A(t−r)
∥∥∥

op
≤ Cβ(t− r)−βe−δ(t−r)
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for some constants Cβ, δ > 0 (cf. Henry [13]), and the estimates (25) and (26),
we obtain the existence of M(t) and T0(t) such that

|u(t, s; u0, v0)|β ≤ M(t) for all s ≤ T0(t),

with β < 1 − ε, and any ε ∈ (0, 1). Applying now Lemma 18 with q = 1 and
β > 1/2, we obtain

‖u(t, s; u0, v0)‖C1 ≤ R1(D, t) for all s ≤ T0(t).

Similarly, it can be proven that

‖v(t, s; u0, v0)‖C1 ≤ R2(D, t) for all s ≤ T0(t),

for some R2(D, t), and so the ball in C1
0(Ω)× C1

0(Ω), B(0, R(t)) is absorbing
in C1

0(Ω) × C1
0(Ω), for R(t) = R1(t) + R2(t), where again we have used the

norm |(u, v)|C1(Ω) = ‖u‖C1(Ω) + ‖v‖C1(Ω) in C1
0(Ω)× C1

0(Ω).

We can repeat the argument taking Y = C1
0(Ω) and D a bounded set in Y ×Y .

In this case, using Lemma 18 again, we obtain

‖u(t, s; u0, v0)‖C2 ≤ N(D, t) for all s ≤ T1(t),

and hence, the existence of an absorbing set that is bounded in C2
0(Ω)×C2

0(Ω),
and so compact in X.

Analogously we can show the existence of the global attractor A+ attracting
every bounded set in X0.

6.3 On the structure of the pullback attractor and pullback permanence

In this section we apply the results of Section 3 to our model. We take

w(t) = (0, rµ(t)) and w(t) = (rλ(t), 0).

Firstly, observe that w(t) ¹ w(t). On the other hand, by (25) and (26) it
follows that

A(t) ⊂ Iw
w (t).
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Finally, we define the base of attraction in our model as

D := {w : R 7→ X continuous, such that, lim
s→−∞

eγs

‖w(s)‖∞
= 0}

where γ = min{λ, µ}. Note, that given w = (u, v) ∈ D,

lim
s→−∞ dist(S(t, s)(u(s), v(s)),A(t)) = 0. (27)

Indeed, we have that for s small enough

‖u(t, s; u(s), v(s))‖∞ ≤ ‖θ[λ,a](t, s; u(s))‖∞ ≤ eλt

eλs

‖u(s)‖∞ +
∫ t
s eλτa(τ) dτ

≤ rλ(t).

Moreover, it is clear that (w,w) ∈ D. So, applying Theorem 8, there exist
complete trajectories w∗ (minimal) and w∗ (maximal) that are stable in the
sense of Theorem 8.
In a similar way, for A+ we can also apply Theorem 8 for

w(t) = (f1(t), rµ(t)), w(t) = (rλ(t), f2(t)),

so that, for strictly positive initial data, the non-autonomous attractor is
bounded above and below by strictly positive bounds. Finally, we can con-
clude the pullback permanence of our model.

Theorem 19 Assume that a(t) → a0 > 0 as t → −∞, for each t ∈ R

inf
s∈(−∞,t]

a(s) = α(t) > 0,

λ > λ1(bw[µ,c]) and µ > λ1(dw[λ,a0]).

Then (1) is permanent in the pullback sense.

PROOF. We write X = X0 ∪ ∂X0, where X0 = (intP )2 and ∂X0 = X \X0.
The permanence follows with

U(t) = {w ∈ X : (f1(t), rµ(t)) ¹ w ¹ (rλ(t), f2(t))},

where f1, f2 are defined in Corollary 17 and rλ and rµ in (25) and (26), respec-
tively. By Section 6.1, U(t) is absorbing and by Corollary 17 Dist(U(t), ∂X0) >
0. This completes the proof. ¤
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7 Conclusions

We have considered a Lotka-Volterra system with a non-autonomous term that
produces only a weak dissipativity effect. This effect is so weak that there are
no bounded absorbing sets, and hence we cannot expect any kind of perma-
nence as t → ∞. In order to understand the dynamics of the system further
we have introduced the concept of “pullback permanence”: for our example we
could show the existence of a time dependent family of sets, bounded above
and below by positive functions, that absorbs every trajectory of the system
“in the pullback sense”. This gives a sense in which, even though one species
will eventually die out, the system exhibits some kind of permanence: at any
time t0, no matter how long the system has been running, the species numbers
are uniformly bounded below.
We note here that the region in the (λ, µ)-plane defined by λ > λ1(bw[µ,c])
and µ > λ1(dw[λ,a0]) can be empty depending on the values of the parameters
a0, b, c and d (cf. Section 7 in [24]). Even in the autonomous case, a(t) = a > 0,
results of permanence are not known when bc is large with respect to ad. In
this case the region defined by λ > λ1(bw[µ,c]) and µ > λ1(dw[λ,a]) is empty,
and it is known that if λ and µ belong to the region defined by λ < λ1(bw[µ,c])
and µ < λ1(dw[λ,a]), then there exists an unstable stationary positive solution
of (1) (cf. Theorem 5.3 in [25]).
To understand the behaviour of this model in more detail would require an
analysis of the local stability and instability of the complete trajectories that
play a major role in the dynamics. There is some progress on this for the ODE
version of (1) (see Langa et al. [21]), but in general the subject is still in its
infancy: even one-dimensional non-autonomous examples show a much richer
and more complex dynamics than their corresponding autonomous counter-
parts (cf. Langa et al. [20]).
As emphasized above, the notion of “pullback permanence” that we have de-
fined is not intended as a candidate to replace the standard definition. Rather
we believe that the results presented here offer strong evidence that the pull-
back procedure is a valuable tool with which we can further our understanding
of non-autonomous systems.
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