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Abstract
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control. Moreover, the optimality system and a characterization of the optimal control are

also derived. Sub-supersolution method, singular eigenvalue problem and differentiability

with respect to the positive cone are the techniques used to get our results.

Key Words. Degenerate logistic equation, Singular eigenvalue problems, Optimal control.

AMS Classification. Primary 49J20, 49K20, 92D25, Secondary 35J65.

Running head. Optimal control for degenerate logistic equation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51402809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 M. Delgado, J. A. Montero and A. Suárez

1 Introduction

This work considers the optimal harvesting control of a species whose state is governed by the

degenerate (nonlinear slow diffusion) elliptic logistic equation, i.e.,





−∆wm = (a− f)w − ew2 in Ω,

w = 0 on ∂Ω,

(1.1)

where Ω is a bounded and regular domain of IRN , N ≥ 1; m > 1; a, f and e are bounded

functions with some restrictions that will be detailed below.

Equ. (1.1) was introduced in populations dynamics by Gurtin and MacCamy in [5] describing

the behaviour of a single species inhabiting in Ω and whose population density is w(x). Since

the population is subject to homogeneous Dirichlet boundary conditions, we are assuming that

Ω is fully surrounded by inhospitable areas. In such model, the positive function e(x) describes

the limiting effects of crowding in the species and a(x) represents the growth rate of the species.

The function f(x) denotes the distribution of control harvesting of the species. Since f will be

considered non-negative, observe that f leads by reducting the growth rate. Finally, the operator

−∆ measures the diffusion, i.e., the moving rate of the species from high density regions to low

density areas. In this case, m > 1 (nonlinear slow diffusion) means that the diffusion is slower

than in the linear case m = 1, which gives rise to more realistic biological results, see [5].

To study (1.1), we make the change of variables wm = u and obtain





−∆u = (a− f)uα − euβ in Ω,

u = 0 on ∂Ω,

(1.2)

with α = 1/m and β = 2/m. Under hypothesis (H2) below, we prove that for each f , there

exists a unique positive solution of (1.2), that it will be denoted by uf . The optimal control

criteria is to maximize the payoff functional

J(f) :=
∫

Ω
(λufh(f)− k(f)),

where h ∈ C1(IR+; IR+), k ∈ C2(IR+; IR+) and λ > 0 will be considered as parameter. J

represents the difference between economic revenue measured by
∫
Ω λufh(f) and the control

cost measured by
∫
Ω k(f). Here, λ describes the quotient between the price of the species and
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the cost of the control.

The special case (quadratic functional)

h(t) = t and k(t) = t2,

was introduced in dynamics population by Leung and Stojanovic in [10] (see also [3], [9] and

references therein).

An optimal control is a function f ∈ C, where C is a suitable subset of L∞(Ω), such that

J(f) = sup
g∈C

J(g).

In the case m = 1, i.e., α = 1 and β = 2, and h(t) = t and k(t) = t2, this problem has been

studied in detail in [3], [10] and [11]. In fact, some results of this work have been motivated by

[3]. In these papers, under certain assumptions in the coefficients of the problem, the authors

obtained the existence and uniqueness of the optimal control, as well as a characterization of

the optimal control by means the solution of the optimality system. To obtain the results, the

authors used mainly the sub-supersolution method, the derivability of the maps f 7→ uf and

f 7→ J(f) and the expressions of their derivatives.

When m > 1, i.e. α < 1, this derivability is rather difficult than in the case m = 1, because it

involves linear elliptic and eigenvalue problems with unbounded potentials in a neighbourhood

of ∂Ω. These difficulties have been solvented by using results of singular eigenvalue problems

from [2] and [6], and some classical ones of Krasnoselskii, see [7]. They let us deduce the

Fréchet derivability from the Gâteaux derivability with respect to the positive cone. Moreover,

the introduction of the functions h and k in the payoff functional leads us to establish the

hypotheses to assure the existence and uniqueness of the optimal control.

An outline of this work is as follows: in Section 2 we introduce some notations and we give

some results of the existence and uniqueness of the principal eigenvalue and of solution of a linear

elliptic problems with unbounded potentials. In Section 3 we show the existence and uniqueness

of positive solution of (1.2), collecting a result from [4]. Moreover, we study the derivability

of the map f 7→ uf giving an explicit expression of that. In Section 4, we show that for λ

sufficiently small there exists a unique optimal control. In the last Section we characterize the

optimal control. This characterization provides us the optimality system and certain regularity

of the optimal control. It is well known that this regularity can suggest numeric methods to

approximate the optimal control, which are not considered in this work.
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2 Preliminaries

In this paper we use the following notation: Ω is a bounded domain in IRN with a smooth

boundary ∂Ω and γ ∈ (0, 2) fixed. For any f ∈ L∞(Ω) we denote

fM := ess sup f fL := ess inf f,

L∞+ (Ω) := {f ∈ L∞(Ω) : fL ≥ 0} L∞− (Ω) := {f ∈ L∞(Ω) : fM ≤ 0}.

Moreover, we denote by P the non-negative cone of C1
0 (Ω), whose interior is

int(P ) := {u ∈ C1
0 (Ω) : u > 0 in Ω, ∂u/∂n < 0 on ∂Ω}

where C1
0 (Ω) = {u ∈ C1(Ω) : u = 0 on ∂Ω} and n is the outward unit normal at ∂Ω.

Finally, for any Ω′ ⊂ Ω, σΩ′
1 and ϕΩ′

1 stand for the principal eigenvalue and the corresponding

positive eigenfunction of the operator −∆ and homogeneous boundary Dirichlet condition with

‖ϕΩ′
1 ‖∞ = 1. In particular, we write σ1 := σΩ

1 and ϕ1 := ϕΩ
1 .

Assume

(H1) M ∈ L∞loc(Ω) verifying M(x)dΩ(x)γ ∈ L∞(Ω),

where dΩ(x) := dist(x, ∂Ω).

Given σ ∈ IR and f ∈ L∞(Ω), we consider the following problems




−∆u + M(x)u = σu in Ω,

u = 0 on ∂Ω,

(2.1)





−∆u + M(x)u = f in Ω,

u = 0 on ∂Ω.

(2.2)

Remark 2.1 Observe that we are not assuming that M ∈ L∞(Ω) and that a weak solution of

(2.2) or an associated eigenfunction to the eigenvalue σ of (2.1) are well defined by the Hardy

inequality, see for instance [8].

The next result follows from [2] and [6]. We include it for the reader’s convenience.

Theorem 2.2 Assume that M satisfies (H1). Then:
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a) There exists a unique principal eigenvalue (i.e., a real eigenvalue with an associated eigen-

function in int(P )), which is simple and we denote it by σ1(−∆ + M). Moreover, it

satisfies

σ1(−∆ + M) = inf
u∈H1

0 (Ω)\{0}





∫

Ω
|∇u|2 +

∫

Ω
M(x)u2

∫

Ω
u2





.

b) (Strong Maximum Principle) σ1(−∆ + M) > 0 if and only if v ∈ W 2,p(Ω) ∩ C1(Ω), with

p > N such that v 6= 0, −∆v + M(x)v ≥ 0 in Ω, v ≥ 0 on ∂Ω, then v ∈ int(P ).

By the variational characterization of σ1(−∆ + M), it follows:

Proposition 2.3 a) (Monotonicity respect to the potential) Assume that Mi, i = 1, 2 satisfy

(H1) and M1 ≤ M2. Then

σ1(−∆ + M1) ≤ σ1(−∆ + M2).

b) (Continuity respect to the potential) Assume that Mn,M , n ∈ IN satisfy (H1) with

∫

Ω
Mnϕ2 →

∫

Ω
Mϕ2, as n →∞ and for all ϕ ∈ H1

0 (Ω). (2.3)

Then,

σ1(−∆ + Mn) → σ1(−∆ + M) as n →∞.

The following estimate will play an important role in the next sections.

Lemma 2.4 Assume that Mn,M , n ∈ IN satisfy (H1), σ1(−∆+M) > 0 and (2.3). Then, there

exist a positive constant C0 < 1 (independient of n) and n0(C0) ∈ IN such that

C0

∫

Ω
|∇u|2 ≤

∫

Ω
|∇u|2 +

∫

Ω
Mnu2 ∀u ∈ H1

0 (Ω), ∀n ≥ n0. (2.4)

Proof: Since σ1(−∆ + KM) → σ1(−∆ + M) > 0 as K ↓ 1, there exists K0 > 1 such that

σ1(−∆ + K0M) > 0. Let C0 be such that K0 = 1/(1− C0).

To prove (2.4) it is sufficient to show that σ1(−∆ + K0Mn) ≥ 0 for n ≥ n0. But σ1(−∆ +

K0Mn) → σ1(−∆ + K0M) > 0. 2

The following result shows that (2.2) possesses a unique solution.
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Theorem 2.5 Assume that M satisfies (H1) and σ1(−∆+M) > 0. Then, there exists a unique

solution u ∈ C1,κ(Ω), for some κ ∈ (0, 1), of (2.2). Moreover, there exists a constant K > 0

(independient of f) such that

‖u‖C1,κ(Ω) ≤ K‖f‖∞. (2.5)

Proof: For v ∈ C1
0 (Ω) we consider the problem





−∆u = −M(x)v in Ω,

u = 0 on ∂Ω.

(2.6)

By Proposition 2.3 in [6], there exists a unique solution u ∈ C2(Ω)∩C1,κ(Ω), for some κ ∈ (0, 1),

of (2.6) with

‖u‖C1,κ(Ω) ≤ K1‖v‖C1(Ω).

Define G1 : C1
0 (Ω) 7→ C1,κ

0 (Ω), v 7→ G1(v) the unique solution of (2.6). We have shown that G1

is bounded.

For h ∈ L∞(Ω) we consider the problem





−∆u = h(x) in Ω,

u = 0 on ∂Ω.

(2.7)

It is well known that fixed h ∈ L∞(Ω), there exists a unique solution u ∈ W 2,p(Ω) of (2.7) for

all p > 1, and

‖u‖C1,κ(Ω) ≤ K1‖u‖W 2,p(Ω) ≤ K2‖h‖∞.

We can define the map G2 : L∞(Ω) 7→ C1,κ
0 (Ω), h 7→ G2(h) the unique solution of (2.7). We

have got that G2 is bounded.

Now, if we define

H : C1
0 (Ω) 7→ C1

0 (Ω), H(u) := u−G1(u),

denote by i : C1,κ
0 (Ω) 7→ C1

0 (Ω) the compact imbedding and we pose G := H ◦ i : C1,κ
0 (Ω) 7→

C1,κ
0 (Ω), then we can rewrite (2.2) as

G(u) = G2(f)
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being G a compact pertubation of the identity. Since σ1(−∆ + M) > 0, G is inyective. The

Fredholm’s Theorem provides us the existence and uniqueness of solution u ∈ C1,κ
0 (Ω) of (2.2)

satisfying (2.5). 2

The next result is an easy consequence of Theorem 2.2 b).

Lemma 2.6 a) Assume that M satisfies (H1) and σ1(−∆+M) > 0. Consider fi ∈ L∞(Ω),

i = 1, 2 with f1 ≤ f2 and let ui, i = 1, 2 be the respective solutions of (2.2). Then, u1 ≤ u2.

b) Assume that Mi, i = 1, 2 satisfy (H1) and M1 ≤ M2 with σ1(−∆ + M1) > 0. Let ui,

i = 1, 2 be the respective solutions of (2.2). Then, u2 ≤ u1.

3 The degenerate logistic equation

Consider 



−∆u = buα − euβ in Ω,

u = 0 on ∂Ω,

(3.1)

and assume that

(H2) 0 < α < 1 ≤ β, b ∈ L∞+ (Ω)\{0}, e ∈ A,

where

A := {f ∈ L∞(Ω) : fL > 0}.

The next result has been proved in [4] when b, e ∈ Cν(Ω), ν ∈ (0, 1). The proof is also valid in

this case.

Theorem 3.1 Assume (H2). The following assertions are true:

a) There exists a unique strictly positive solution ub of (3.1). Moreover, by elliptic regularity

ub ∈ W 2,p(Ω), p > 1, and so ub ∈ C1,κ(Ω) ∩ int(P ), with 0 < κ ≤ 1−N/p.

b) We have the following a priori bound,

‖ub‖∞ ≤
(

bM

eL

)1/(β−α)

. (3.2)
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c) If bL > 0, then there exists ε0 > 0 such that for all ε ≤ ε0, it holds

εϕ1(x) ≤ ub(x) c.p.d. x ∈ Ω

where ε0 > 0 satisfies

bL − σ1ε
1−α − eMεβ−α = 0.

d) If bL = 0, since bM > 0 there exists a ball B := B(x0, r) such that bL,B > 0 in B, where

bL,B is the essential infimum of b in B. Hence, εϕB
1 ≤ ub c.p.d. in B for all ε ≤ ε1 and

where ε1 > 0 satisfies

bL,B − σB
1 ε1−α − eM,Bεβ−α = 0.

Remark 3.2 By (H2), (3.1) satisfies the strong maximum principle and then there exist two

positive constants k1, k2 such that

k1dΩ(x) ≤ ub(x) ≤ k2dΩ(x) ∀x ∈ Ω. (3.3)

The following result plays an important role along the work.

Theorem 3.3 Assume (H2). Then, the map b ∈ A ⊂ L∞(Ω) 7→ ub ∈ int(P ) ⊂ C1
0 (Ω) is

increasing, continuous and C1.

For the proof of this result we use the following elementary lemma.

Lemma 3.4 a) Let α ∈ (0, 1] and 0 < t1 < t2 be. Then

αtα−1
2 (t2 − t1) ≤ tα2 − tα1 ≤ αtα−1

1 (t2 − t1).

b) Let β ∈ [1,+∞) and 0 ≤ t1 < t2 be. Then

βtβ−1
1 (t2 − t1) ≤ tβ2 − tβ1 ≤ βtβ−1

2 (t2 − t1).

Proof of Theorem 3.3: It follows easily that the map is increasing. For the continuity, let

bn, b ∈ A be such that bn → b in L∞, then (bn)M → bM . Hence, fixed δ > 0 there exists n0 ∈ IN

such that for n ≥ n0

‖ubn‖∞ ≤
(

(bn)M

eL

)1/(β−α)

≤
(

bM + δ

eL

)1/(β−α)

= C (independient of n),

and so, the sequence {ubn} is bounded in W 2,p(Ω), p > 1. There exists a subsequence, relabeled

by n, such that ubn → u in C1,κ(Ω), κ < 1 − N/p. Moreover, u is a weak solution of (3.1). It
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remains to prove that u = ub. By the uniqueness of positive solution of (3.1), it suffices to prove

that u > 0. Since bM > 0, there exist x0 ∈ Ω, r0 > 0, such that (bn) ≥ (bn)L,B > 0 c.p.d.

in B = B(x0, r0), for n ≥ n0. By Theorem 3.1 d), we have that there exist εn > 0 such that

εnϕB
1 ≤ ubn c.p.d. in B where εn is such that

(bn)L,B − σB
1 ε1−α

n − eM,Bεβ−α
n = 0.

Since (bn)L,B → bL,B, it follows that εn → ε > 0 where ε is such that

bL,B − σB
1 ε1−α − eM,Bεβ−α = 0,

and so εϕB
1 ≤ u c.p.d. in B and then u > 0.

For the derivability we use the Implicit Function Theorem. Fixed p > N , we define the map

F : A× U ⊂ L∞(Ω)× C1
0 (Ω) 7→ Lp(Ω) where U := W 2,p(Ω) ∩ int(P ), as

F(b, u) := −∆u− buα + euβ.

A is an open set in L∞(Ω) and it is well known, see [1], that U is also open in C1
0 (Ω). It is clear

that F(b0, ub0) = 0.

We show that F is C1, for which it is sufficient to show it for the second component. We calculate

the Gâteaux derivative respect to this, which will be denoted by DGF . Let (b, u) ∈ A× U and

ξ ∈ C1
0 (Ω) be, then

DGF(b, u)ξ := lim
ε→0

F(b, u + εξ)−F(b, u)
ε

= −∆ξ−b lim
ε→0

(u + εξ)α − uα

ε
+e lim

ε→0

(u + εξ)β − uβ

ε
.

We claim that:

(u + εξ)β − uβ

ε
→ βuβ−1ξ and

(u + εξ)α − uα

ε
→ αuα−1ξ in Lp(Ω) as ε → 0. (3.4)

Assume ε ↓ 0. Using Lemma 3.4, to prove (3.4) it is sufficient to show that

(u + εξ)β−1ξ → uβ−1ξ and (u + εξ)α−1ξ → uα−1ξ in Lp(Ω) as ε ↓ 0.

The first one is true because β ≥ 1. For the second one, we have

‖[(u + εξ)α−1 − uα−1]ξ‖p = ‖[(u + εξ)α − (u + εξ)uα−1]
(

ξ

u + εξ

)
‖p. (3.5)

Since u ∈ int(P ), there exist ε0 > 0 and k(ε) such that u + εξ ∈ int(P ) for ε ≤ ε0 and

k(ε) := inf
x∈Ω

u(x) + εξ(x)
dΩ(x)

> 0.
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Clearly k0 := min{k(0), k(ε0)} (independent of ε) verifies

k0dΩ(x) ≤ u + εξ. (3.6)

On the other hand, since ξ ∈ C1
0 (Ω), it follows that from the Mean Value Theorem that

|ξ(x)| ≤ dΩ(x)‖ξ‖C1(Ω) for x ∈ Ω. (3.7)

Then, using (3.6) and (3.7), we get

|ξ|
u + εξ

≤ |ξ|
k0dΩ(x)

≤ C‖ξ‖C1(Ω). (3.8)

Moreover, by (3.3) and (3.7)

(u + εξ)uα−1 ≤ (u + εξ)kα−1
1 dΩ(x)α−1 ≤ KdΩ(x)α ∈ L∞(Ω),

and so,

(u + εξ)α − (u + εξ)uα−1 ∈ L∞(Ω).

Therefore, from (3.5) and (3.8), it follows that

‖[(u + εξ)α−1 − uα−1]ξ‖p ≤ C‖(u + εξ)α − (u + εξ)uα−1‖p‖ξ‖C1(Ω) → 0 as ε ↓ 0.

This proves (3.4), and so that the linear and continuous map

DGF(b, u)ξ = −∆ξ − αbuα−1ξ + βeuβ−1ξ, ∀ξ ∈ C1
0 (Ω)

is the Gâteaux derivative.

For the continuity of this map, we have to prove that if (bn, un) → (b, u), then

‖DGF(bn, un)−DGF(b, u)‖L(C1
0 (Ω);Lp(Ω)) → 0,

for which, thanks to β ≥ 1, it is sufficient to show that

sup
‖ξ‖

C1(Ω)
=1
{‖(bnuα−1

n − buα−1)ξ‖p} → 0.

Firstly, observe that

(bnuα−1
n − buα−1)ξ = (bn − b)uα−1

n ξ + b(uα−1
n − uα−1)ξ. (3.9)

Since un ∈ int(P ), it is well-defined

0 < kn := inf
x∈Ω

un(x)
dΩ(x)

.
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By the continuty of the infimum, it follows that

kn → k0 := inf
x∈Ω

u(x)
dΩ(x)

> 0

since u ∈ int(P ).

Hence, using (3.9) and (3.7), as n →∞ we get

‖(bnuα−1
n − buα−1)ξ‖p ≤ ‖bn − b‖∞‖uα−1

n ξ‖∞ + ‖b‖∞‖(uα−1
n − uα−1)ξ‖∞

≤ ‖bn − b‖∞kα−1
n dα

Ω‖ξ‖C1(Ω) + ‖b‖∞‖(uα
n − unuα−1)

ξ

un
‖∞

≤ ‖ξ‖C1(Ω)(‖bn − b‖∞kα−1
n dα

Ω + ‖b‖∞‖uα
n − unuα−1‖∞k−1

n ) → 0.

Therefore, F is C1 respect to the second component and the Gâteaux derivative coincides with

the Fréchet one. Denote it by D2F .

Finally, we will prove that D2F(b0, ub0) is non singular showing that

σ1(−∆− αb0u
α−1
b0

+ βeuβ−1
b0

) > 0. (3.10)

Indeed, define

Mb := −αbuα−1
b + βeuβ−1

b . (3.11)

We will prove that Mb0 satisfies (H1) and σ1(−∆ + Mb0) > 0. Observe that Mb0 ∈ L∞loc(Ω) and

that by (3.3), there exists k1 > 0 such that k1dΩ(x) ≤ ub0 . Then,

|Mb0(x)|dΩ(x) = | − αb0 + βe(x)uβ−α
b0

|uα−1
b0

dΩ(x) ≤ Cuα−1
b0

dΩ(x) ≤ Ckα−1
1 dΩ(x)α−1dΩ(x),

i.e., Mb0(x)dΩ(x) is bounded.

On the other hand, since ub0 is solution of (3.1) we get that σ1(−∆− b0u
α−1
b0

+ euβ−1
b0

) = 0,

and so by (H2) and Proposition 2.3 it follows that

σ1(−∆− αb0u
α−1
b0

+ βeuβ−1
b0

) > σ1(−∆− b0u
α−1
b0

+ euβ−1
b0

) = 0.

This proves (3.10). Now, the Implicit Function Theorem assures that there exist two open

neighbourhoods N , of b0 in L∞(Ω) and M, of ub0 in C1
0 (Ω), and a C1 map Φ : N 7→ M such

that

a) Φ(b0) = ub0 ,
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b) F(s,Φ(s)) = 0 for any s ∈ N ,

c) F(s, y) = 0 with s ∈ N , y ∈M, then y = Φ(s).

Since for s near b, the equation possesses a unique solution, then Φ(s) = us. Therefore, b 7→ ub

is C1 and the proof is complete. 2

Along this work, we need the Gâteaux derivative of the map b ∈ L∞+ (Ω)\{0} 7→ ub ∈ int(P ).

Lemma 3.5 Let b ∈ L∞+ (Ω)\{0}, g ∈ L∞+ (Ω) or g ∈ L∞− (Ω), and ε ' 0 be such that b + εg ∈
L∞+ (Ω)\{0}. Then,

ub+εg − ub

ε
⇀ ξb,g in H1

0 (Ω) as ε → 0,

where ξb,g is the unique solution of





−∆ξ + Mb(x)ξ = guα
b in Ω,

ξ = 0 on ∂Ω,

(3.12)

and Mb is defined in (3.11).

Remark 3.6 Since Mb satisfies (H1) and by (3.10), it follows from Theorem 2.5 the existence

and uniqueness of ξb,g ∈ C1
0 (Ω).

Proof: Let g ∈ L∞+ (Ω), ε > 0 be and define

ξε :=
ub+εg − ub

ε
.

It is easy to show that ξε satisfies




−∆ξε + (−bAε + eBε)ξε = guα
b+εg in Ω,

ξε = 0 on ∂Ω,

where

Aε(x) :=
uα

b+εg(x)− uα
b (x)

ub+εg(x)− ub(x)
Bε(x) :=

uβ
b+εg(x)− uβ

b (x)
ub+εg(x)− ub(x)

Since b + εg > b and by the monotony of the map b 7→ ub, it follows that Aε, Bε ∈ C1(Ω). In

fact, αuα−1
b+εg ≤ Aε ≤ αuα−1

b and βuβ−1
b ≤ Bε ≤ βuβ−1

b+εg ∈ L∞(Ω) and so,

Bε → βuβ−1
b as ε ↓ 0,
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and |Aε|dΩ ∈ L∞(Ω). So, σ1(−∆− bAε + eBε) is well defined. Moreover,

−bAε + eBε ≥ −αbuα−1
b + βeuβ−1

b , (3.13)

and by a similar reasoning to used in (3.4), we have that as ε ↓ 0
∫

Ω
Aεϕ

2 → α

∫

Ω
uα−1

b ϕ2,

∫

Ω
Bεϕ

2 → β

∫

Ω
uβ−1

b ϕ2, ∀ϕ ∈ H1
0 (Ω).

Hence, by Proposition 2.3, we get

σ1(−∆− bAε + eBε) → σ1(−∆− αbuα−1
b + βeuβ−1

b ) as ε ↓ 0.

and by (3.10) and (3.13),

σ1(−∆− bAε + eBε) ≥ σ1(−∆− αbuα−1
b + βeuβ−1

b ) > 0.

Then, applying Lemma 2.4, there exists a constant C (independient of ε) such that

C

∫

Ω
|∇ξε|2 ≤

∫

Ω
|∇ξε|2+

∫

Ω
(−αbuα−1

b +βeuβ−1
b )ξ2

ε ≤
∫

Ω
|∇ξε|2+

∫

Ω
(−bAε+eBε)ξ2

ε =
∫

Ω
guα

b+εgξε

and so, using (3.2), we obtain

‖ξε‖H1
0 (Ω) ≤ C (independient of ε).

Then, of each bounded sequence considered, there exists a weakly convergent sub-sequence. It

is not hard to prove that the limit verifies (3.12), and by the uniqueness of solution it follows

that ξε ⇀ ξb,g in H1
0 (Ω).

In the case g ∈ L∞− (Ω), ε > 0, it holds αuα−1
b ≤ Aε ≤ αuα−1

b+εg and βuβ−1
b ≥ Bε ≥ βuβ−1

b+εg, and

and so, instead of (3.13), we have

−bAε + eBε ≥ −αbuα−1
b+εg + βeuβ−1

b+εg.

As ε ↓ 0, we have
∫

Ω
(−αbuα−1

b+εg + βeuβ−1
b+εg)ϕ

2 →
∫

Ω
(−αbuα−1

b + βeuβ−1
b )ϕ2 ∀ϕ ∈ H1

0 (Ω).

By Proposition 2.3, we get

σ1(−∆− bAε + eBε) ≥ σ1(−∆− αbuα−1
b+εg + βeuβ−1

b+εg) → σ1(−∆− αbuα−1
b + βeuβ−1

b ) > 0.

Again, applying Lemma 2.4 we obtain the result. 2
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4 Existence and uniqueness of optimal control

Consider a such that

(H3) a ∈ A.

We define the set

C := {f ∈ L∞+ (Ω) : f ≤ a}.

When f ∈ C, we have proved in the previous Section that there exists a unique positive solution

of (3.1) with b = a− f , and it will denote by uf (if f = a, then uf := 0.)

For λ > 0 we consider the functional J : C 7→ IR

J(g) :=
∫

Ω
(λh(g)ug − k(g)),

where h ∈ C1(IR+; IR+), h′ is Lipschitz continuous function and h(s) = 0 if and only if s = 0;

k ∈ C2(IR+; IR+) is a convex function and there exists C > 0 such that |k(s)| ≤ Cs2 and

k′′(s) ≥ k0 > 0. We assume:

(H4) lim
t→0

k(t)
h(t)

= 0,

(H5) lim
t→+∞

k(t)
h(t)

= +∞, t 7→ h(t)
t

is non-increasing, t 7→ k(t)
t

is increasing.

In this Section we want to prove the existence and uniqueness of the optimal control under

suitable assumptions. The following result gives us the existence of optimal control.

Theorem 4.1 Assume (H3)− (H4). There exists an optimal control, i.e., f ∈ C such that

J(f) = sup
g∈C

J(g).

Moreover, the benefit is positive, i.e., sup
g∈C

J(g) > 0.

Proof: By (3.2), it follows that

sup
g∈C

J(g) < +∞,

and so, there exists a maximizing sequence fn ∈ C. Then, there exists a subsequence, relabeled

by fn, such that

fn ⇀ f ∈ C in L2(Ω) and ufn → uf in H1
0 (Ω),
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and by the regularity of h,

h(fn) ⇀ h(f) ∈ C in L2(Ω),

and then, ∫

Ω
h(fn)ufn →

∫

Ω
h(f)uf .

By the hypothesis on k, the map Φ : L2(Ω) 7→ IR defined by

Φ(g) :=
∫

Ω
k(g)

is continuous (see Lemma 17.1 in [12], for instance) and convex, and so w.l.s.c. Then,

∫

Ω
k(f) ≤ limn→∞

∫

Ω
k(fn).

Hence,

J(f) =
∫

Ω
λh(f)uf − k(f) ≥ limn→∞

∫

Ω
λh(fn)ufn − k(fn) = sup

g∈C

∫

Ω
λh(g)ug − k(g).

Finally, we take f = ε > 0, then

J(ε) = h(ε)
∫

Ω

(
λuε − k(ε)

h(ε)

)
,

and so, since uε → u0 > 0 and by (H4), it follows that J(ε) > 0 for ε sufficiently small. This

completes the proof. 2

The following result gives us a bound of the optimal control, and it will be used to prove its

uniqueness.

Lemma 4.2 Assume (H3)− (H5). If f ∈ C is an optimal control, then

f ≤ Tλ

where

Tλ := inf{t ∈ IR+ :
k(t)
h(t)

= λK}, and K :=
(

aM

eL

)1/(β−α)

.

Remark 4.3 a) By (H4) and (H5), it follows that Tλ > 0 and that Tλ → 0 as λ ↓ 0.

b) Theorem 4.1 and Lemma 4.2 are generalizations of Theorem 2.1 in [3], which has been

proved in the case m = 1, h(t) = t and k(t) = t2.
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Proof: Let f ∈ L∞+ (Ω) be. By (H5), there exists t0 > 0 such that k(t0)/h(t0) = λK. We consider

g := min{f, t0},

and we will prove that J(g) > J(f), whence the result follows.

By definition, g ≤ f and then ug ≥ uf . If x0 ∈ Ω is such that f(x0) = g(x0) then

λug(x0)h(g(x0))− k(g(x0)) ≥ λuf (x0)h(f(x0))− k(f(x0)).

On the other hand, if f(x0) > g(x0) = t0 > 0, then by (3.2)

λug(x0)h(g(x0))− k(g(x0)) ≤ λKh(t0)− k(t0) = 0,

and so by (H5), we get

0 ≥ λug(x0)
h(g(x0))

g(x0)
− k(g(x0))

g(x0)
> λuf (x0)

h(f(x0))
f(x0)

− k(f(x0))
f(x0)

.

Then,

J(g) =
∫

{f=g}
λh(g)ug − k(g) +

∫

{f>g}
λh(g)ug − k(g) ≥

∫

{f=g}
λh(f)uf − k(f)+

+
∫

{f>g}
(λ

h(g)
g

ug − k(g)
g

)g >

∫

{f=g}
λh(f)uf − k(f) +

∫

{f>g}
λh(f)uf − k(f) = J(f).

2

For the uniqueness, we use the argument described in Section 6 in [3]. Firstly, we prove the

next result.

Proposition 4.4 Let J : D := {f ∈ L∞(Ω) : (a − f) ∈ A} ⊂ L∞(Ω) 7→ IR be. Then J is

Fréchet continuously differentiable and

J ′(f)(g) =
∫

Ω
(λh′(f)uf − λuα

f Pf − k′(f))g, ∀f ∈ D, ∀g ∈ L∞(Ω), (4.1)

where for any f ∈ D, Pf ∈ C1
0 (Ω) is the unique solution of





−∆Pf + Mf (x)Pf = h(f) in Ω,

Pf = 0 on ∂Ω,

(4.2)

being Mf := −α(a− f)uα−1
f + βeuβ−1

f .
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To prove this result, we need some previous ones. For f ∈ D and g ∈ L∞(Ω), let ξf,g be the

unique solution of 



−∆ξ + Mf (x)ξ = −guα
f in Ω,

ξ = 0 on ∂Ω.

(4.3)

Observe that (4.2) and (4.3) have a unique solution because σ1(−∆ + Mf ) > 0 (see (3.10) and

(3.11)) and Theorem 2.5.

Lemma 4.5 The map f ∈ D 7→ Pf ∈ C1
0 (Ω) is continuous.

Proof: Fixed p > N , we consider the map G : D × (C1
0 (Ω) ∩W 2,p(Ω)) 7→ Lp(Ω) defined by

G(f, P ) = −∆P + MfP − h(f).

Observe that G is continuous. Indeed, the continuity of the map f 7→ MfP follows with a similar

argument to the one used in the proof of Theorem 3.3 to show that the map DGF is continuous.

On the other hand, it is clear that G(f, Pf ) = 0. Given ξ ∈ C1
0 (Ω) ∩W 2,p(Ω) is easy to prove

that D2G(f, Pf )ξ = −∆ξ + Mfξ. Moreover, as in (3.10), σ1(−∆ + Mf ) > 0 and so D2G(f, Pf )

is non singular. The Implicit Function Theorem completes the proof. 2

The next result is due by Krasnoselskii, see [7], where we send for the definitions of the

following concepts.

Lemma 4.6 Let E be a Banach space ordered by a generating positive cone P , F a Banach

space and T : E 7→ F . Assume that the Gâteaux derivative of T with respect to P , denoted by

DG,P T , exists and it is continuous in a neighbourhood of x0 ∈ E. Then, the Fréchet derivative

coincides with the Gâteaux derivative and T is C1 near x0.

Recall that P is generating if E = P − P . It is well known, see Proposition 1.7 in [1], that if

int(P ) 6= ∅, then P is generating.

Proof of Proposition 4.4: Firstly, we compute the Gâteaux derivative respect to the cone,

denoted by DG,P J . Let g ∈ L∞+ (Ω), f ∈ D and ε > 0 be such that f + εg ∈ D. Using Lemma

3.5 and (4.3)

DG,P J(f)g := lim
ε↓0

J(f + εg)− J(f)
ε

=
∫

Ω
λξf,gh(f) + λh′(f)ufg − k′(f)g.
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By the equation that satisfy ξf,g y Pf (see (4.3) and (4.2)), it follows that
∫

Ω
h(f)ξf,g +

∫

Ω
guα

f Pf = 0,

and so,

DG,P J(f)(g) =
∫

Ω
(λh′(f)uf − λuα

f Pf − k′(f))g, ∀g ∈ L∞+ (Ω).

Let fn → f ∈ D be in L∞ and g ∈ L∞(Ω). Then, by Theorem 3.3 and Lemma 4.5 it follows

sup
‖g‖∞≤1

|DG,P J(fn)(g)−DG,P J(f)(g)| ≤

≤ sup
‖g‖∞≤1

∫

Ω
|λ(h′(fn)ufn − h′(f)uf )− λ(uα

fn
Pfn − uα

f Pf )− (k′(fn)− k′(f))g| → 0.

and so, DG,P J is continuous. Applying Lemma 4.6, the Gâteaux derivative coincides with the

Fréchet derivative and that the map is C1. 2

The next result shows that some maps involved in (4.1) are Lipschitz continuous.

Lemma 4.7 Assume (H3) − (H5). There exists Λ > 0 such that for 0 < λ < Λ the maps

f ∈ [0, Tλ] 7→ uf , Pf , uα
f Pf ∈ L∞(Ω) are Lipschitz continuous.

Proof: Let f, g ∈ [0, Tλ] be, by the monotony of the map f 7→ uf , it follows that

0 < uTλ
≤ uf , ug ≤ u0

for λ such that a − Tλ > 0, that is λ < λ0 for some λ0 (see Remark 4.3 a)). To the end of the

proof we take λ < λ0. By the Mean Value Theorem,

uα
f − uα

g = αξα−1(f, g)(uf − ug), uβ
f − uβ

g = βηβ−1(f, g)(uf − ug) with

0 < uTλ
≤ min{uf , ug} ≤ ξ(f, g), η(f, g) ≤ max{uf , ug} ≤ u0.

(4.4)

Let w := uf − ug be. Then, w satisfies

(−∆ + N(f, g))w = (g − f)uα
g , in Ω, w = 0 on ∂Ω,

where N(f, g) := −α(a− f)ξα−1(f, g) + βeηβ−1(f, g). Using f ≥ 0 and (4.4), it follows that

N(f, g) ≥ −αaξα−1(f, g) + βeηβ−1(f, g) ≥ −αauα−1
Tλ

+ eβuβ−1
Tλ

.

It is not hard to show that as λ ↓ 0
∫

Ω
(−αauα−1

Tλ
+ eβuβ−1

Tλ
)ϕ2 →

∫

Ω
(−αauα−1

0 + eβuβ−1
0 )ϕ2 ∀ϕ ∈ H1

0 (Ω),
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and so, by Proposition 2.3 we obtain that

σ1(−∆ + N(f, g)) ≥ σ1(−∆− αauα−1
Tλ

+ eβuβ−1
Tλ

) → σ1(−∆− αauα−1
0 + eβuβ−1

0 ) > 0

as λ ↓ 0. Hence, there exists λ1 > 0 such that

N(f, g) ≥ −αauα−1
Tλ1

+ eβuβ−1
Tλ1

(4.5)

and

σ1(−∆ + N(f, g)) ≥ σ1(−∆− αauα−1
Tλ1

+ eβuβ−1
Tλ1

) > 0. (4.6)

Then, by (4.5), (4.6) and Lemma 2.6, we have that w ≤ ψ1 where ψ1 is the unique solution of




−∆u + (−αauα−1
Tλ1

+ eβuβ−1
Tλ1

)u = (g − f)uα
g in Ω,

u = 0 on ∂Ω.

(4.7)

Interchanging f and g, we get that −w ≤ ψ2 where ψ2 is the unique solution of (4.7) with second

member (f − g)uα
f . Then, taking into account that uf possesses a priori bound independient of

f (see (3.2)) and Theorem 2.5, it follows that

‖uf−ug‖∞ = ‖w‖∞ ≤ max{‖ψ1‖∞, ‖ψ2‖∞} ≤ max{‖ψ1‖C1(Ω), ‖ψ2‖C1(Ω)} ≤ C‖f−g‖∞. (4.8)

This shows that the map f 7→ uf is Lipschitz.

Before proving the Lipschitz character of the map f ∈ [0, Tλ] 7→ Pf , we see that

Pf ≤ P in Ω, (4.9)

where P ∈ C1
0 (Ω), independient of f . Indeed, let f ∈ [0, Tλ] be, then Mf ≥ −αauα−1

Tλ
+ βeuβ−1

Tλ
,

and so, using again Lemma 2.6 b), Pf ≤ P where P is the unique solution of





−∆u + (−αauα−1
Tλ1

+ eβuβ−1
Tλ1

)u = T in Ω,

u = 0 on ∂Ω,

where T := max
f∈[0,Tλ]

max
x∈Ω

h(f(x)). This implies (4.9).

We will prove now that the map is Lipschitz. Let f, g ∈ [0, Tλ] and z := Pf − Pg be. Then z

satisfies

−∆z + Mfz = T (f, g), in Ω, z = 0 on ∂Ω,
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where

T (f, g) = h(f)− h(g) + Pg[α(a− f)(uα−1
f − uα−1

g )− βe(uβ−1
f − uβ−1

g )] + α(g − f)Pgu
α−1
g .

Applying again the Mean Value Theorem, we get

uα−1
f − uα−1

g = (α− 1)ξα−2(f, g)(uf − ug), uβ−1
f − uβ−1

g = (β − 1)ηβ−2(f, g)(uf − ug)

0 < uTλ
≤ min{uf , ug} ≤ ξ(f, g), η(f, g) ≤ max{uf , ug} ≤ u0.

(4.10)

Hence,

T (f, g) = h(f)− h(g) + Pg[α(α− 1)(a− f)ξα−2 − β(β − 1)eηβ−2](uf − ug) + α(g − f)Pgu
α−1
g .

By a similar argument to the used in the proof of (4.8), we obtain

‖Pf − Pg‖∞ = ‖z‖∞ ≤ C‖T (f, g)‖∞. (4.11)

Since P ∈ C1
0 (Ω), and using (3.3), (3.7), (4.9) and (4.10), we obtain

‖α(f − g)Pgu
α−1
g ‖∞ ≤ C‖f − g‖∞‖Pgu

α−1
Tλ1

‖∞

≤ C‖f − g‖∞kα−1
1 ‖Pdα−1

Ω ‖∞

≤ C‖f − g‖∞‖dα
Ω‖∞‖P‖C1(Ω)

≤ C‖f − g‖∞ with C independient of f and g.

On the other hand, using (4.8), (4.9) and (4.10)

‖α(α− 1)(a− f)Pgξ
α−2(uf − ug)‖∞ ≤ C‖Pξα−2(uf − ug)‖∞

≤ C‖Pξα−2 max{|ψ1|, |ψ2|}‖∞

≤ C‖Pdα−2
Ω max{|ψ1|, |ψ2|}‖∞

≤ C‖P‖C1(Ω)‖dα
Ω‖∞max{‖ψ1‖C1(Ω), ‖ψ2‖C1(Ω)}

≤ C‖f − g‖∞

with C independient of f and g. Analogously it can be treated the term −eβ(β−1)Pgη
β−2(uf −

ug). Then, since h is Lipschitz in [0, Tλ] and by (4.11), it follows that the map f 7→ Pf is

Lipschitz.
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Let f, g ∈ [0, Tλ] be, we have

‖uα
f Pf − uα

g Pg‖∞ ≤ ‖(uα
f − uα

g )Pf‖∞ + ‖uα
g (Pf − Pg)‖∞.

By the Mean Value Theorem,

‖(uα
f − uα

g )Pf‖∞ = ‖αξα−1Pf (uf − ug)‖∞ ≤ C‖ϕ‖C1(Ω)‖f − g‖∞ ≤ C‖f − g‖∞.

It is sufficient to take Λ := min{λ0, λ1}. This completes the proof. 2

Theorem 4.8 Assume (H3)− (H5). Then, there exists Λ0 > 0 such that if λ < Λ0 there exists

a unique optimal control.

Proof: Let f ∈ C be an optimal control, then by Lemma 4.2

f ∈ I := [0, Tλ]∞.

We take λ < Λ (the constant obtained in Lemma 4.7) and sufficiently small λ such that I ⊂ C.
In I, convex, the strictly concave character of J is equivalent to the monotony of J ′. Hence, by

(4.1), for f, g ∈ I, we have that

(J ′(f)− J ′(g))(f − g) =
∫

Ω
[λ(h′(f)uf − h′(g)ug) + λ(uα

g Pg − uα
f Pf )− (k′(f)− k′(g))](f − g) ≤

≤
∫

Ω
(λL− k0)(f − g)2 < 0,

taking λ < k0/L := Λ1, where L the Lipschitz constant of the maps h′, f 7→ uf , f 7→ Pf and

f 7→ uα
f Pf (see Lemma 4.7). 2

5 Regularity of the optimal control and optimality system

In this section we consider the special case h(t) = t and k(t) = t2, which satisfy clearly (H4)

and (H5). Moreover, in this case

Tλ = λK.

The following result provides us of a caracterization of an optimal control. It follows as Theorem

3.1 in [10], using now our Lemma 3.5.

Lemma 5.1 Assume f ∈ C and (H3). If f is an optimal control, then

f =
λ

2
uf (1− uα−1

f Pf )+.



22 M. Delgado, J. A. Montero and A. Suárez

The next result says us that the optimal control is a Hölder continuous function when λ is

small and it lets us write the optimality system.

Proposition 5.2 Assume (H3). There exists Λ1 such that if λ ≤ Λ1, then Pf ≤ u1−α
f . So, if f

is an optimal control, we have that

f =
λ

2
uf (1− uα−1

f Pf ). (5.1)

Proof: Let f be an optimal control. For λ < λ0 := aL/K, we have that uf ≥ uλK > 0. As in

Lemma 4.7, it follows the existence of λ1 such that there exists a unique positive solution ψ of




−∆ψ + (−aαuα−1
λ1K + βeuβ−1

λ1K)ψ = K in Ω,

ψ = 0 on ∂Ω.

By Lemma 2.6 and (3.2), it follows that

Pf ≤ λψ for λ ≤ λ1. (5.2)

We define now

λ2 := inf
x∈Ω

u1−α
λ1K
ψ

≤ inf
x∈Ω

u1−α
f

ψ
.

Observe that λ2 > 0. Indeed, since ψ and uλ1K are positive functions, it follows the existence of

a constant k > 0 such that
u1−α

λ1K
ψ

> kd−α
Ω > 0.

Taking Λ1 := min{λ0, λ1, λ2} and taking into account (5.2) and the definition of λ2, it follows

Pf ≤ u1−α
f , and as a consequence of Lemma 5.1, we obtain (5.1). 2

The following result is an easy consequence of the previous result and it provides us with

the optimality system.

Corollary 5.3 Assume (H3) and λ ≤ Λ1. Then any optimal control f may be expressed as in

(5.1), where the pair (uf , Pf ) := (u, P ) satisfies




−∆u = uα(a− λ
2u + λ

2uαP − euβ−α) in Ω,

−∆P + (−αauα−1 + βeuβ−1)P = λ
2 (u− uαP (1 + α) + αu2α−1P 2) in Ω,

u = P = 0 on ∂Ω,

and u > 0.



Optimal control for degenerate logistic equation 23
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[3] Cañada A, Gámez JL, Montero JA (1998) Study of an optimal control problem for diffusive

nonlinear elliptic equations of logistic type. SIAM J. Control Optim. 36:1171-1189.
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