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Abstract

In this paper we study a three dimensional mutualistic model of
two plants in competition and a pollinator with cooperative relation
with plants. We compare the dynamical properties of this system with
the associated one under absence of the pollinator. We observe how co-
operation is a common fact to increase biodiversity, which it is known
that, generically, holds for general mutualistic dynamical systems in
Ecology as introduced in [4]. We also give mathematical evidence on
how a cooperative species induces an increased biodiversity, even if
the species is push to extinction. For this fact, we propose a neces-
sary change in the model formulation which could explain this kind of
phenomenon.

1 Introduction

A mathematical model for mutualistic networks in Ecology has been pro-
posed in Bastolla et al. [4]. Basically, it is studied how interactions between
groups of plants and pollinators affect to the whole network. In particular,
the authors analyze the net of connections between groups of competitive
species (the group of plants and the groups of animals) and the cooperative
links between plants and pollinators (see also [1, 2, 3]). The mathemati-
cal model reads as follows: suppose P is the total number of plants and A
the total number of animals. We suppose that plants (and animals) are in
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competition and plants and animals have cooperation links. Then, we can
write the following system of P + A differential equations for Spi and Sai

the species density populations for the i-th species of plant and of animal
respectively:



dSpi

dt
= αpiSpi −

P∑
j=1

βpijSpiSpj +
A∑
k=1

γpik
SpiSak

1 + hP
∑A

l=1 γpil
Sal

dSai

dt
= αaiSai −

A∑
j=1

βaijSaiSaj +
P∑
k=1

γaik
SaiSpk

1 + hA
∑P

l=1 γail
Spl

Spi(0) = Spi0

Sai(0) = Sai0

(1)

for each pi for 1 ≤ i ≤ P and ai with 1 ≤ i ≤ A. Here, the real numbers αpi

and αai represent the intrinsic growth rates in the absence of competition
and cooperation for plants and animals, respectively, βpij ≥ 0 and βaij ≥ 0
denote the competitive interactions and γpij ≥ 0 and γaij ≥ 0 the mutualistic
interactions. Finally, the parameters hP and hA represent the handling time.

For this model, the authors study in [4] how the architecture of a mu-
tualistic network, i.e, the topology of connections between species increases
biodiversity in the system. Indeed, it is observed that the more nestedness
of the network, the more probability for a richer biodiversity. In particular,
and from a dynamical system approach related to (1), this means that the
presence of highly linked cooperative species in the system produces coexis-
tence of species that would go to extinction without them. But the authors
go even further, and explain how the more nestedness species (a topologi-
cal property of the system), the more capacity of the network to increase
biodiversity (a dynamical fact of the system). This is what we will refer to
as:

Phenomenon 1: The presence of nested cooperative species contributes to
increase biodiversity.

Very recently, the authors of [11] go further and reveal a very interesting
and intriguing behaviour of mutualistic networks. They prove that it is a
general fact not only in population dynamics, but also in economical systems.
Essentially, it holds that ‘although strong contributors to nestedness are more
important for the persistence of the entire network, they are also more prone
to extinction compared to those nodes that contribute proportionally less”
([11], page 234). We will called it as:
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Phenomenon 2: Strong contributors to biodiversity (i.e., species which
presence induce an increased biodiversity) are more vulnerable to

extinction.

In this paper we want to give mathematical evidence to both of these
phenomena for a simplified model. Indeed, we will focus in the simplest
case, i.e., a 3D mutualistic system in which we find two plants (u1 and u2)
in competition and a pollinator (u3) with cooperative relations with them

u′1 = u1(α1 − u1 − βu2 + γ1u3)
u′2 = u2(α2 − u2 − βu1 + γ1u3)
u′3 = u3(α3 − u3 + γ2u1 + γ2u2),
(u1(0), u2(0), u3(0)) = (u0

1, u
0
2, u

0
3),

(2)

where α1, α2, α3 ∈ IR, 0 < β < 1, γ1, γ2 > 0 and we suppose positive initial
data. Observe that in (2) we are assuming that the competition is of mean
field type (see [4]) (βaij = βpij = (β + (1 − β)δij) where δij is Kronecker’s
delta) and also mean field mutualist interactions γpij = γ1 and γaij = γ2 and
hA = hP = 0. This last fact (hA = hP = 0) will made us to concentrate in
the weak cooperation regime (see Theorem 2.3), which highly differs from
the strong cooperation regime, and goes out of the aims for this work.

In absence of the pollinator, we get a 2D competitive Lotka-Volterra
system, for which all its dynamical behaviour is well-known in the literature
(see for instance [10], [14] and Lemma 2.1). However, less is known in the
3D system due mainly to the lack of order in the problem. Indeed, when u1

and u2 cooperate and u3 compite with both of them, the system generates
monotone flows, see [12] and [15], but this is not the situation in our case.

From a dynamical point of view, and following [4, 11], Phenomenon 1 for
(2) means that the presence of the cooperative species u3 makes the coexis-
tence of species u1 and u2 which (one of both of them) are lead to extinction
in absence of u3. We will study in detail regions in which Phenomenon 1
holds, concluding the high generality of this behaviour.

Phenomenon 2 is more surprising (see [11]) and will not be observed with
such a generality. We are looking for an increasing of biodiversity under
the appearance of species u3, i.e., coexistence of u1 and/or u2 which were
extincted if u3 is not present. But we also want u3 is push to extinction as
time is increased. We will prove that this phenomena is impossible. Indeed,
we show that the asymptotic dynamical behaviour of (2) with u3 → 0 as
t → ∞ is the same as the associated competitive system for (u1, u2) with
u3 = 0, so that no increasing in coexistence species (and hence biodiversity)
can be observed.
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However, from [13, 4] we know that cooperative links in a network
reduces competition. In particular, the rate of competition between two
species is decreased if they have a common cooperative link with another
species. This fact is crucial, and lead to a non-trivial modification of the gen-
eral model (1) in order to take into account this behaviour. Mathematically,
we find it as a possible explanation for Phenomenon 2 to hold generically.
Indeed, we give mathematical reason to this fact for our 3D model (2), by
increasing the rate of competition to β0 > β if u3 = 0. Indeed, we will study
and compare the qualitative behaviour of systems (2) and{

u′1 = u1(α1 − u1 − β0u2)
u′2 = u2(α2 − u2 − β0u1)

(3)

with β0 > β.
In this framework, we analyze all possible regions in which Phenomenon

2 also holds. As a consequence, we conclude that the general model (1) has
to be modified to include the fact of dependence of the rate of competition
on mutualism links among species.

An outline of this work is as follows: in Section 2 we prove existence,
uniqueness and extinction results for (2). Section 3 is devoted to study
stationary points and their stability. Permanence of the model is shown
in Section 4. In Sections 5 and 6 we discuss zones and simulations for
Phenomena 1 and 2. In the last section, we suggest a possible modification
for general model (1).

2 Existence and uniqueness of solutions

In this section, we show existence and uniqueness of positive solution for
(2). Firstly, let us recall some important results. Consider the system:

u′ = u(λ−Au−Bv)
v′ = v(µ−Dv − Cu)
(u(0), v(0)) = (u0, v0),

(4)

with λ, µ ∈ IR, A,D > 0 and B,C ∈ IR. It holds (see, for instance, [10] and
[14]):

Lemma 2.1. a) Assume that B,C > 0 (competitive case) and BC <
AD.

(a) If λ, µ < 0 then (u, v)→ (0, 0) as t→∞.
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(b) If λ > 0 and µ < λCA then (u, v)→ (λ/A, 0) as t→∞.
(c) If µ > 0 and λ < µBD then (u, v)→ (0, µ/D) as t→∞.

(d) If µ > λCA and λ > µBD then (u, v) → ( λD−BµAD−BC ,
µA−Cλ
AD−BC ) as

t→∞.

b) Assume now that B,C < 0 (cooperative case):

(a) If BC > AD, then for λ, µ > 0 there exists a blow-up in finite
time.

(b) Assume that BC < AD.
i. If λ, µ < 0 then (u, v)→ (0, 0) as t→∞.

ii. If λ > 0 and µ < λCA then (u, v)→ (λ/A, 0) as t→∞.
iii. If µ > 0 and λ < µBD then (u, v)→ (0, µ/D) as t→∞.
iv. If µ > λCA and λ > µBD then (u, v) → ( λD−BµAD−BC ,

µA−Cλ
AD−BC ) as

t→∞.

As consequence of the above results, we obtain:

Corollary 2.2. Assume that B,C < 0, BC < AD, µ > λCA and λ > µBD .
Then, for any ε > 0 there exists t0 > 0 such that for t ≥ t0 we have that

u ≤ λD −Bµ
AD −BC

+ ε, v ≤ µA− Cλ
AD −BC

+ ε.

In the following result we show existence and uniqueness of positive
solution for (2) under the condition

γ1γ2 <
1 + β

2
.

Moreover, the result shows that this condition is optimal in some way.

Theorem 2.3. a) Assume that (weak cooperation regime)

(H1) γ1γ2 <
1 + β

2
.

Then, there exists a unique positive bounded solution of (2) for all
t > 0.

b) Assume that (strong cooperation regime)

(H2) γ1γ2 >
1 + β

2
.

Then, if α1 = α2 > 0 and α3 > 0, then the unique solution of (2)
blows up in finite time.
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Proof. a) It is well-known the existence and uniqueness of positive solution
for small time t > 0. We are going to prove that the solutions are bounded
for all t > 0. Denote by

w := u1 + u2.

Assume for instance that α1 ≤ α2. Then,

w′ ≤ α2w − u2
1 − u2

2 − 2βu1u2 + γ1wu3.

Then, using that

−u2
1 − u2

2 − 2βu1u2 ≤ −
1 + β

2
w2

we obtain that {
w′ ≤ w(α2 −

1 + β

2
w + γ1u3)

u′3 = u3(α3 − u3 + γ2w),

that is, (w, u3) is a subsolution of the system.
w′ = w(α2 −

1 + β

2
w + γ1u3)

u′3 = u3(α3 − u3 + γ2w),
w(0) = u0

1 + u0
2, u3(0) = u0

3.

(5)

Thus, by (H1) and using Corollary 2.2, (w, u3) is bounded for all t > 0.
b) Assume now (H2). Denote by (w1, w2) the solution of{

w′1 = w1(α1 −
1 + β

2
w1 + γ1w2)

w′2 = w2(α3 − w2 + γ2w1).
(6)

Observe that since α1 = α2, ((1/2)w1, (1/2)w1, w2) is a solution of (2). By
(H2) and Lemma 2.1 the solution blows up in finite time. This concludes
the proof.

From now on we assume (H1). In the rest of this section, we show
regions where some of the species goes to the extinction. We firstly need the
following lemma:

Lemma 2.4. Denote by w = u1 + u2. Then, for t large enough,

w ≤ max{α1, α2}+ γ1α3

1 + β

2
− γ1γ2

,

α3 ≤ u3 ≤
α3

1 + β

2
+ γ2 max{α1, α2}

1 + β

2
− γ1γ2

.

(7)
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Proof. Assume α1 ≤ α2, then (w, u3) is sub-solution of (5). Now, the upper
bounds of (7) follow by Corollary 2.2.

On the other hand,
u′3 ≥ u3(α3 − u3)

and so u3 ≥ α3 for large t.

Lemma 2.5. Assume that α1 ≤ α2.

a) If α2, α3 < 0, then, (u1, u2, u3)→ (0, 0, 0) as t→∞.

b) Assume that α2 > 0 and α3 < 0 with

α3 < −α2
2γ2

1 + β
,

then u3 → 0.

c) Assume that α3 > 0 and α2 < 0 with

α3 < −
α2

γ1
,

then (u1, u2, u3)→ (0, 0, α3) as t→∞.

Proof. The result follows using again that (w, u3) is subsolution of (5) and
Lemma 2.1.

Remark 2.6. In the case when u3 → 0, then (u1, u2) behaves as the com-
petitive system (4), see Lemma 6.1.

3 Analysis of stability

From the result in the last section, we can suppose from now on that for (2)
and (3) it holds that

(H) 0 < β < β0 < 1, γ1γ2 <
1 + β

2
(< 1).
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3.1 Stationary points and stability for the 2D model

Firstly we rewrite part a) in Lemma 2.1 for our 2D Lotka-Volterra system
(3):

Lemma 3.1. a) If α1, α2 < 0, then solution (0, 0) is globally stable.

b) If α1 > 0 and α2 < β0α1, then the solution E10 = (α1, 0) is globally
stable.

c) If α2 > 0 and α1 < β0α2, then the solution E01 = (0, α2) is globally
stable.

d) If α1 > β0α2 and α2 > β0α1, then the solution

E11 =
(
α1 − β0α2

1− β2
0

,
α2 − β0α1

1− β2
0

)
is globally stable.

3.2 Stationary points and stability for the 3D model

Note that we can get the stationary points of (2) explicitly:

E0 = (0, 0, 0), E100 = (α1, 0, 0), E010 = (0, α2, 0), E001 = (0, 0, α3),

E011 =
(

0,
α2 + γ1α3

1− γ1γ2
,
α3 + γ2α2

1− γ1γ2

)
,

E101 =
(
α1 + γ1α3

1− γ1γ2
, 0,

α3 + γ2α1

1− γ1γ2

)
,

E110 =
(
α1 − βα2

1− β2
,
α2 − βα1

1− β2
, 0
)
,

E111 =



α1(1− γ1γ2) + α2(γ1γ2 − β) + α3γ1(1− β)
(1− β)(1 + β − 2γ1γ2)

α1(γ1γ2 − β) + α2(1− γ1γ2) + α3γ1(1− β)
(1− β)(1 + β − 2γ1γ2)

(α1 + α2)γ2 + α3(1 + β)
1 + β − 2γ1γ2



t

.

To analyze the stability of these points, we calculate the eigenvalues of the
Jacobian. Denote by J(u1, u2, u3) the Jacobian matrix in a stationary point
(u1, u2, u3). We have:
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J(u1, u2, u3) = α1 − 2u1 − βu2 + γ1u3 −βu1 γ1u1

−βu2 α2 − 2u2 − βu1 + γ1u3 γ1u2

γ2u3 γ2u3 α3 − 2u3 + γ2(u1 + u2)

 .

Proposition 3.2. a) The eigenvalues of J(E0) are α1, α2, α3.

b) The eigenvalues of J(E100) are −α1, α2 − βα1, α3 + γ2α1.

c) The eigenvalues of J(E010) are α1 − βα2,−α2, α3 + γ2α2.

d) The eigenvalues of J(E001) are α1 + γ1α3, α2 + γ1α3,−α3.

e) Then J(E011) has three real eigenvalues, two of them are negative and
the other one is:

λ011 =
α1(1− γ1γ2) + α2(γ1γ2 − β) + α3γ1(1− β)

1− γ1γ2
.

f) J(E101) has three real eigenvalues, two of them are negative and the
other one is:

λ101 =
α1(γ2γ1 − β) + α2(1− γ1γ2) + α3γ1(1− β)

1− γ2γ1
.

g) J(E110) has three real eigenvalues, two of them are negative and the
other one is:

λ110 =
(α1 + α2)γ2 + α3(1 + β)

1 + β
.

h) Assume that the three components of E111 are positive. If γ1γ2 <
(1 + β)/2 then E111 is locally stable.

Proof. Paragraphs a)-d) are direct. Let us prove e); f) and g) follow simi-
larly. Recall that

E011 = (0, u∗2, u
∗
3) :=

(
0,
α2 + γ1α3

1− γ1γ2
,
α3 + γ2α2

1− γ1γ2

)
.

Then, denoting by I the identity matrix, we have

det(λI−J(E011)) = (λ−α1 +βu∗2−γ1u
∗
3)(λ2 +λ(u∗2 +u∗3)+(1−γ1γ2)u∗2u

∗
3).
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Now, since γ1γ2 < 1, it is clear that λ2 + λ(u∗2 + u∗3) + (1 − γ1γ2)u∗2u
∗
3 = 0

has two real negative roots. The other eigenvalue is given by

λ011 = α1 − βu∗2 + γ1u
∗
3 =

α1(1− γ1γ2) + α2(γ1γ2 − β) + α3γ1(1− β)
1− γ1γ2

.

h) Denote by E111 = (u∗1, u
∗
2, u
∗
3) and assume that u∗i > 0, i = 1, 2, 3. We

have that
J(E111) = −diag(u∗1, u

∗
2, u
∗
3)B

where

B =

 1 β −γ1

β 1 −γ1

−γ2 −γ2 1

 .

Observe that since β < 1, we have that γ1γ2 < 1 and then B is quasi weakly
diagonally dominant (see [6]). Thus, by Theorem 3 in [6] it follows that
E111 is stable if det(B) = 1 + 2γ1γ2(β − 1) − β2 > 0, or equivalently, if
γ1γ2 < (1 + β)/2.

From this last result, now it is clear that existence and stability of equi-
libria for systems (2) and (3) depend on positions of the following seven
straight lines in the (α1, α2)-plane:

r1 ≡ α2 = β0α1,

r2 ≡ α2 =
1
β0
α1,

r3 ≡ α2(γ1γ2 − β) = −α1(1− γ1γ2)− α3γ1(1− β),

r4 ≡ α2(1− γ1γ2) = −α1(γ1γ2 − β)− α3γ1(1− β),

r5 ≡ α2 = −α1 − α3
1 + β

γ2
,

r6 ≡ α2 = βα1,

r7 ≡ α2 =
1
β
α1,

We would like to point out that, thanks to Proposition 3.2, when the
components of E111 are positive then the semi-trivial points E011, E101 and
E110 are unstable. Indeed, observe that the components of E111 are positive
if:

α1(1− γ1γ2) + α2(γ1γ2 − β) + α3γ1(1− β) > 0,
α1(γ1γ2 − β) + α2(1− γ1γ2) + α3γ1(1− β) > 0,
(α1 + α2)γ2 + α3(1 + β) > 0.

(8)

Fix α3. Let us analyze (8) in the (α1, α2)-plane. The region defined by (8)
depends on the size of γ1γ2 with respect to β.
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3.3 Case γ1γ2 < β.

In this case, conditions in (8) are equivalent to

α2 < α1

(
1− γ1γ2

β − γ1γ2

)
+ α3γ1

(
1− β

β − γ1γ2

)
,

α2 > α1

(
β − γ1γ2

1− γ1γ2

)
− α3γ1

(
1− β

1− γ1γ2

)
,

α2 > −α1 −
α3

γ2
(1 + β).

(9)

Observe that

r3 ∩ r4 = (−α3γ1,−α3γ1), r3 ∩ r5 = (−βα3

γ2
,−α3

γ2
), r4 ∩ r5 = (−α3

γ2
,−βα3

γ2
).

(10)
It is not hard to show that this region is not empty, see Figure 1. Observe
that in the case α3 > 0, r5 does not impose any restriction.
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Figure 1: Weak cooperation areas for α3 > 0 and α3 < 0 respectively, where
the positive equilibrium E111 exists.

3.4 Case β < γ1γ2.

In this case, conditions (8) are equivalent to

α2 > −α1

(
1− γ1γ2

γ1γ2 − β

)
− α3γ1

(
1− β

γ1γ2 − β

)
,

α2 > −α1

(
γ1γ2 − β
1− γ1γ2

)
− α3γ1

(
1− β

1− γ1γ2

)
,

α2 > −α1 −
α3

γ2
(1 + β).

(11)
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Figure 2: Strong cooperation areas for α3 > 0 and α3 < 0 respectively,
where the positive equilibrium E111 exists.

Remark 3.3. In the particular case β = γ1γ2, (8) is equivalent to

α1 > −α3γ1,
α2 > −α3γ1,

α2 > −α1 −
α3

γ2
(1 + β).

(12)

4 Permanence and global stability

In this section we give global results on the asymptotic behaviour of solutions
for our model (2). Observe that the analysis in the previous section only
gives local stability or unstability properties of equilibria. In this section we
firstly prove the global property that (2) is permanent under some conditions
on the data of the problem. For that, we are going to use average Lyapunov
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function approach, (see [9] or [5]). Then, we prove that, in fact, the positive
equilibrium E111 is globally stable, by the existence of a Lyapunov function.
As this last result is, in general, more restrictive, we have decided to keep
both approaches in order to take them into account when studying more
general systems as (1).

4.1 Permanence

In order to formalize a global result on permanence for model (2), we need
some notation. Define the map

π : K × [0,∞) 7→ K, π((u0
1, u

0
2, u

0
3), t) := (u1, u2, u3)

where (u1, u2, u3) is the unique solution of (2) in t initially in (u0
1, u

0
2, u

0
3)

and K = IR3
+. We will show some properties of π later.

Definition 4.1. We say that (2) is permanent if there exists a bounded set
U ⊂ K such that

a) inf
u∈U

d(u, ∂K) > 0, where d(u, ∂K) = inf
v∈∂K

d(u, v), and

b) lim
t→∞

d(π((u0
1, u

0
2, u

0
3), t), U) = 0 for all (u0

1, u
0
2, u

0
3) ∈ int(K).

Our main result reads as follows

Theorem 4.2. Assume (8). Then system (2) is permanent.

For that, we use the following result (see Corollary 2.3 of [9] or Theorems
4.1 and 4.2 in [5]).

Theorem 4.3. Assume that π is dissipative and π(·, t) is compact for t ≥ t0
for some t0 > 0. Let A denote the global attractor for π and

X ′ := π(B(A, ε), [t0,∞)) and X ′′ := π(X ′, t′)

for some t′ large, with B(A, ε) is an ε-neighbourhood of A. Finally, let

S := X ′′ ∩ ∂K.

Assume that there exists a continuous function P : X ′′ 7→ [0,+∞) with
P (u1, u2, u3) = 0 if and only if (u1, u2, u3) ∈ S, and define

a(t, (z1, z2, z3)) = lim inf
(U1,U2,U3,)→(z1,z2,z3)

(
P (π(U1, U2, U3, t))
P (U1, U2, U3)

)
, (13)
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with (U1, U2, U3) ∈ X ′′ \ S. Then, (2) is permanent if

sup
t>0

a(t, (z1, z2, z3)) >
{

1 (z1, z2, z3) ∈ ω(S),
0 (z1, z2, z3) ∈ S,

where ω(S) =
⋃
s∈S ω(s) with ω(s) the omega-limit set of s.

Proof of Theorem 4.2. Since π arises from an ODE, and from Theorem 2.3
and Lemma 2.4, π(·, t) is a compact map from K to K and also π is dissipative
for t > t0 for some t0 ≥ 0, and so π has a global attractor A. Now we need
to build a continuous function P verifying the hypotheses of Theorem 4.3.
It is clear that

S ⊂ {(u1, u2, u3) ∈ K : u1 = 0 or u2 = 0 or u3 = 0},

and so
ω(S) = {E0, E100, E010, E001, E110, E011, E010}.

Define
P (u1, u2, u3) := uβ1

1 u
β2
2 u

β3
3

or equivalently written as

P (u1, u2, u3) = exp (β1log(u1) + β2log(u2) + β3log(u3)) , (14)

with β1, β2 and β3 positive constants to be chosen.
Denoting by (u1, u2, u3) = π(U1, U2, U3, t), we have that

P (π(U1, U2, U3, t))
P (U1, U2, U3)

= exp (β1(log(u1(t))− log(U1))+

+β2(log(u2(t))− log(U2)) + β3(log(u3(t))− log(U3))) ,

and using the fact that log(f(t))− log(f(0)) =
∫ t
0 f
′(s)/f(s)ds for a positive

and regular function f , we get

P (π(U1, U2, U3, t))
P (U1, U2, U3)

= exp

(
β1

∫ t

0
(α1 − u1 − βu2 + γ1u3)ds+

β2

∫ t

0
(α2 − u2 − βu1 + γ1u3)ds+ β3

∫ t

0
(α3 − u3 + γ2(u1 + u2))ds

)
.

(15)
Now, since u1, u2 and u3 are bounded, there exist d1, d2, d3 ∈ IR such that

P (π(U1, U2, U3, t))
P (U1, U2, U3)

≥ exp {(β1d1 + β2d2 + β3d3)t} ,
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and so a(t, (z1, z2, z3)) > 0 for some t.
It remains to show that a(t, (z1, z2, z3)) > 1 for some t > 0 if (z1, z2, z3) ∈

ω(S). Take (z1, z2, z3) ∈ ω(S) and (U1, U2, U3)→ (z1, z2, z3).
Recall that π : K × [0, 1] 7→ K is uniformly continuous. Then, if

(z1, z2, z3) ∈ ω(S) and (U1, U2, U3)→ (z1, z2, z3), then the solution (u1(t), u2(t), u3(t))
is near (z1, z2, z3) for t ∈ [0, 1] because (z1, z2, z3) is the solution of (2) with
initial data (z1, z2, z3).

We distinguish different cases:
Case 1: (z1, z2, z3) = E0. Observe that, using (15), we conclude that for all
s ∈ [0, 1]

P (π(U1, U2, U3, s))
P (U1, U2, U3)

→ exp {(β1α1 + β2α2 + β3α3)s} , as (U1, U2, U3)→ E0.

Case 2: (z1, z2, z3) ∈ {E100, E010, E001}. We argue with the case (z1, z2, z3) =
E100, similar argument works for the other cases. Observe that in this case
we conclude that for all s ∈ [0, 1]

P (π(U1, U2, U3, s))
P (U1, U2, U3)

→ exp ((β2(α2 − βα1) + β3(α3 + γ2α1))s) ,

as (U1, U2, U3)→ E100.
With a similar argument, we can prove that

P (π(U1, U2, U3, s))
P (U1, U2, U3)

→ exp ((β1(α1 − βα2) + β3(α3 + γ2α2))s) ,

as (U1, U2, U3)→ E010 and when (U1, U2, U3)→ E001

P (π(U1, U2, U3, s))
P (U1, U2, U3)

→ exp ((β1(α1 + γ1α3) + β2(α2 + γ1α3))s) .

Case 3: (z1, z2, z3) ∈ {E110, E011, E101}. Again, we argue with the case
(z1, z2, z3) = E110, similar argument works for the other cases. We conclude
that for all s ∈ [0, 1]

P (π(U1, U2, U3, s))
P (U1, U2, U3)

→ exp

(
β3

(
α3(1 + β) + γ2(α1 + α2)

1 + β

)
s

)
,

as (U1, U2, U3)→ E110. In a similar way,

P (π(U1, U2, U3, s))
P (U1, U2, U3)

→ exp

(
β1

(
α1(1− γ1γ2) + α2(γ1γ2 − β) + α3γ1(1− β)

1− γ1γ2

)
s

)
,
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as (U1, U2, U3)→ E011 and when (U1, U2, U3)→ E101

P (π(U1, U2, U3, s))
P (U1, U2, U3)

→ exp

(
β2

(
α1(γ1γ2 − β) + α2(1− γ1γ2) + α3γ1(1− β)

1− γ1γ2

)
s

)
.

Now, assume that (α1, α2, α3) satisfies (8). Then, taking β1, β2 and β3

positive, we have that

a(1, E110), a(1, E101), a(1, E011) > 1.

On the other hand, since (α1, α2, α3) satisfies (8), then α2 − βα1 > 0 and
α1−βα2 > 0. Moreover, or α1 +γ1α3 > 0 or α1 +γ1α3 > 0 (or both of them
in the case γ1γ2 < β, see Figures 1 and 2). Finally, at least one αi > 0. So,
we can choose β1 > 0, β2 > 0 and β3 > 0 such that

a(1, E0), a(1, E100), a(1, E001), a(1, E010) > 1.

This completes the proof.

4.2 Global stability of positive equilibria

Goh in [7] (see also [8]) proves a general criteria for the existence of a Lya-
punov functional of m-dimensional Lotka-Volterra models which can be ap-
plied to our 3D mutualistic system. Indeed, Goh’s results reads as follows
([7], Theorem in page 138 and Lemma in Appendix, page 142): Consider

dNi

dt
= Ni(bi +

m∑
j=1

aijNj), j = 1, . . . ,m, (16)

with A = (aij) and N∗ = (N∗1 , . . . , N
∗
m) its associated positive nontrivial

equilibrium. Then

Theorem 4.4. If the nontrivial equilibrium N∗ of model (16) is feasible and
there exists a constant positive diagonal matrix C such that CA + ATC is
negative definite, then (16) is globally stable in the feasible region. In par-
ticular, this condition holds if every principal minor of −A is nonnegative.

Note that, in our case for model (2) we have

A =

 −1 −β γ1

−β −1 γ1

γ2 γ2 −1

 .

17



and E111 = (u∗1, u
∗
2, u
∗
3). Assume that u∗i > 0, i = 1, 2, 3. Since β < 1 and

γ1γ2 < (1 + β)/2, we have that every principal minor of −A is nonnegative,
so that Theorem 4.4 applies and E111 is globally stable in the regions defined
in the feasible region where it exits (see Figure 1).

In the following sections we discuss Phenomena 1 and 2. We will study
regions in the (α1, α2)-plane depending on the parameter α3. Some simula-
tions will complement our results.

5 Phenomenon 1. Case α3 > 0: increasing of bio-
diversity

We assume that γ1γ2 < β, but we would like to remark that similar results
are obtained in the case γ1γ2 ≥ β. In the case α3 > 0, biodiversity is
enriched, in the sense that there are regions in (3) for which one or both
species goes to extinction but the presence of u3 in (2) makes the species to
keep (coexistence).

Remark 5.1. Observe that, since α3 > 0, and using Lemma 2.4, we con-
clude that u3 can not extinguish.

Observe Figure 1, for which intersection point with axis are (α3γ1(1−β)
β−γ1γ2 , 0)

and (0, α3γ1(1−β)
β−γ1γ2 ). If we fix values γ1, γ2, β, β0 satisfying (H) and α3 > 0, we

observe the following dynamical behaviour for systems (3) and (2):

a) (α1, α2) ∈ A1 implies that solutions of (3) go to E10 and solutions of
(2) to E111.

b) (α1, α2) ∈ A2 implies that solutions of (3) go to E01 and solutions of
(2) to E111.

c) (α1, α2) ∈ B implies that solutions of (3) go to E11 and solutions of
(2) to E111.
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Figure 3: Regions in the first quadrant of coexistence of the three species.
Phenomenon 1 holds in all pairs (α1, α2) of regions A1 and A2. In region B
the coexistence of u1, u2 is kept after appearance of u3.
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Figure 4: Phenomenon 1 holds for a pair (α1, α2) of region A2, α3 > 0.
β0 = 2/3, β = β0/(1 + γ1) = 4/9, γ1 = γ2 = 1/2, α3 = 1, α2 = 2, α1 = 1;
initial data (1, 1) and (1, 1, 1) respectively. The presence of u3 makes u1 to
survive.
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Figure 5: Simulation for region B, α3 > 0. β0 = 2/3, β = β0/(1 + γ1) =
4/9, γ1 = γ2 = 0.5, α3 = 1, α2 = 1.4, α1 = 1; initial data (2, 2) and (2, 2, 2)
respectively. Coexistence of u1, u2 is kept and increased after appearance of
u3.
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6 Phenomena 1 and 2. Case α3 < 0: biodiversity
and vulnerability of cooperative species

First, we are going to show that in the original system (2) we can not increase
biodiversity if u3 → 0.

Lemma 6.1. Assume that u3 → 0 as t→∞.

a) If α1, α2 < 0, then solution E0 is globally stable.

b) If α1 > 0 and α2 < βα1, then the solution E100 is globally stable.

c) If α2 > 0 and α1 < βα2, then the solution E010 is globally stable.

d) If α1 > βα2 and α2 > βα1, then the solution E110 is globally stable.

Proof. Assume that u3 → 0 as t→∞, then

u3 ≤ ε, for t ≥ t0.

Then,

u′1 ≤ u1(α1 + γ1ε− u1 − βu2), u′2 ≥ u2(α2 − u2 − βu1)

and then the pair (u, v) = (u1, 0), (u, v) = (M,u2), for M > 0 large, is a
pair of sub-supersolution of the system{

u′1 = u1(α1 + γ1ε− u1 − βu2)
u′2 = u2(α2 − u2 − βu1),

If we denote by (Uλ,µ, Vλ,µ) the solution of (3), we have shown that

u1 ≤ Uα1+γ1ε,α2 , Vα1+γ1ε,α2 ≤ u2 for t large.

Repeating this argument, we arrive at

Uα1,α2+γ1ε ≤ u1 ≤ Uα1+γ1ε,α2 , Vα1+γ1ε,α2 ≤ u2 ≤ Vα1,α2+γ1ε.

Now, applying Lemma 3.1 we conclude the result.

We show now that in the case α3 < 0 biodiversity is also enriched, in the
sense of Phenomenon 1. Firstly, in Figure 6 we show the zone A for which
E111 exists (recall that existence of E111 implies its local stability).
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Figure 6: Region A of existence of equilibria E111. The existence of E111

implies that this point is locally stable and the rest of equilibria are unstable.
Moreover, region A implies coexistence of the three species.

6.1 Case α3 < 0: phenomenon 1 generically holds

If we fix values for γ1, γ2, β, β0 satisfying (H), α3 < 0 we get the following
simulations for Figure 7:

a) (α1, α2) ∈ A1 for which solutions of (3) go to E10 and solutions of (2)
to E111.

b) (α1, α2) ∈ A2 for which solutions of (3) go to E01 and solutions of (2)
to E111.

c) (α1, α2) ∈ B for which solutions of (3) go to E11 and solutions of (2)
to E111.
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Figure 7: Regions A1 and A2, above r5, in which phenomenon 1 holds for
α3 < 0.
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Figure 8: Phenomenon 1 holds for a pair (α1, α2) of region A2, α3 < 0.
β0 = 2/3, β = β0/(1 + γ1) = 4/9, γ1 = γ2 = 0.5, α3 = −1, α2 = 4, α1 = 2;
initial data (2, 2) and (2, 2, 2) respectively.The presence of u3 makes u1 to
survive.
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6.2 Case α3 < 0: phenomenon 2 also holds

In Figure 9 we show zones for vulnerability of u3. Indeed, we show zones in
which some of the species of system (3) goes to extinction, but coexists in
system (2) after appearance of u3, even when u3 is push to extinction.

Simulations of zones in Figure 9 will produce:

a) (α1, α2) ∈ A1 for which solutions of (3) go to E10 and solutions of (2)
to E110.

b) (α1, α2) ∈ A2 for which solutions of (3) go to E01 and solutions of (2)
to E110.

c) (α1, α2) ∈ B for which solutions of (3) go to E11 and solutions of (2)
to E110.
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Figure 9: Regions A1 and A2, below r5, in which phenomenon 2 holds for
α3 < 0. In region B the two species u1 and u2 are kept after appearance of
u3, which goes to extintion.

26



	  

	  

Figure 10: Phenomenon 2 holds for a pair (α1, α2) of region A2, α3 < 0.
β0 = 2/3, β = β0/(1 + γ1) = 4/9, γ1 = γ2 = 0.5, α3 = −2, α2 = 2, α1 = 1;
initial data (2, 2) and (2, 2, 2) respectively. The presence of u3 makes u1 to
survive, although u3 goes to extinction.
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7 A more realistic general model

As we have seen in our simplest 3D case, phenomenon 2 (i.e., the cooperative
specie increases biodiversity but goes to exctintion) is only possible if we add
a non-trivial modification to system (1) so that the model is able to take
into account the relationship between the rate of competition and associated
cooperative links. The following modification to system (1) tries to take into
account some realistic facts in Ecology, following [13] and [4]:



dSpi

dt
= αpiSpi −

P∑
j=1

βpij (
1

1 +
∑A

k=1 γpik

)SpiSpj +
A∑
k=1

γpik
SpiSak

1 + hP
∑A

l=1 γpil
Sal

dSai

dt
= αaiSai −

A∑
j=1

βaij (
1

1 +
∑P

k=1 γaik

)SaiSaj +
P∑
k=1

γaik
SaiSpk

1 + hA
∑P

l=1 γail
Spl

Spi(0) = Spi0

Sai(0) = Sai0

(17)
Observe that, if no cooperation is present, we get a competitive system
without variation on the rate of competition. On the other hand, a very large
cooperation rates would lead to small weights in the competitive constants.
Other possible modifications of the model are possibly needed. For instance,
to take into account asymmetries in cooperation associations (see [4]), we
should have to modify parameter γ in relation with its number of links.
Moreover, to avoid blow-up in the strong cooperation regime (see Theorem
2.3) we have to consider the model with the handling times hP , hA > 0 as in
(1) or (17). It is not clear at all in the strong cooperation regime on which
zones are where phenomena 1 and 2 happen.

In a next future research, we plan to follow studying these general models
(1) and (17) with the pointed modifications. The results obtained in this
paper should serve as a guide for the development of the study of dynamical
properties of these mutualistic networks, which structure of connections are
on the base of biodiversity for complex systems in Ecology.
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