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Abstract

In this paper we perform an extensive study of the existence, uniqueness (or mul-
tiplicity) and stability of nonnegative solutions to the semilinear elliptic equation
−∆u = λu − up in Ω, with the nonlinear boundary condition ∂u/∂ν = ur on ∂Ω.
Here Ω is a smooth bounded domain of IRd with outward unit normal ν, λ is a real
parameter and p, r > 0. We also give the precise behavior of solutions for large |λ| in
the cases where they exist. The proofs are mainly based on bifurcation techniques,
sub-supersolutions and variational methods.
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1 Introduction and main results

Consider a bounded domain Ω ⊂ IRd, d ≥ 2, with a C2,γ boundary, ∂Ω, 0 < γ < 1. We
are interested in the study of positive solutions to the problem




−∆u = λu− up in Ω,

∂u

∂ν
= ur on ∂Ω,

(1.1)
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where p, r > 0, λ ∈ IR will be regarded as a bifurcation parameter and ν is the outward
normal vector field to ∂Ω.

The study of elliptic problems with nonlinear boundary conditions has attracted a
great attention in the last decade, see the survey [38] and references therein. In problem
(1.1) there is a competition between the absorption term in the equation and the positive
flux at the boundary. Thus, it is interesting to look how the linear term, λu, affects the
existence of positive solutions to (1.1).

Nonlinear boundary conditions appear in a rather natural way in some physical models,
see [38]. In the particular case p > 1, problem (1.1) can be given an ecological meaning,
since the equation is the well-known logistic equation, which models the diffusion of a
single species in the habitat Ω whose density is given by u. The boundary condition
means that the individuals are taken outside the habitat once they reach the boundary
∂Ω, at a rate which also depends on u through a power, see [12] for a related problem
arising from population dynamics with a different nonlinearity on the boundary condition.

Problem (1.1) has been studied previously in different papers. In [32] some particular
results have been given for p, r > 1 showing that there exists positive solution for all λ ≥ 0
if p > 2r − 1 and for λ < Λ0 (for some Λ0 ≥ 0) if p < 2r − 1 and r < d/(d− 2).

In the particular cases λ = 0, p, r > 1 and the nonlinearity in the equation is −aup

when a ∈ IR varies, problem (1.1) has been analyzed in [14], [15], [29] and [35] (see also
references therein). For these specific values of λ, p and r, it is proved that, if p < r
or p > 2r − 1 there is a positive solution of (1.1) for a > 0. When p = r, there is a
positive solution if a > |∂Ω|/|Ω|, and there is no positive solution of (1.1) if a < |∂Ω|/|Ω|
(throughout the paper |Ω| and |∂Ω| will denote the d−dimensional and (d − 1)−dimen-
sional measures of Ω and ∂Ω, respectively). If r < p < 2r−1 there exists a0 > 0 such that
there exists positive solution when a > a0 and no positive solutions for a < a0. Moreover,
if r < d/(d − 2) then for a.a. a ≥ a0 (1.1) has at least two positive solutions. In fact,
a more detailed analysis is made for the cases d = 1 and Ω a ball (see also [31] for a
one-dimensional analysis). This study shows that p = 2r − 1 is critical in many aspects.
In particular, for the corresponding time-dependent problem some solutions blow-up in
finite time if and only if p ≤ 2r− 1 (and a < r if p = 2r− 1). A detailed study is made in
[37] even in the case p, r ≤ 1. Moreover, if p = 2r− 1, a = r and d = 1 then there exists a
singular positive equilibrium and all positive solutions of its corresponding time-dependent
problem are global and tend to this singular solution as t →∞, see [17].

Finally, the case r = 1, λ = 0, both for p > 1 and p < 1, and with a parameter in the
boundary condition, is considered in [20] and [21].

On the other hand, when instead of a positive flux at the boundary, there is a negative
one, the problem has been analyzed in [10] in the case p, r > 1. Also, if a bounded function
g(u) appears in the boundary condition instead of ur, it has been studied in [41], and for
more general nonlinearities in [42], where a local bifurcation analysis is carried out using
a Lyapunov-Schmidt reduction. We again refer to [38] for further information.

In this paper we continue the study of (1.1) when p, r > 1, in the cases p > 2r− 1 and
p < 2r − 1 completing and improving the results of [32]. Also we consider with detail the
cases r = 1 and p > 0; p = 1 and r > 0; 0 < r < 1 < p and 0 < p < 1 < r. Observe that in
the case p = r = 1, the problem becomes linear, and hence a positive solution exists only
for a value of λ, the principal eigenvalue; see Lemma 2.2. We remark that in most cases
we are only considering a subcritical exponent, r, that is r < d/(d − 2) when d ≥ 3. See
Theorems 1.1–1.4 where we summarize the main results. The cases p, r < 1; p = 2r − 1
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and a detailed study of the case d = 1 will be analyzed elsewhere. We remark that all our
results are valid also for d = 1.

Our main goal is to determine the set of λ’s for which solutions exist, as well as to
determine the stability and uniqueness of the positive solutions, according to the values
of p and r. We also provide the precise asymptotic behavior of the solutions when |λ|
becomes large, in those cases where solutions exist.

Since we are only interested in nonnegative solutions to (1.1), we can extend the
functions λu− up and ur to be zero for negative values of u. In this case, any solution to
(1.1) is nonnegative. Moreover, when p ≥ 1 the strong maximum principle implies that
any nonnegative and nontrivial solution to (1.1) is positive. In the case p < 1, the solutions
could develop a dead core, but we are not analyzing this phenomenon in the present work
(see [21] for a related situation). We also remark that weak solutions to (1.1) in H1(Ω)
are smooth up to the boundary (see Lemma 2.1).

Before proceeding to the statement of the theorems, we need to introduce some no-
tation. Given m ∈ L∞(Ω), h ∈ C1(∂Ω) we denote by λ1(−∆ + m,N + h) the principal
eigenvalue of the problem




−∆u + m(x)u = λu in Ω,

∂u

∂ν
+ h(x)u = 0 on ∂Ω,

(the notation N refers to the Neumann boundary condition). Some important properties
of this eigenvalue will be recalled in Section 2 (see Lemma 2.2). We only quote for the
moment that for constant m it holds λ1(−∆ + m,N) = m.

We are using the principal eigenvalues to characterize the stability of the solutions with
respect to the parabolic counterpart problem. We say that a positive solution u0 of (1.1)
is stable (resp. unstable) if the principal eigenvalue of the linearization of (1.1) around u0

is positive (resp. negative), i. e.,

λ1(−∆− λ + pup−1
0 , N − rur−1

0 ) > 0 (resp. < 0).

We also say that u0 is weakly stable if the eigenvalue is nonnegative, and neutrally stable
if it is zero.

We are now able to state our results.

Theorem 1.1.

1. Assume r = 1 and p 6= 1. There exists a nonnegative and nontrivial solution if and
only if λ > λ1(−∆, N − 1). Moreover,

(a) if p > 1, the solution is positive, unique (denoted by uλ), stable and verifies

lim
λ↘λ1(−∆,N−1)

‖uλ‖∞ = 0, lim
λ↗+∞

‖uλ‖∞ = +∞; (1.2)

(b) if p < 1, we have for every family of nonnegative solutions {uλ} that

lim
λ↘λ1(−∆,N−1)

‖uλ‖∞ = +∞, lim
λ↗+∞

‖uλ‖∞ = 0. (1.3)

2. Assume p = 1.
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(a) If 1 < r < d/(d−2), there exists a positive solution if and only if λ < λ1(−∆+
1, N). Moreover, all solutions are unstable and for every family of positive
solutions {uλ} it holds

lim
λ↗λ1(−∆+1,N)

‖uλ‖∞ = 0, lim
λ↘−∞

‖uλ‖∞ = +∞. (1.4)

(b) If r < 1, there exists a positive solution if and only if λ < λ1(−∆ + 1, N).
Moreover, the solution is unique (denoted by uλ), stable and

lim
λ↗λ1(−∆+1,N)

‖uλ‖∞ = ∞, lim
λ↘−∞

‖uλ‖∞ = 0. (1.5)

Theorem 1.2. Assume 0 < r < 1 < p. There exists a positive solution for all λ ∈ IR.
Moreover, the solution is unique (denoted by uλ), stable and

lim
λ↘−∞

‖uλ‖∞ = 0, lim
λ↗+∞

‖uλ‖∞ = +∞. (1.6)

Theorem 1.3. Assume 0 < p < 1 < r < d/(d − 2). There exists a nonnegative and
nontrivial solution for all λ ∈ IR. Moreover, for every family of positive solutions {uλ}:

lim
λ↘−∞

‖uλ‖∞ = +∞, lim
λ↗+∞

‖uλ‖∞ = 0. (1.7)

Theorem 1.4. Assume p, r > 1.

1. If p > 2r − 1, there exists λ0 < 0 such that (1.1) has a positive solution if, and only
if, λ ≥ λ0. Moreover, for every family of positive solutions {uλ} it holds

lim
λ↗+∞

‖uλ‖∞ = +∞. (1.8)

2. If p < 2r − 1 and r < d/(d − 2), there exists Λ0 ≥ 0 such that (1.1) has a positive
solution if λ < Λ0, and no positive solutions for λ > Λ0. Moreover, if Λ0 > 0, there
exist at least two positive solutions for λ ∈ (0, Λ0) and at least a positive solution for
λ = Λ0. In addition, for every family of positive solutions {uλ} we have

lim
λ↘−∞

‖uλ‖∞ = +∞. (1.9)

3. If p < r or p = r and |Ω| > |∂Ω|, and r < d/(d − 2) then Λ0 > 0. Moreover, for
every λ ∈ (0,Λ0) there exists a unique positive stable solution to (1.1).

In Figure 1 we have represented the bifurcation diagrams in all the cases. We remark
that, in cases b), c), f) and h) the solutions need not be unique in spite of the drawings.

It is also important to stress that the asymptotic behavior of the solutions when
λ ↗ + ∞ or λ ↘ −∞ in (1.2) through (1.9) is a consequence of a more precise infor-
mation obtained for the solutions. Concretely, we prove that whenever positive solutions
exist for large |λ|, we have estimates of the form

C1|λ|θ ≤ maxu ≤ C2|λ|θ
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Figure 1: Bifurcation diagrams of (1.1): Case a) r = 1 < p; Case b) r = 1 > p; Case
c) p = 1 < r < d/(d − 2); Case d) p = 1 > r; Case e) 0 < r < 1 < p; Case f)
0 < p < 1 < r < d/(d − 2); Case g) p, r > 1, p > 2r − 1; Case h) p, r > 1, p < 2r − 1,
r < d/(d− 2), Λ0 = 0; Case i) p, r > 1, p < 2r − 1, r < d/(d− 2), Λ0 > 0.
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for every positive solution to (1.1), where C1 and C2 are positive constants, and the
exponent θ is precisely determined in terms of p and r. See Section 5 for the statement
and proof of these results.

The paper is organized as follows: in Section 2, we collect some preliminaries needed
to prove the theorems. Section 3 deals with bifurcations from infinity and from the triv-
ial solution, while Section 4 is devoted to the proof of the existence, nonexistence and
multiplicity issues. Finally, in Section 5 we analyze the precise asymptotic behavior for
large |λ|.

2 Preliminaries

Since it will be necessary when using variational arguments, we begin this section by
recalling that positive weak solutions to (1.1) are indeed classical. By a positive weak
solution to (1.1) we mean a positive function u ∈ H1(Ω) such that

∫

Ω
∇u · ∇ϕ−

∫

∂Ω
urϕ =

∫

Ω
(λu− up)ϕ

for every ϕ ∈ H1(Ω).
This fact is a consequence of the general regularity theory for elliptic equations (we

refer to [1], [24] and [28]; see also [13] for the C∞ setting). Observe that in all our results
when r < 1 we are assuming that p ≥ 1, and so by the strong maximum principle any
nonnegative and nontrivial solution of (1.1) is positive.

Lemma 2.1. Let u ∈ H1(Ω) be a nonnegative weak solution to (1.1), where p > 0 and
0 < r < d/(d− 2). Then u ∈ C2,α(Ω), where α = min{γ, p, r}.
Proof. We only sketch the main points. First remark that since 0 < r < d/(d − 2), a
Moser iteration as in [16] gives that u ∈ L∞(Ω) (the size of p is unimportant since the
corresponding term appears with a minus sign). Thus, it follows that u is a weak solution
to a problem of the type 



−∆u = f(x) in Ω,

∂u

∂ν
= g(x) on ∂Ω,

where f ∈ L∞(Ω) and g ∈ L∞(∂Ω). The Lp estimates of [1] (Theorem 15.2) give that
u ∈ W 2,q(Ω) for every q > 1, and the Morrey embedding provides u ∈ C1,β(Ω) for
some β ∈ (0, 1). Now it is easy to conclude u ∈ C2,α(Ω) with the help of Theorem 6.31
in [24].

We now recall some well-known facts about the eigenvalue problem



−∆u + m(x)u = λu in Ω,

∂u

∂ν
+ h(x)u = 0 on ∂Ω,

(2.1)

where m ∈ L∞(Ω), h ∈ C1(∂Ω) (actually a little less regularity would be enough for most
properties). As usual when dealing with positive solutions to nonlinear problems, we are
only interested in principal eigenvalues, i.e., eigenvalues which have an associated positive
eigenfunction.
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Lemma 2.2. Assume m ∈ L∞(Ω) and h ∈ C1(∂Ω). Then problem (2.1) admits a unique
principal eigenvalue, which will be denoted by λ1(−∆+m,N+h). Moreover, this eigenvalue
is simple, and any positive eigenfunction, ϕ, verifies ϕ ∈ C1,γ(Ω) ∩H2(Ω). In addition,
λ1(−∆ + m, N + h) is separately increasing in m and h and verifies

lim
K→−∞

λ1(−∆ + m,N + K) = −∞,

lim
K→∞

λ1(−∆ + m,N + K) = λ1(−∆ + m,D),
(2.2)

where λ1(−∆ + m, D) stands for the principal eigenvalue of −∆ + m with homogeneous
Dirichlet boundary conditions.

Proof. The existence of the principal eigenvalue and its simplicity are well-known, see for
instance Theorem 2.2 in [2] or Lemma 7 in [22]. The fact that λ1(−∆ + m,N + h) is
separately increasing in m and h, and (2.2) follow by [11] (see Propositions 3.3 and 3.5
and Theorem 9.1). See also Lemma 8 in [22].

We close this section with some preliminary estimates for solutions to (1.1). The first
one is a pointwise lower estimate for all solutions when p > 1 and λ > 0.

Lemma 2.3. Assume that p > 1 and r > 0. Then, if u is a positive solution to (1.1) with
λ > 0, we have

u > λ1/(p−1). (2.3)

Proof. It is clear that if u is a positive solution to (1.1), then it is supersolution of the
problem 



−∆v = λv − vp in Ω,

∂v

∂ν
= 0 on ∂Ω.

(2.4)

Moreover, u = ε > 0 is a subsolution of (2.4) for small ε. Since for λ > 0, λ1/(p−1) is the
unique positive solution to (2.4), the result follows.

Finally, we obtain a priori bounds for the solutions to (1.1). The proof is based on a
blow-up argument, as in [23]. We only sketch the proof and refer the reader to the proof
of Theorem 5.1, where the details are carried out in a similar situation.

Lemma 2.4. Assume that 1 ≤ p < 2r − 1 and 1 < r < d/(d − 2). For every compact
interval I ⊂ J with J = (−∞, λ1(−∆ + 1, N)) if p = 1 and J = IR if p > 1, there exists a
positive constant C such that every solution (λ, u) of (1.1) with λ ∈ I verifies

‖u‖∞ ≤ C. (2.5)

Proof. We first claim that if u is a solution to (1.1) then its maximum in Ω is attained at
∂Ω. Indeed, if p = 1 we have that −∆u = (λ − 1)u ≤ 0 in Ω. Assume now that p > 1;
if λ ≤ 0 then −∆u ≤ 0 in Ω and if λ > 0 by (2.3) also −∆u ≤ 0 in Ω. So, the claim is
shown.

Now assume (2.5) does not hold. Then there exists a sequence {λj} ⊂ I with corre-
sponding solutions {uj} such that Mj = ‖uj‖∞ → +∞ as j →∞. Let xj ∈ ∂Ω be a point
where Mj is attained. By the compactness of ∂Ω, we can assume that xj → x0 ∈ ∂Ω. Let

vj(y) =
uj(xj + M1−r

j y)
Mj

,
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defined in Ωj = {y ∈ IRd : xj + M1−r
j y ∈ Ω}. Observe that 0 ≤ vj ≤ 1 and vj(0) = 1,

while Ωj → IRd
+. It is easily seen that




−∆vj = M

2(1−r)
j λjvj −Mp−2r+1

j vp
j in Ωj ,

∂vj

∂ν
= vr

j on ∂Ωj .

By elliptic regularity vj is bounded in C2,α
loc (IRd

+), α ∈ (0, 1). Therefore, passing to the
limit through a subsequence we get a solution 0 < v ≤ 1 of





∆v = 0 in IRd
+,

∂v

∂ν
= vr on ∂IRd

+.

Thanks to Theorem 1.2 of [27], this problem does not admit any positive solution. This
contradiction proves the validity of (2.5).

3 Bifurcations from zero and infinity

We are dealing first with bifurcation from infinity for problem (1.1), see [36]. In [40] a
similar result was proved when the nonlinearities are asymptotically linear, and in [7] when
the nonlinearity and the bifurcation parameter appear on the boundary (see also [21]). We
omit the proof here and refer to those papers for the details.

Proposition 3.1. Assume r < 1 = p (resp. p < 1 = r). There exists an unbounded
continuum C∞ ⊂ IR × C(Ω) of nonnegative and nontrivial solutions to (1.1) bifurcating
from infinity at λ = λ1(−∆ + 1, N) (resp. at λ = λ1(−∆, N − 1)). Moreover, this is
the unique bifurcation point from infinity. Furthermore, if δ0 > 0 is small enough and
N = [λ1 − δ0, λ1 + δ0] × {u ∈ C(Ω) : ‖u‖∞ ≥ 1} with λ1 = λ1(−∆ + 1, N) (resp.
λ1 = λ1(−∆, N − 1)), then either

1. C∞ \N is bounded in IR×C(Ω) in which case C∞ \N meets the set {(λ, 0) : λ ∈ IR},
or

2. C∞ \ N is unbounded in IR× C(Ω).

The following result is related to bifurcation from the trivial solution, see [32]. Here,
we say that in the bifurcation point (λ1, 0) the bifurcation direction is subcritical (resp.
supercritical) if for every sequence {(λj , uj)} of positive solutions to (1.1) with λj → λ1

and ‖uj‖∞ → 0 as j → +∞, we have λj < λ1 (resp. λj > λ1) for large j.

Proposition 3.2. Assume p ≥ 1 and r > 1. There exists an unbounded continuum
C0 ⊂ IR × C(Ω) of positive solutions to (1.1) emanating from the trivial solution at λ =
λ1(−∆+1, N) when p = 1 or at λ = 0 when p > 1. Moreover, this is the unique bifurcation
point from the trivial solution, and with respect to the bifurcation direction:

1. if p = 1 < r, then the bifurcation direction is subcritical;

2. if 1 < p < r (resp. p > r) then the bifurcation direction is supercritical (resp.
subcritical);
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3. if p = r then the bifurcation direction is supercritical (resp. subcritical) for |Ω| > |∂Ω|
(resp. |Ω| < |∂Ω|).

Proof. The existence of the unbounded continuum C0 is proved in [32]. We now show the
bifurcation direction in Cases 2 and 3 (the remaining case can be proved similarly). Take a
sequence of solutions (λj , uj) such that λj → 0 and ‖uj‖∞ → 0 as j → +∞. We integrate
the equation (1.1), to obtain

−
∫

∂Ω
ur

j +
∫

Ω
up

j = λj

∫

Ω
uj .

Now we divide by ‖uj‖p∞:

−‖uj‖r−p
∞

∫

∂Ω

(
uj

‖uj‖∞

)r

+
∫

Ω

(
uj

‖uj‖∞

)p

= λj‖uj‖1−p
∞

∫

Ω

uj

‖uj‖∞ , (3.1)

and take into account that uj/‖uj‖∞ → 1 in C(Ω) (cf. [32]). Thus we deduce that if
1 < p < r, then λj > 0 for large j, while if p > r, λj < 0 for large j, which proves 2. When
p = r, the left-hand side of (3.1) converges to −|∂Ω|+ |Ω|. Thus sgn(λj) = sgn(|Ω|− |∂Ω|)
for large j and |Ω| 6= |∂Ω| , which proves 3.

4 Proof of the main results

We now turn to prove our theorems. For the sake of clarity, we include all the stability
results in a single preliminary statement.

Lemma 4.1. Let u0 be a positive solution to (1.1).

1. If p ≥ 1 and r ≤ 1 and (p, r) 6= (1, 1), then u0 is stable.

2. If p = 1 and r > 1, then u0 is unstable.

3. If 1 < p ≤ r and λ ≤ 0, then u0 is unstable.

Proof. We have to ascertain the sign of λ1(−∆−λ+pup−1
0 , N−rur−1

0 ). For that, it is well
known (see for instance Lemma 2.2 in [18]) that this eigenvalue is positive (resp. negative)
if there exists a strict supersolution (resp. subsolution), that is, a positive function v such
that 




(−∆− λ + pup−1
0 )v ≥ 0 (resp. ≤ 0) in Ω,

∂v

∂ν
− rur−1

0 v ≥ 0 (resp. ≤ 0) on ∂Ω,

and at least one of the inequalities is strict. Observe that taking v = u0 we have



−∆u0 − λu0 + pup

0 = (p− 1)up
0 in Ω,

∂u0

∂ν
− rur

0 = (1− r)ur
0 on ∂Ω,

whence we deduce the first and second paragraphs.
For the last paragraph, take v = uq

0, with 1 < p ≤ q ≤ r. We have that

∂v

∂ν
− rur−1

0 v = (q − r)uq+r−1
0 ≤ 0 on ∂Ω,
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and in Ω,

(−∆− λ + pup−1
0 )v = q(1− q)uq−2

0 |∇u0|2 + λuq
0(q − 1) + up+q−1

0 (p− q) < 0.

This concludes the proof.

We are showing a uniqueness result we need in Theorems 1.1 and 1.2. It is well-known
for linear boundary conditions, see [9] and [26] for example. We include the sketch of the
proof for the reader’s convenience, see also [22], [33] and [34].

Lemma 4.2. Consider the problem



−∆u = f(x, u) in Ω,

∂u

∂ν
= g(x, u) on ∂Ω.

(4.1)

Assume f ∈ C1(Ω× [0, +∞)) and g ∈ C1(∂Ω× [0, +∞)) and that

t 7→ f(x, t)
t

, t 7→ g(x, t)
t

are nonincreasing functions in t > 0,

and at least one of them is a decreasing function. Then, problem (4.1) admits at most one
positive solution.

Proof. Thanks to the regularity of the nonlinearities, we can infer that any solution u
verifies that infΩ u > 0. Take two positive solutions u1 and u2. Then

∫

Ω

(
f(x, u1)

u1
− f(x, u2)

u2

)
(u2

1 − u2
2) =

∫

Ω

(
−∆u1

u1
+

∆u2

u2

)
(u2

1 − u2
2)

=
∫

Ω
u2

1

∣∣∣∣∇
(

u2

u1

)∣∣∣∣
2

+ u2
2

∣∣∣∣∇
(

u1

u2

)∣∣∣∣
2

+
∫

∂Ω

(
g(x, u2)

u2
− g(x, u1)

u1

)
(u2

1 − u2
2),

and so we can deduce that u1 = u2.

Remark 4.3. Observe that the regularity of the functions f(x, ·) and g(x, ·) are only
required to prove that c = infΩ u > 0, for any positive solution u of (4.1), and so f(x, u)/u
and g(x, u)/u are well-defined.

We now come to the proof of the theorems.

4.1 Proof of Theorem 1.1

We divide the proof in four cases, according to whether r = 1 and p > 1 or p < 1, and
p = 1, r > 1 or r < 1.

4.1.1 Case r = 1 < p

We begin by showing that λ > λ1(−∆, N − 1) is necessary for the existence of positive
solutions. Denote by ϕ1 the positive eigenfunction associated to λ1(−∆, N − 1). Then,
multiplying (1.1) by ϕ1 and integrating by parts, we get

(λ1(−∆, N − 1)− λ)
∫

Ω
uϕ1 = −

∫

Ω
upϕ1.
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Thus λ > λ1(−∆, N − 1). To show the existence of solutions when λ > λ1(−∆, N − 1),
we use the method of sub and supersolutions. The function u := Mϕ1 is a supersolution
of (1.1) provided we take

M =
(λ− λ1(−∆, N − 1))1/(p−1)

δ0
, (4.2)

with 0 < δ0 = minx∈Ω ϕ1(x). On the other hand, u := εϕ1 for ε > 0 is subsolution of (1.1)
provided that

εp−1ϕp−1
1 ≤ λ− λ1(−∆, N − 1) in Ω.

It suffices to take ε > 0 small enough such that u ≤ u and the existence of a positive
solution follows. The uniqueness follows directly by Lemma 4.2.

Now, thanks to uniqueness and the way the supersolution was built, see (4.2), we
conclude that

lim
λ↘λ1(−∆,N−1)

‖uλ‖∞ = 0,

and by Lemma 2.3,
lim

λ↗+∞
‖uλ‖∞ = +∞.

The stability follows by Lemma 4.1, paragraph 1.

4.1.2 Case p < 1 = r

The necessity of λ > λ1(−∆, N − 1) to have nonnegative and nontrivial solutions follows
in a similar way as before. Now, we can apply Proposition 3.1 and so an unbounded
continuum C∞ of positive solutions to (1.1) bifurcates at λ = λ1(−∆, N − 1). It suffices
to show that this continuum does not meet the set {(λ, 0) : λ ∈ IR}. Assume that there
exists a sequence (λj , uj) of solutions to (1.1) such that λj → λ0 ≥ λ1(−∆, N − 1) and
‖uj‖∞ → 0 as j →∞. Take M ≥ λj − λ1(−∆, N − 1). For j large enough, we have that
up

j > Muj and so 


−∆uj < (λj −M)uj in Ω,

∂uj

∂ν
= uj on ∂Ω,

which implies λ1(−∆ − λj + M, N − 1) < 0, that is, λ1(−∆, N − 1) − λj + M < 0, a
contradiction. Finally, by Theorem 5.1 in Section 5 we have that

lim
λ↗+∞

‖uλ‖∞ = 0,

for every family {uλ} of nonnegative solutions.

4.1.3 Case p = 1 < r < d/(d− 2)

Consider ϕ1 a positive eigenfunction associated to λ1(−∆ + 1, N). Multiplying (1.1) by
ϕ1 and integrating we get

−
∫

∂Ω
urϕ1 = (λ− λ1(−∆ + 1, N)

∫

Ω
uϕ1,
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and hence λ < λ1(−∆+1, N). Now, we can apply Proposition 3.2 and deduce the existence
of an unbounded continuum C0 bifurcating subcritically at λ = λ1(−∆ + 1, N). Thanks
to the a priori bounds (Lemma 2.4) we deduce the existence of at least a positive solution
for every λ < λ1(−∆ + 1, N). By Lemma 4.1, paragraph 2, every solution is unstable.
Finally, by Theorem 5.3 in Section 5 we have that

lim
λ↘−∞

‖uλ‖∞ = +∞,

for any family {uλ} of positive solutions.

4.1.4 Case r < 1 = p

Again, λ < λ1(−∆ + 1, N) is necessary to have positive solutions. By Proposition 3.1,
there exists a unbounded continuum C∞ of positive solutions bifurcating from infinity at
λ = λ1(−∆ + 1, N).

Assume that there exists a sequence (λj , uj) of solutions to (1.1) such that λj →
λ0 ≤ λ1(−∆ + 1, N) and ‖uj‖∞ → 0 as j → ∞. Take M > 0 large enough so that
−λj + λ1(−∆ + 1, N −M) ≤ 0, which is possible thanks to (2.2) in Lemma 2.2. For this
value of M and large j we have that ur

j > Muj , and so





(−∆− λj + 1)uj = 0 in Ω,
∂uj

∂ν
−Muj > 0 on ∂Ω.

Hence λ1(−∆ + 1 − λj , N − M) > 0, a contradiction. This completes the proof of the
existence of solutions. The uniqueness and stability follow by Lemmas 4.2 and 4.1, re-
spectively. Observe that although ur is not a C1 function in [0,∞), any solution is in
fact strictly positive, and thus both results can be applied, see Remark 4.3. Moreover, by
Theorem 5.3 we have that

lim
λ↘−∞

‖uλ‖∞ = 0,

for the unique positive solution.

4.2 Proof of Theorem 1.2

Now 0 < r < 1 < p. We are using the method of sub and supersolutions to prove existence.
For fixed λ ∈ IR, we choose K0 ∈ IR so that λ1(−∆, N−K0) < λ (this is possible according
to (2.2) in Lemma 2.2). Define u := εϕ1 with ε > 0 and ϕ1 the positive eigenfunction
associated to λ1(−∆, N −K0). Then, u is subsolution of (1.1) provided that

εp−1ϕp−1
1 ≤ λ− λ1(−∆, N −K0) in Ω,

K0(εϕ1)1−r ≤ 1 on ∂Ω.

Thus it suffices to take ε small enough. To build the supersolution, take u := Mϕ1 > 0
with a large M . Then u will be a supersolution of (1.1) if

Mp−1ϕp−1
1 ≥ λ− λ1(−∆, N −K0) in Ω,

K0(Mϕ1)1−r ≥ 1 on ∂Ω,
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which is true if M is large enough.
The uniqueness and stability follow again by Lemmas 4.2 and 4.1. Moreover, thanks

to Theorem 5.3 and Lemma 2.3, we have

lim
λ↘−∞

‖uλ‖∞ = 0, lim
λ↗+∞

‖uλ‖∞ = +∞.

4.3 Proof of Theorem 1.3

To prove the existence of solutions in this case we use variational arguments. Thus we
consider in H1(Ω) the functional whose critical points coincide with weak solutions to
(1.1):

F (u) =
1
2

∫

Ω
|∇u|2 − λ

2

∫

Ω
|u+|2 +

1
p + 1

∫

Ω
|u|p+1 − 1

r + 1

∫

∂Ω
|u+|r+1,

where u+ = max{u, 0}.
Since r is subcritical, r < d/(d − 2), it is well-known that F is well defined and C1

in H1(Ω). By means of the Mountain Pass Theorem (see [5]), we are showing that there
exists at least a nontrivial critical point u ∈ H1(Ω) of F , which will be a nontrivial weak
solution to (1.1). According to Lemma 2.1, u ∈ C2,α(Ω) will be a classical solution to
(1.1). Thus we only have to prove that the geometric conditions to apply the Mountain
Pass Theorem hold:

Lemma 4.4. Assume that 0 < p < 1 < r < d/(d− 2). Then:

1. There exists a constant c such that for r small enough, F (u) ≥ cr3 if ‖u‖H1(Ω) = r.

2. There exists v0 with large H1(Ω)-norm such that F (v0) < 0.

3. F verifies the Palais-Smale condition.

Proof. 1. We argue by contradiction. Assume that there exists a sequence un such that

‖un‖H1(Ω) = rn → 0 and lim sup
n→∞

F (un)
r3
n

≤ 0. (4.3)

Let vn = un/rn. Since ‖vn‖H1(Ω) = 1 we can extract a subsequence such that

vn ⇀ v0 weakly in H1(Ω),

vn → v0 strongly in L2(Ω), Lp+1(Ω), Lr+1(∂Ω).

From (4.3) we obtain

lim sup
n→∞

1
rn

(
1
2

∫

Ω
|∇vn|2 − λ

2

∫

Ω
|(vn)+|2 +

rp−1
n

p + 1

∫

Ω
|vn|p+1 − rr−1

n

r + 1

∫

∂Ω
|(vn)+|r+1

)
≤ 0.

(4.4)
Since p < 1, the weak limit v0 verifies

∫

Ω
|v0|p+1 = 0,
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and so v0 ≡ 0 in Ω. Going back to (4.4), we get
∫

Ω
|∇vn|2 → 0,

a contradiction with ‖vn‖H1(Ω) = 1.

2. We take any function v such that v 6≡ 0 on ∂Ω and observe that

lim
t→+∞F (tv) = −∞.

Hence it suffices with setting v0 = tv for a large t.

3. Let un be a Palais-Smale sequence, that is a sequence such that

|F (un)| ≤ C and F ′(un) → 0.

We have to prove that it contains a strongly convergent subsequence. To this end let
us first check that it is bounded. Assume that this is not the case, that is, passing to a
subsequence ‖un‖H1(Ω) →∞. Let

vn =
un

‖un‖H1(Ω)
.

Since vn is bounded in H1(Ω) there exists a subsequence (that we still denote by vn) such
that

vn ⇀ v0 weakly in H1(Ω),

vn → v0 strongly in L2(Ω), Lp+1(Ω), Lr+1(∂Ω).

On the other hand, since F (un) is bounded and F ′(un) → 0 we get

F (un)
‖un‖H1(Ω)

− 1
2
〈F ′(un), vn〉 =

(
1

p + 1
− 1

2

)
‖un‖p

H1(Ω)

∫

Ω
|vn|p+1

+
(

1
2
− 1

r + 1

)
‖un‖r

H1(Ω)

∫

∂Ω
|(vn)+|r+1 → 0.

Hence
v0 ≡ 0 in Ω. (4.5)

In addition,
〈F ′(un),

un

‖un‖2
H1(Ω)

〉 → 0.

That is,
∫

Ω
|∇vn|2 − λ

∫

Ω
|(vn)+|2 + ‖un‖p−1

H1(Ω)

∫

Ω
|vn|p+1 − ‖un‖r−1

H1(Ω)

∫

∂Ω
|(vn)+|q+1 → 0,

and taking into account (4.5), we get that
∫

Ω
|∇vn|2 → 0,
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again a contradiction. Thus {un} is bounded in H1(Ω). We may pass to a subsequence
which verifies

un ⇀ u0 weakly in H1(Ω),

un → u0 strongly in L2(Ω), Lp+1(Ω), Lr+1(∂Ω).

Since 〈F ′(un), un〉 → 0, 〈F ′(un), u0〉 → 0, we have
∫

Ω
|∇un|2 − λ

∫

Ω
|(un)+|2 +

∫

Ω
|un|p+1 −

∫

∂Ω
|(un)+|r+1 → 0

and
∫

Ω
∇un · ∇u0 − λ

∫

Ω
(un)+u0 +

∫

Ω
|un|p−1unu0 −

∫

∂Ω
|(un)+|r−1unu0 → 0.

And thanks to the weak convergence of un we arrive at

lim
n→∞

∫

Ω
|∇un|2 =

∫

Ω
|∇u0|2,

which proves that un converges strongly to u0. This completes the proof.

4.4 Proof of Theorem 1.4

The proof of this theorem is much more involved than that of the previous ones. First, we
state the sweeping method of Serrin ([39], page 12) which allows to obtain some a priori
bounds for the solutions of (1.1).

Lemma 4.5. Let u be a solution of (1.1). Assume that there exists a family uM ∈ C1(Ω) of
strict supersolutions of (1.1) for M ∈ [M0,M1] such that uM is a continuos and increasing
function in M and u ≤ uM1 in Ω. Then, it holds

u ≤ uM0 in Ω.

Now, we state and prove a non-existence result.

Lemma 4.6. Assume p, r > 1. Then:

1. If p = r and |Ω| ≤ |∂Ω|, problem (1.1) does not have positive solutions for λ ≥ 0.

2. Assume that p ≤ 2r− 1. Then, there exists Λ1 > 0 such that problem (1.1) does not
have positive solutions for λ ≥ Λ1.

3. Assume that p > 2r− 1. Then, there exists Λ2 < 0 such that problem (1.1) does not
have positive solutions for λ ≤ Λ2.

Proof. 1. Let u be a positive solution to (1.1) with p = r. Then, multiplying (1.1) by
1/ur and integrating by parts, we get

−r

∫

Ω
u−r−1|∇u|2 − |∂Ω|+ |Ω| = λ

∫

Ω
u1−r.
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The first paragraph follows.

2. Assume that there exists a sequence λn ↗∞ with corresponding solutions un of (1.1).
Consider the parabolic problem





wt −∆w = −wp in Ω× (0, T ),
∂w

∂ν
= wr on ∂Ω× (0, T ),

w(x, 0) = w0 in Ω.

(4.6)

We know by Theorem 2.3 in [6], that if p ≤ 2r − 1 then all positive solutions to (4.6)
blow-up in a finite time T > 0 provided infΩ w0 is large enough. If we prove that un is a
supersolution of (4.6) for large n, then un(x) > w(x, t) for all t ∈ (0, T ) which is clearly
a contradiction. Observe that un is supersolution of (4.6) if un > w0. By Lemma 2.3, we

have un > λ
1/(p−1)
n . Thus for large enough n, we may set w0 = λ

1
p−1
n , which concludes the

proof of the second paragraph.

3. Assume now that p > 2r−1. We want to show that for λ negative enough, there are no
positive solutions to (1.1). First, we claim that there exists a positive function U ∈ C(Ω)
such that

uλ ≤ U (4.7)

for all family of positive solutions of (1.1) with λ ≤ 0. Assume (4.7). Consider the problem





vt −∆v = λv − vp in Ω× (0, T ),
∂v

∂ν
= vr on ∂Ω× (0, T ),

v(x, 0) = v0(x) > 0 in Ω,

(4.8)

and denote v(t; v0) its positive solution. It is clear that

uλ = v(t; uλ) ≤ v(t; U),

and so it suffices to prove ‖v(t, U)‖∞ → 0 as t → ∞ for negative enough λ. To this aim,
it suffices to construct a global supersolution of (4.8) which goes to zero at infinity. Since
p > 2r − 1, for every initial datum w0 ∈ L∞(Ω), (4.6) has a positive solution w, which is
globally bounded (cf. [6]). Consider v := e−µtw for some fixed µ > 0. It is not hard to
show that v is a supersolution of (4.8) provided that

wp−1(e−(p−1)µt − 1)− µ ≥ λ in Ω× (0, T ),

eµ(r−1)t ≥ 1 on ∂Ω× (0, T ).

Since w is bounded, there exists λ0 < 0 such that for λ ≤ λ0 the two inequalities hold.
Thus, it remains to prove (4.7). For that, we are going to use Lemma 4.5 and so we need
to construct now a family of strict supersolutions of (1.1). For the particular case λ = 0
a different supersolution was used in [29] and [43]. Take

uM := M(φ + M−σ)−β
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where β = 2/(p− 1), φ is such that



−∆φ = λ1φ in Ω,

φ = 0 on ∂Ω,

and M,σ > 0 are to be chosen. It is clear that uM is a continuous and increasing function
in M . After some calculations, we have that uM is strict supersolution of (1.1) provided
that

Mp−1 − β(1 + β)|∇φ|2 − β(φ + M−σ)λ1φ− λ(φ + M−σ)2 ≥ 0 in Ω,

and
−β

∂φ

∂ν
> M r−1−σ[β(1−r)+1] on ∂Ω.

Take into account that −∂φ/∂ν ≥ c1 > 0 on ∂Ω, it is not hard to show that there exists
M0 > 0 (independent of λ) such that for M ≥ M0 and λ ≤ 0 both inequalities are satisfied,
provided that (recall p > 2r − 1)

r − 1− σ[β(1− r) + 1] < 0

that is

σ >
(p− 1)(r − 1)

p− 2r + 1
.

On the other hand, given a positive solution uλ of (1.1) with λ ≤ 0, there exists a suffi-
ciently large M(λ) > M0 such that uλ < uM(λ). So, we can apply Lemma 4.5 and conclude
that uλ ≤ uM0 := U . This proves (4.7) and completes the proof.

We are now ready to come to the proof of Theorem 1.4.

4.4.1 Case p > 2r − 1

From Proposition 3.2 it follows that there exists an unbounded continuum C0 of positive
solutions bifurcating at λ = 0 subcritically (observe that p > r in this case).

Take I = [Λ2,K], with K > Λ2 arbitrary where Λ2 is given by Lemma 4.6. We have
a continuous map u : I → C1(Ω), λ 7→ u(λ) where u(λ) is the strict supersolution of (1.1)
which has been constructed above. Moreover, we have a connected set C0 such that for
λ0 small enough uλ0 < u(λ0) for (λ0, uλ0) ∈ C0. Then by a similar reasoning to the used
in [19] we obtain that uλ < u(λ) for all (λ, uλ) ∈ C0 and λ ∈ I. This implies that the
projection on the real axis of the continuum C0 is [λ2, +∞) for some λ2 < 0.

To complete the proof, set λ0 := inf{λ ∈ IR : (1.1) has a positive solution}. Thanks to
Lemma 4.6 we know that −∞ < λ0 < 0. Now, we want to show that there exists a solution
for all λ ≥ λ0. Indeed, for λ > λ0, we can take λ1 ∈ (λ0, λ) such that the corresponding
solution uλ1 (which exists thanks to the definition of λ0) is subsolution of (1.1) for this λ.
Again, as supersolution we can take u(λ). Thus there exists a solution for every λ > λ0.

Finally, we show that there exists a solution for λ = λ0. Take (λj , uj) a sequence of
solutions such that 0 > λj > λ0 and λj → λ0. Since we have an a priori bound for all
solutions, namely uj < U (see (4.7)), it is standard to pass to the limit to obtain that
uj → u0 with u0 a solution to (1.1) for λ = λ0. Since λ0 < 0, it cannot be a bifurcation
point from the trivial solution, and hence u0 6≡ 0. This completes the proof.
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4.4.2 Case p < 2r − 1

Thanks to Proposition 3.2, there exists an unbounded continuum C0 of positive solutions
to (1.1) which emanates from zero at λ = 0, and by Lemma 2.4 the solutions are bounded
for bounded λ. Thus, since there are no positive solutions for large λ, we conclude the
existence of λ0 ≥ 0 such that there exists at least a positive solution to (1.1) for λ < λ0.
Moreover, (1.9) follows by Theorem 5.3 in Section 5.

Now define Λ0 := sup{λ ∈ IR : (1.1) has a positive solution}. We already know that
0 ≤ Λ0 < +∞, and clearly there are no solutions for λ > Λ0. It remains to show that
when Λ0 > 0 there exist at least two positive solutions for all λ ∈ (0, Λ0) and one positive
solution for λ = Λ0.

We first show that a minimal positive solution exists if λ ∈ (0,Λ0). Fix such a λ. We
have that there exists λ ∈ (λ,Λ0) such a positive solution uλ of (1.1) exists. It is clear
that uλ is a supersolution to (1.1) for all λ ≤ λ. On the other hand, u = ε is a subsolution
for small ε > 0. Thus there exists at least a positive solution for every λ ∈ (0,Λ0).

Moreover, we have that any positive solution uλ verifies uλ > λ1/(p−1), thanks to
Lemma 2.3. Hence, the existence of a minimal solution to (1.1) follows. It will be denoted
by uλ.

We now show the existence of a second solution when λ ∈ (0, Λ0). We are proving for
this aim that our problem is in the general setting of [3] (we refer there for the definitions
to be used in the sequel). Let P be the cone of positive functions of C(Ω). With the
ordering induced by P , C(Ω) is an ordered Banach space with a normal cone which has
nonempty interior, see Example 1.10 in [3]. Consider the interval I = [−1,Λ0 + 1] and let

β > sup
λ∈I

‖u(λ)‖∞,

being u(λ) any solution to (1.1). This is possible since we have a priori bounds for the
solutions when λ runs in finite intervals (cf. Lemma 2.4). Take K > 0 a constant to be
chosen later, so that (1.1) can be rewritten as





(−∆ + K)u = (λ + K)u− up in Ω,
∂u

∂ν
= ur on ∂Ω.

We want to show that solving our problem is equivalent to find fixed points of a nonlinear
operator. For that, let K1 : Cα(Ω) 7→ C2,α(Ω), α ∈ (0, 1), be the operator such that
f 7→ u = K1f where u is the unique solution to





(−∆ + K)u = f in Ω,
∂u

∂ν
= 0 on ∂Ω.

This operator can be extended to a linear, compact and strongly positive map, denoted
again by K1, K1 : C(Ω) 7→ C1(Ω), see Theorem 4.2 in [3]. Consider now the operator
K2 : C1,α(∂Ω) 7→ C2,α(Ω), g 7→ u = K2g, where u is the unique solution to





(−∆ + K)u = 0 in Ω,
∂u

∂ν
= g on ∂Ω.
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Now, by [2], K2 can be extended to a linear compact map from C(∂Ω) to C(Ω). It is not
hard to prove that u is solution to (1.1) if and only if

u = F (u, λ) = K1((λ + K)u− up) +K2(γ(ur)),

where γ : C(Ω) 7→ C(∂Ω) is the trace operator.
Moreover, F : C(Ω) × IR → C(Ω) is a differentiable operator, which is compact on

bounded sets, and it is strongly increasing for fixed λ if K is large enough and u is
restricted to bounded sets. In addition, the partial derivatives,

∂uF (u0, λ0)ξ = K1((λ + K)− pup−1
0 )ξ +K2(rγ(ur−1

0 ))γ(ξ)

and
∂λF (u0, λ0)µ = µK1u0,

are strongly positive if K is selected large enough. Indeed, observe that since λ ∈ I, then
supλ∈I ‖u(λ)‖∞ < β for any positive solution u(λ) of (1.1), and so K can be taken large
to make the partial derivatives strongly positive. Hence, F satisfies hypothesis (H) of [3]
page 680, and so we can apply Theorem 20.9 of [3] (see the arguments after Proposition
20.8 and Theorem 7.4 in [4]) and conclude the existence of at least two positive solutions
for λ ∈ (0,Λ0) and at least a positive solution for λ = Λ0.

We quote for its use in the next section that, denoting by ρ = r(u0, λ0) the spectral
radius of ∂uF (u0, λ0), then ρ satisfies

λ1(−∆ +
1
ρ
(pup−1

0 − λ0), N +
r

ρ
ur−1

0 ) = K(
1
ρ
− 1). (4.9)

4.4.3 Case p < r or p = r and |Ω| > |∂Ω|
First of all, notice that p < 2r − 1 in this case. Thus there exists a solution for every
λ < Λ0, for a certain Λ0 ≥ 0. Since a supercritical bifurcation takes place at λ = 0
(Proposition 3.2) we have Λ0 > 0. Thus only the uniqueness of the stable solution for
λ ∈ (0,Λ0) remains to be proved. We adapt the argument used in [25].

The following result provides us with a complete picture of the structure of the set of
positive solutions near a stable or neutrally stable solution.

Lemma 4.7. Let (λ0, u0) be a positive solution to (1.1) with λ = λ0.

1. If
λ1(−∆− λ0 + pup−1

0 , N − rur−1
0 ) > 0, (4.10)

then, there exists ε > 0 and a differentiable mapping u : I = (λ0 − ε, λ0 + ε) 7→ P
such that u(λ0) = u0 and (λ, u(λ)) is a positive solution to (1.1) for each λ ∈ I.
Moreover, the mapping λ 7→ u(λ) is increasing and there exists a neighborhood V of
(λ0, u0) in IR×P such that if (λ, u) ∈ V is a solution to (1.1), then (λ, u) = (λ, u(λ))
for some λ ∈ I.

2. If
λ1(−∆− λ0 + pup−1

0 , N − rur−1
0 ) = 0, (4.11)

let Φ0 be the principal eigenfunction associated with λ1(−∆−λ0+pup−1
0 , N−rur−1

0 ).
Then, there exists ε > 0 and a twice continuously differentiable mapping (λ, u) : J =
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(−ε, ε) 7→ IR × P such that (λ(0), u(0)) = (λ0, u0) and for each s ∈ J , (λ(s), u(s))
is a positive solution to (1.1). Moreover, λ′(0) = 0, u(s) = u0 + s(Φ0 + v(s)) where
v ∈ C1((−ε, ε), C(Ω)) satisfies v(0) = 0, and finally

λ′′(0) =

∫

Ω
p(p− 1)up−2

0 Φ3
0 −

∫

∂Ω
r(r − 1)ur−2

0 Φ3
0

∫

Ω
u0Φ0

, (4.12)

for s ' 0. In addition, there exists a neighborhood W of (λ0, u0) in IR×P such that
if (λ, u) ∈ W is a solution to (1.1), then (λ, u) = (λ(s), u(s)) for some s ∈ J . Also,

sgnλ′(s) = sgnλ1(−∆− λ(s) + pu(s)p−1, N − ru(s)r−1). (4.13)

Proof. By (4.9), if (4.10) holds, 1 is not an eigenvalue of ∂uF (u0, λ0), and so Id −
∂uF (u0, λ0) is a topological isomorphism. Hence we can apply Proposition 20.6 of [3]
and conclude the first paragraph.

Again by (4.9), if (4.11) holds, 1 is an eigenvalue with positive eigenfunction of
∂uF (u0, λ0), so we can apply Propositions 20.7 and 20.8 of [3].

Finally, to prove (4.13), observe that from Proposition 20.8 of [3] it follows that

sgnλ′(s) = sgn(1− r(u(s), λ(s))).

Taking into account (4.9) it is not hard to show that

sgn(1− r(u(s), λ(s))) = sgnλ1(−∆− λ(s) + pu(s)p−1, N − ru(s)r−1).

This completes the proof.

We now analyze the behavior of the branch of solutions near a point (λ0, u0) such
that (4.11) holds. The fact that λ′(0) = 0 shows that this is actually a turning point of
the branch of positive solutions (cf. Corollary 4.9 below). We are elucidating in what
follows the direction of the turning. The essential ingredient is a Picone’s type identity
(see Section 4 in [8] and Lemma 4.1 in [30], for instance). Let u, v ∈ C2(Ω) ∩ C1(Ω) be
such that v/u ∈ C(Ω) and Υ : [0,∞) 7→ IR an arbitrary C1 function. Then

∫

Ω
Υ(

v

u
)(−v∆u + u∆v) = −

∫

Ω
Υ′(

v

u
)u2∇

∣∣∣
(v

u

)∣∣∣
2
−

∫

∂Ω
Υ(

v

u
)[v

∂u

∂ν
− u

∂v

∂ν
]. (4.14)

Then we have the following important result.

Proposition 4.8. Assume p ≤ r. Let (λ0, u0) be a positive solution to (1.1) with λ = λ0,
such that (4.11) holds. Then λ′′(0) < 0, where λ′′(0) is defined in (4.12).

Proof. To determine the sign of λ′′(0), we use the Picone’s identity (4.14) with Υ(t) = t2,
v = Φ0 and u = u0, to obtain

(p− 1)
∫

Ω
up−2

0 Φ3
0 < (r − 1)

∫

∂Ω
ur−2

0 Φ3
0. (4.15)

From (4.15) and as p ≤ r we can infer that λ′′(0) < 0. This concludes the proof.
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As an easy consequence of Lemma 4.7 (in particular relations (4.12) and (4.13)) and
Proposition 4.8, we obtain:

Corollary 4.9. Let (λ0, u0) be a positive solution to (1.1) with λ = λ0 > 0, such that
λ1(−∆ − λ0 + pup−1

0 , N − rur−1
0 ) = 0. Then, there exists ε > 0 such that for each

λ ∈ (λ0 − ε, λ0), (1.1) has two positive solutions, one of them stable and the other one
unstable. Moreover, there exists a neighborhood N of (λ0, u0) in IR × P such that (1.1)
does not have positive solutions in N for λ > λ0.

We are finally ready to prove the uniqueness of the stable solution.

Theorem 4.10. Assume that p ≤ r. Then, the minimal solution is the unique positive
stable solution to (1.1) for all λ ∈ (0, Λ0).

Proof. We first show that the minimal solution uλ is stable for all λ ∈ (0, Λ0). It is well
known (see Proposition 20.4 in [3]) that the minimal solution is weakly stable, i.e.,

λ1(−∆− λ + pup−1
λ , N − rur−1

λ ) ≥ 0 for all λ ∈ (0, Λ0). (4.16)

On the other hand, in a neighborhood N of (λ, u) = (0, 0), there exists a unique positive
solution for fixed λ. Since the minimal solution exists for all λ ∈ (0, Λ0), the unique
solution coincides with the minimal, so by Corollary 4.9 there exists λ such that for all
0 < λ ≤ λ we have that

λ1(−∆− λ + pup−1
λ , N − rur−1

λ ) > 0.

Now, we can produce this branch to the right to reach a value λ0 ≤ Λ0 such that λ1(−∆−
λ + pup−1

λ , N − rur−1
λ ) > 0 for all λ < λ0 and

λ1(−∆− λ0 + pup−1
λ0

, N − rur−1
λ0

) = 0. (4.17)

If λ0 = Λ0 we have proved that the minimal solution is stable for all λ < Λ0. So assume
that λ0 < Λ0. Thanks to (4.16) and Corollary 4.9, there exists a value λ1 ∈ (λ0, Λ0) such
that

λ1(−∆− λ1 + pup−1
λ1

, N − rur−1
λ1

) > 0,

and by Lemma 4.7, part 1, we can continue the branch to the left of λ1. Denote

Γ = {(λ, u(λ)) : λ ≤ λ1}.

Now two possibilities may arise:

1. There exists λ2 < λ1 such that λ1(−∆− λ2 + pu(λ2)p−1, N − ru(λ2)r−1) = 0.

2. The branch Γ can be continued for all λ ≤ λ1 with λ1(−∆ − λ + pu(λ)p−1, N −
ru(λ)r−1) > 0.

If the first possibility holds, then Corollary 4.9 is contradicted. In the second possibility,
Γ does not reach negative values of λ by Lemma 4.1. So, again two situations are possible:

1. The branch Γ meets the real axis {(λ, 0)}.
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2. The branch Γ reaches the minimal solution at some point (λ3, uλ3).

If Γ meets the axis {(λ, 0)}, since we know that the unique bifurcation point from the trivial
solution is λ = 0, then Γ reaches at (0, 0). But, as remarked before, in a neighborhood
N of (λ, u) = (0, 0) there exists a unique solution, in fact the minimal solution. So,
the second possibility occurs. If λ3 is such that uλ3 satisfies (4.17), Corollary 4.9 leads
to a contradiction. However, if λ3 is such that uλ3 satisfies λ1(−∆ − λ3 + pup−1

λ3
, N −

rur−1
λ3

) > 0, we know that in a neighborhood M of (λ3, uλ3) there exists a unique solution,
a contradiction. This contradiction shows that the minimal solution uλ is stable for all
λ ∈ (0,Λ0) and neutrally stable for λ = Λ0.

Now, assume that for some λ0 ∈ (0, Λ0) there exists a second stable solution v0 > uλ0 .
We argue as in the first part of the proof. By Lemma 4.7, part 1, there exists a branch,
say Γ′, of stable solutions of the form (λ(s), v(s)), s ∈ I, with λ(0) = λ0, v(0) = v0.
Moreover, we can continue this branch to the left until there exists a value λ∗ in which it
is noncontinuable. Since, by Lemma 4.1, part 3, all solutions are unstable for λ ≤ 0, it
follows that λ∗ ≥ 0.

If λ∗ > 0, we would have thanks to Lemma 4.7, part 1, that λ1(−∆− λ∗ + pvp−1
λ∗ , N −

rvr−1
λ∗ ) = 0, and we arrive at a contradiction with Corollary 4.9. Hence λ∗ = 0. More-

over, the branch Γ′ has to degenerate at (0, 0), otherwise we could continue it thanks to
Lemma 4.7, part 1. However, this contradicts the uniqueness of solutions for λ ∼ 0, and
the uniqueness of the stable solution is proved.

5 Behavior of solutions for large |λ|
This section is devoted to obtain the behavior of all positive solutions to (1.1) when λ ↗∞
or λ ↘ −∞. All the proofs are based on the well-known blow-up argument of Gidas and
Spruck, [23]. An essential role in them is played by a nonexistence result for problems
with nonlinear boundary conditions in a half-space obtained in [27].

We begin by considering the behavior of the positive solutions for λ → +∞ in the case
p < 1 ≤ r, assuming that r is subcritical.

Theorem 5.1. Assume that 0 < p < 1 ≤ r < d/(d − 2). For every λ0 > 0, there exist
positive constants C1, C2 such that, for every nonnegative solution u to (1.1) with λ ≥ λ0,
we have

C1λ
− 1

1−p ≤ max
Ω

u ≤ C2λ
− 1

1−p . (5.1)

Proof. We are using as in [21] a blow-up argument. Since this argument will also be used
in the next theorems, we detail it in this case. Assume that the right-hand side inequality
in (5.1) does not hold. Then there exist sequences λn ↗ ∞, and un ∈ C2,α(Ω) solutions
to (1.1) with λ = λn such that

λ
1

1−p
n Mn ↗∞, (5.2)

where Mn stands for the maximum of un. Take a point xn ∈ Ω where un attains its
maximum and assume with no loss of generality that xn → x0 ∈ Ω. We need to distinguish
two cases: x0 ∈ Ω or x0 ∈ ∂Ω.
Case 1. x0 ∈ Ω. Introduce the scaled functions

vn(y) =
un(xn + λ

−1/2
n y)

Mn
,
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which verify vn(0) = 1, 0 ≤ vn ≤ 1 and

−∆vn = vn − 1
λnM1−p

n

vp
n in Ωn,

where Ωn = λ
1/2
n (−xn + Ω). It is easily seen that Ωn → IRd as n →∞.

Since vn is bounded, it is standard to obtain bounds in C1,α
loc (IRd), which then provide

with bounds in C2,α
loc (IRd) ([24]). Then, passing to a subsequence, we have that vn → v in

C2
loc(IR

d), where v is a solution to

−∆v = v in IRd, (5.3)

with 0 ≤ v ≤ 1, v(0) = 1. We claim that this is impossible. Indeed, let λ1(R) be the
principal eigenvalue of −∆ under homogeneous Dirichlet boundary conditions in the ball
BR of radius R centered at the origin, with associated positive eigenfunction φR. If we
multiply (5.3) by φR and integrate in BR, we have

(λ1(R)− 1)
∫

BR

vφR ≥ 0

since ∂φR/∂ν < 0 on ∂BR. Taking into account that λ1(R) → 0 as R → ∞, we arrive
at v = 0 in BR for large R, which is impossible, as v(0) = 1. Hence Mnλ

1/(1−p)
n → ∞ is

impossible, and the right-hand inequality of (5.1) is proved in this case.

Case 2. x0 ∈ ∂Ω. As usual, before introducing the scaling, we need to straighten the
boundary of Ω near x0. Without loss of generality, we may assume that x0 = 0, and
that ν(x0) = −ed, the last vector of the canonical basis of IRd. Since Ω is C2,γ , there
exist R > 0 and ϕ ∈ C2,γ(B(0, R) ∩ {xd = 0}) verifying ϕ(0) = 0, ∇ϕ(0) = 0 and writing
x = (x′, xd), we have Ω∩B(0, R) = {x : xd > ϕ(x′)} and ∂Ω∩B(0, R) = {x : xd = ϕ(x′)}.
Then the diffeomorphism y = h(x) given by y′ = x′, yd = xd − ϕ(xd) maps B(0, R) onto
a neighborhood V of y = 0 in IRd, while it maps Ω ∩ B(0, R) onto V + = V ∩ IRd

+ and
∂Ω ∩B(0, R) onto V ∩ ∂IRd

+. Then problem (1.1) gets transformed into:




−∆u +

d−1∑

i=1

ai(y)uyiyd
− |∇ϕ(y′)|2uydyd

+ b(y)uyd
= λu− up y ∈ V +,

∇u · ν1(y) = ur y ∈ V ∩ ∂IRd
+,

where
ai = 2ϕxi , b(y) = ∆ϕ, ν1 = (ν ′,−ν ′∇ϕ + νd),

and all functions are evaluated at x = h−1(y).
At this point, we claim that λnM

−2(r−1)
n → ∞. Since this is clear in the particular

case r = 1, we may assume for the moment r > 1. If we had λnM
−2(r−1)
n bounded for

some subsequence, we can assume λnM
−2(r−1)
n → c, with c ≥ 0. Let yn = h(xn), and

introduce the functions

vn(y) =
un(yn + M

−(r−1)
n y)

Mn
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(observe that we must have in this case Mn →∞). Then vn are solutions to




−∆v +
d−1∑

i=1

ai,n(y)vyiyd
− ad,n(y)vydyd

+ M−(r−1)
n bn(y)vyd

=
λn

M
2(r−1)
n

v − 1

M
2(r−1)+1−p
n

vp y ∈ Un,

∇v · ν1,n(y) = vr y ∈ ∂Un ∩ IRd
+,

where Un := M r−1
n (B(0, R) ∩ IRd

+) − yn, ai,n = ai(yn + M
−(r−1)
n y), 1 ≤ i ≤ d − 1,

ad,n(y) = |∇ϕ(y′n +M
−(r−1)
n y′)|2, bn(y) = b(yn +M

−(r−1)
n y), ν1,n(y) = ν1(yn +M

−(r−1)
n y).

We need to distinguish two subcases:

(a) λ
1/2
n dist(xn, ∂Ω) is unbounded. Passing to a subsequence, we may assume that

λ
1/2
n dist(xn, ∂Ω) → +∞. In this case Un → IRd

+, and the contradiction is reached as in
Case 1, the limit problem being (5.3).

(b) λ
1/2
n dist(xn, ∂Ω) is bounded. Passing to a subsequence, λ

1/2
n dist(xn, ∂Ω) → γ ≥ 0,

so that Un → {yd ≥ −γ}. Since 0 ≤ vn ≤ 1, we can obtain C2,α
loc (IRd

+) bounds (cf. [28]),
and then pass to the limit through a subsequence to obtain that vn → v, which is a solution
to 



−∆v = cv in {yd > −γ},

∂v

∂ν
= vr on yd = −γ,

(5.4)

which in addition verifies 0 ≤ v ≤ 1, v(0) = 1. With a further translation (which does not
change the equation) we may assume problem (5.4) is posed in IRd

+.
If c = 0, this contradicts Theorem 1.2 in [27]. If c 6= 0, we can multiply (5.4) by the

eigenfunction φR associated to the first eigenvalue of −∆ under homogeneous Dirichlet
boundary conditions in a ball of radius R contained in IRd

+ to obtain as before that λ1(R) ≥
c, which is clearly impossible for large R. Hence we arrive at a contradiction which shows
the claim.

We now introduce the functions

wn(y) =
un(yn + λ

−1/2
n y)

Mn
,

which are solutions to




−∆w +
d−1∑

i=1

ai,n(y)wyiyd
− ad,n(y)wydyd

+ λ−1/2
n bn(y)wyd

= w − 1
λnM1−p

n

wp y ∈ Un,

∇w · ν1,n(y) = M r−1
n λ

−1/2
n wr y ∈ ∂Un ∩ ∂IRd

+,

where now Un := λ
1/2
n (B(0, R) ∩ IRd

+), ai,n = ai(yn + λ
−1/2
n y), 1 ≤ i ≤ d − 1, ad,n(y) =

|∇ϕ(y′n + λ
−1/2
n y′)|2, bn(y) = b(yn + λ

−1/2
n y), ν1,n(y) = ν1(yn + λ

−1/2
n y). Passing to the

limit as before we arrive at wn → w, which either solves

−∆w = w in IRd
+,
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or 


−∆w = w in IRd

+,
∂w

∂ν
= 0 on ∂IRd

+.

Extending w to all of IRd as an even function in the second case, we obtain a nonnega-
tive nontrivial solution to −∆w = w in IRd in both cases, which has been shown to be
impossible, and hence the right-hand side of (5.1) is proved.

Since the arguments used to prove the left-hand inequality in (5.1) are similar, we are
only sketching the proof. Thus assume Mnλ

1/(1−p)
n → 0 for a certain sequence λn ↗ ∞

with corresponding solutions un. In Case 1, we set

vn(y) =
un(xn + M

1−p
2

n y)
Mn

,

and passing to the limit we arrive at a solution v to

−∆v = −vp in IRd, (5.5)

with 0 ≤ v ≤ 1, v(0) = 1, which is clearly impossible, since v attains its maximum at zero,
and then −∆v(0) ≥ 0.

In Case 2, we set

vn(y) =
un(yn + M

1−p
2

n y)
Mn

,

and in the limit obtain equation (5.5) or



−∆v = −vp in IRd

+,
∂v

∂ν
= 0 on ∂IRd

+.

In the second case, the function v can then be extended as an even function to all of IRd,
verifying (5.5), which as we have seen is impossible. This completes the proof of (5.1).

A similar proof as that of the upper estimate in (5.1) can be made for p > 1 in the
cases where positive solutions exist for large λ, that is r ≤ 1 or r > 1 and p > 2r − 1 (we
recall that no solutions exist for large λ if p = 1). This, together with (2.3), leads to:

Theorem 5.2. Assume that p > 1 and r ≤ 1 or 1 < r < d/(d − 2) and p > 2r − 1. For
every λ0 > 0, there exists a positive constant C such that, for every nonnegative solution
u to (1.1) with λ ≥ λ0, we have

λ
− 1

1−p ≤ max
Ω

u ≤ Cλ
− 1

1−p . (5.6)

Proof. The lower inequality in (5.6) is (2.3) in Lemma 2.3. To prove the upper inequality,
assume it does not hold, that is, there exist sequences λn ↗∞ and solutions un verifying
(5.2). It is easily seen that the proof is identical to that of Theorem 5.1 provided we show
that λnM

−2(r−1)
n ↗∞. We introduce the functions

vn(y) =
un(yn + M

1−p
2

n y)
Mn

,
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and passing to the limit obtain a positive solution to the equation



−∆v = −vp in IRd

+,
∂v

∂ν
= 0 on ∂IRd

+,

which has been shown to be impossible. We remark that in this case the left inequality in
(5.6) implies −∆u ≤ 0, and thus xn ∈ ∂Ω for all n.

We now turn to consider the cases where positive solutions exist for large negative λ,
namely r < 1, p ≥ 1 and 1 < r < d/(d− 2), p < 2r − 1. We collect them both in a single
statement, and only sketch its proof, since it is entirely similar to that of Theorem 5.1.

Theorem 5.3. Assume that 0 < r < 1 ≤ p or 1 < r < d/(d−2) and p < 2r−1. For every
λ0 < 0, there exist positive constants C1, C2 such that, for every nonnegative solution u
to (1.1) with λ ≤ λ0, we have

C1(−λ)
1

2(r−1) ≤ max
Ω

u ≤ C2(−λ)
1

2(r−1) . (5.7)

Proof. We begin with the case 0 < r < 1 ≤ p. Thus assume that there exist sequences
λn ↘ −∞ and corresponding solutions un ∈ C2,α(Ω) such that

Mn(−λn)−1/(2(r−1)) ↗∞,

where Mn stands for the maximum of un. Take a point xn ∈ ∂Ω where un attains its
maximum and assume xn → x0 ∈ ∂Ω (observe that λ < 0 implies that the maximum of a
solution is attained at ∂Ω).

We claim that Mp−1
n (−λn)−1 is bounded. Since this is immediate if p = 1, we restrict

to p > 1 and assume that, passing to a subsequence,

Mp−1
n (−λn)−1 ↗ +∞,

and in particular Mn ↗∞. We introduce the scaled functions

wn(y) =
un(xn + M

(1−p)/2
n y)

Mn
,

and pass to the limit to obtain a positive solution w to



−∆w = −wp in IRd

+,
∂w

∂ν
= 0 on ∂IRd

+,

which is impossible. This proves the claim. Thus, we may assume that there exists c ≥ 0
such that Mp−1

n (−λn)−1 → c.
Defining the functions

vn(y) =
un(xn + (−λn)−1/2y)

Mn
,
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and passing to the limit in a similar way, we obtain a positive solution v to



−∆v = −v − cvp in IRd

+,
∂v

∂ν
= 0 on ∂IRd

+,

which is again a contradiction.
To prove the lower inequality in (5.7), we assume that for a sequence λn ↘ −∞, with

corresponding solutions un, we have

Mn(−λn)−
1

2(r−1) → 0,

where Mn = maxΩ un. We remark that, thanks to the first part of the proof, we have
Mn → 0. With the rescaled functions

zn(y) =
un(xn + M1−r

n y)
Mn

,

and passing to the limit, we obtain a solution to



−∆w = 0 in IRd

+,
∂w

∂ν
= wr on ∂IRd

+,
(5.8)

with 0 < w ≤ 1 and w(0) = 1. However, Theorem 1.2 in [27] cannot be applied in this
setting, since it is required there that r ≥ 1. Thus we are including an alternative proof,
along the lines of Theorem 1 (iii) in [21].

Let D ⊂ IRd
+ be a smooth bounded domain such that Γ := ∂D∩∂IRd

+ = B(0, 1)∩∂IRd
+,

and set Γ′ = ∂D ∩ IRd
+. Define Dn = nD, Γn = nΓ, Γ′n = nΓ′, for n ∈ IN. According to

Theorem 8 in [21], the eigenvalue problem




∆z = 0 in Dn,
∂z

∂ν
= σz on Γn,

z = 0 on Γ′n,

admits a first eigenvalue σ = σ1,n with a positive associated eigenfunction ϕn ∈ H1(Dn)∩
W 2,q(Dn) ∩ C2,γ(Dn ∪ T ), for all 1 < q < 4/3 and any closed T ⊂ B(0, n) ∩ ∂IRd

+. In
addition, σ1,n → 0.

If we multiply the equation in (5.8) by ϕn and integrate

0 =
∫

Γn

wrϕn − σn

∫

Γn

wϕn −
∫

Γ′n
w

∂ϕn

∂ν
≥ (1− σn)

∫

Γn

wϕn,

since ∂ϕn/∂ν < 0 on Γ′n and wr ≥ w (this follows because r ≤ 1 and 0 ≤ w ≤ 1), which
is not possible provided n is large.

The proof of the remaining case r > 1 and p < 2r − 1 is entirely similar (actually, the
scaled functions are constructed symmetrically since now r > 1) and we leave the proof
to the reader.
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[18] J. M. Fraile, P. Koch Medina, J. López-Gómez and S. Merino, Elliptic
eigenvalue problems and unbounded continua of positive solutions of a semilinear
elliptic equation, J. Differential Equations 127 (1996), 295–319.
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