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Abstract
In this work we consider existence and uniqueness of positive solutions to the

elliptic equation −∆u = λu in Ω, with the nonlinear boundary conditions ∂u
∂ν = up

on Γ1, ∂u
∂ν = −uq on Γ2, where Ω is a smooth bounded domain, ∂Ω = Γ1 ∪ Γ2,

Γ1 ∩ Γ2 = ∅, ν is the outward unit normal, p, q > 0 and λ is a real parameter. We
obtain a complete picture of the bifurcation diagram of the problem, depending on
the values of p, q and the parameter λ. Our proofs are based on different techniques:
variational arguments, bifurcation techniques or comparison arguments, depending on
the range of parameters considered.

Keywords: Elliptic problems, nonlinear boundary conditions, sub and supersolutions, bi-
furcation.
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1 Introduction

The aim of the present work is the study of existence and uniqueness (or multiplicity) of
positive solutions to the following elliptic problem





−∆u = λu in Ω,
∂u

∂ν
= up on Γ1,

∂u

∂ν
= −uq on Γ2.

(1.1)

Here Ω is a C2,α domain of Rm, ∂Ω = Γ1∪Γ2, Γ1∩Γ2 = ∅ and ν is the outward unit normal
vector field. The exponents p, q are positive and λ will be regarded as a real parameter
without definite sign.
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2 J. Garćıa-Melián, J. D. Rossi and A. Suárez

Elliptic problems with non-linear boundary conditions have been deeply analyzed in
recent years, see the survey [31] and references therein. Boundary conditions of the kind

∂u

∂ν
= ±up (1.2)

arise naturally in many situations. For instance when considering extremals for the Sobolev
trace embedding ([31]) or when modelling chemical reactions due to the presence of a solid
catalyzer, see [27]. Another motivation comes from geometry. One is lead to nonlinear
boundary conditions when performing a description of conformal deformations on Rie-
mannian manifolds with boundary, see [9], [13] and [14].

The main novelty in this paper is that in problem (1.1) both signs in (1.2) appear in
different parts of ∂Ω. Thus there exists a competition between an incoming flux at one
part of the boundary, Γ1 (given by the term up), and an outgoing flux on another part,
Γ2 (given by −uq), while in the interior of the domain we only have a linear diffusion
controlled with a parameter λ. It is interesting to look at the necessary balance between
both fluxes and the linear diffusion to obtain existence and uniqueness (or multiplicity) of
positive solutions to (1.1).

The only previous reference that deals with (1.1) is, at the best of our knowledge,
the paper [15], where the authors describe the set of solutions to (1.1) for λ = 0 in an
interval, that is, solutions w(x) to w′′(x) = 0 for x ∈ (0, L) with the boundary conditions
−w′(0) = wp(0) and w′(L) = −wq(L). They performed a complete description of the set
of positive solutions to this problem in this particular case.

In this paper, we extend the above results and study problem (1.1) in general domains
and for any λ. Remark that in the case of an interval with λ = 0 solutions have the special
form w(x) = ax + b. No such explicit form is available in the general case treated here,
thus making the analysis much more involved.

We will perform a complete analysis of the bifurcation diagram of nonnegative solutions
to (1.1) according to the values of p, q and the parameter λ. To obtain our results we
make use of different tools: variational arguments, bifurcation techniques or comparison
arguments, according to the range of parameters considered. We remark that nonnegative
nontrivial solutions to (1.1) are strictly positive in Ω, thanks to the maximum and Hopf’s
principles. According to standard elliptic theory, they are also classical.

Before proceeding to the statements of our theorems, we need to introduce some
notation regarding principal eigenvalues. For h ∈ C(Γ1), g ∈ C(Γ2), we denote by
Λ(N + h,N + g) the principal eigenvalue of the problem





−∆φ = λφ in Ω,

∂φ

∂ν
+ hφ = 0 on Γ1,

∂φ

∂ν
+ gφ = 0 on Γ2,

and by Λ(N + h,D) that of the problem




−∆φ = λφ in Ω,
∂φ

∂ν
+ hφ = 0 on Γ1,

φ = 0 on Γ2.
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We will quote some important properties of Λ(N +h,N +g) and Λ(N +h,D) in Section 2.
We are now ready to state our results. For the sake of clarity, we divide the exposition

in several cases according to the set of exponents p and q. We find that very different
pictures appear.

Case I. p < 1 < q.

Theorem 1.1. Assume that p < 1 < q. Then problem (1.1) does not have positive
solutions if λ ≥ Λ(N,D), while it has a unique positive solution for λ < λ(N,D).

Case II. p, q > 1.

Theorem 1.2. Assume that 1 < q and 1 < p < m/(m− 2). Then:

1. There exists Λ, 0 ≤ Λ ≤ Λ(N,D) such that, for λ > Λ, problem (1.1) does not have
positive solutions, while it has at least a positive solution if λ < Λ.

2. The solutions are bounded in L∞ for bounded values of λ.

3. If Λ > 0, then there exists at least two positive solutions for λ ∈ (0,Λ), and a positive
solution for λ = Λ. In addition, there exists a minimal positive solution for every
such λ ∈ (0,Λ).

4. If p > q or p = q and |Γ2| > |Γ1|, then Λ > 0, and the minimal solution is the unique
stable positive solution to (1.1) for λ ∈ (0, Λ).

5. If p = q and |Γ2| ≤ |Γ1|, then Λ = 0.

Case III. p, q < 1.

Theorem 1.3. Assume that p, q < 1.

1. There exists Λ, 0 ≤ Λ ≤ Λ(N,D) such that problem (1.1) admits a positive solution
for λ < Λ, while no positive solutions exist for λ > Λ.

2. In case Λ > 0, there also exists a positive solution for λ = Λ.

3. If p < q or p = q and |Γ2| < |Γ1|, then Λ > 0, while Λ = 0 for p = q and |Γ2| ≥ |Γ1|.

4. When p ≤ q, the solution is unique for λ ≤ 0.

Case IV. q < 1 < p.

Theorem 1.4. Assume q < 1 < p < m/(m− 2). If λ ≥ Λ(N, D), then problem (1.1) does
not have positive solutions and for λ < λ(N,D), there exists at least a positive solution.

Case V. q = 1 > p, q = 1 < p, p = 1 > q, p = 1 < q.

Theorem 1.5. It holds,

1. Assume q = 1 > p. If λ ≥ Λ(N,N + 1), then problem (1.1) does not have positive
solutions, while for λ < Λ(N,N + 1), there exists a unique positive solution.
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2. Assume q = 1 < p. If λ ≥ Λ(N,N + 1), then problem (1.1) does not have positive
solutions. If in addition p < m/(m − 2) there exists at least a positive solution for
λ < Λ(N, N + 1).

3. Assume p = 1 > q. There exists at least a positive solution to (1.1) if, and only if,
λ ∈ (Λ(N − 1, N),Λ(N − 1, D)).

4. Assume p = 1 < q. There exists at least a positive solution to (1.1) if, and only if,
λ ∈ (Λ(N − 1, N),Λ(N − 1, D)). In this case, the solution is unique.

See Figures 1 and 2 where we have represented the bifurcation diagrams in all the
cases.

Figure 1: Bifurcation diagrams of (1.1): Case a) p < 1 < q; Case b) 1 < p < q; Case c)
1 < q < p < m/(m− 2); Case d) 1 > p > q; Case e) 1 > q > p.

The case p = q = 1 is not included in Theorem 1.5, since the problem becomes linear.
In that case there is a single value of λ for which a positive solution exists, namely the
principal eigenvalue Λ(N − 1, N + 1).

Let us briefly comment on some ideas and methods used in the proofs of these theorems.
The classification in cases that we have chosen to present our results relies on the exponents
p and q being super or sublinear. As we can observe from the figures, the picture changes
completely when one of the exponents changes from being superlinear to sublinear. The
limit cases (which we gather in Theorem 1.5) exhibit a sort of borderline behavior.

In the case p < 1 < q the reaction is sublinear while the absorption is superlinear; this
leads to the use of super and subsolutions to obtain existence of a unique positive solution
(for λ < Λ(N, D)). When p, q < 1 we use a bifurcation analysis at the point (0,∞),
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Figure 2: Bifurcation diagrams of (1.1): Case a) q = 1 > p; Case b) q = 1 < p < m/(m−2);
Case c) p = 1 > q; Case d) p = 1 < q.

while for p, q > 1 we have a bifurcation from (0, 0). The a priori bounds on solutions
for subcritical p, p < m/(m − 2), which are needed in this case, come from the use
of the well-known blow-up technique introduced in [19]. Observe that the exponent pc =
m/(m−2) is critical with respect to the Sobolev trace embedding H1(Ω) ↪→ Lp+1(Γ1). The
restriction on p being subcritical also appears when variational arguments (the mountain
pass theorem) are used. This will be done for the case q < 1 < p < pc .

The rest of the paper is organized as follows: in Section 2, we present some general
results on principal eigenvalues and uniqueness of positive solutions. Sections 3 and 4
are dedicated to obtain a priori bounds for the solutions and to some bifurcation results,
respectively. Finally, Section 5 is devoted to the proof of the theorems; each theorem will
be treated in a different subsection.

2 Some preliminaries and general results

In this section we present some known results which will be used along the paper, and we
will analyze some basic features of problem (1.1).

We begin by recalling that, thanks to Hopf’s maximum principle, nonnegative nontriv-
ial weak solutions u ∈ H1(Ω) to (1.1) are strictly positive in Ω, and hence, by standard
regularity theory of elliptic equations (cf. [20] and [25]) u ∈ C2,α(Ω) ∩ C∞(Ω), no matter
the values of p and q.

Now let us come back to the eigenvalue problem quoted in the introduction. For
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h ∈ C(Γ1), g ∈ C(Γ2), consider




−∆φ = λφ in Ω,

∂φ

∂ν
+ hφ = 0 on Γ1,

∂φ

∂ν
+ gφ = 0 on Γ2.

This problem has a unique principal eigenvalue, that is, a unique eigenvalue which has an
associated positive eigenfunction. It will be denoted by Λ(N +h,N +g). We are also using
the notation D for the Dirichlet boundary condition. That is, we are using the notation
Λ(N + h,D) for the first eigenvalue of the problem





−∆φ = λφ in Ω,
∂φ

∂ν
+ hφ = 0 on Γ1,

φ = 0 on Γ2,

(2.1)

and symmetrically Λ(D, N + g) when the Dirichlet condition is imposed on Γ1. Finally,
let Λ(D, D) be the first eigenvalue when Dirichlet homogeneous conditions are imposed
on the whole ∂Ω.

Next we state some important properties of these principal eigenvalues, when varying
the functions h and g and the domain Ω. See [8] for very general results of this type.

Proposition 2.1. For fixed h ∈ C(Γ1), the mapping g ∈ C(Γ2) 7→ Λ(N + h, N + g) ∈ R
is continuous and increasing. Moreover

lim
K→−∞

Λ(N + h,N + K) = −∞
lim

K→+∞
Λ(N + h,N + K) = Λ(N + h,D).

(2.2)

If in addition Λδ(N + h,D) stands for the first eigenvalue of the problem




−∆φ = λφ in Ωδ,

∂φ

∂ν
+ hφ = 0 on Γ1,

φ = 0 on Γ2,δ,

where Ωδ = Ω ∪ {x ∈ Rm : dist(x,Γ2) < δ} and Γ2,δ = {x ∈ Rm \ Ω : dist(x,Γ2) = δ},
then

lim
δ→0

Λδ(N + h,D) = Λ(N + h,D). (2.3)

Similar results are valid for the eigenvalue Λ(N + h,N + g) when g ∈ C(Γ2) is kept fixed.

Remark 1. For the eigenvalue Λ(N +h, D) we also have an asymptotic property analogous
to (2.2), namely

lim
K→−∞

Λ(N + K, D) = −∞
lim

K→+∞
Λ(N + K, D) = Λ(D, D).
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The rest of the section is devoted to obtain some preliminary results which are applica-
ble to problem (1.1) in several ranges of the parameters. We show next that the eigenvalue
Λ(N, D) is an upper bound for the set of λ’s for which there exists a positive solution. We
remark that this nonexistence result is valid for all cases, although in some situations the
upper limit can be improved.

Lemma 2.2. Let Λ = Λ(N, D) be the first eigenvalue of (2.1) with h = 0. If λ ≥ Λ then
there is no positive solution to (1.1).

Proof. Assume by contradiction that there exists a positive solution u of (1.1) with λ ≥ Λ.
Let φ be a positive eigenfunction associated to Λ. From the weak formulation of (1.1)
using φ as test function we obtain

∫

Ω
∇u · ∇φ− λ

∫

Ω
uφ =

∫

Γ1

upφ.

Integrating by parts and using that φ is an eigenfunction (which verifies ∂φ
∂ν < 0 on Γ2) we

get

0 ≥ (Λ− λ)
∫

Ω
uφ =

∫

Γ1

upφ−
∫

Γ2

u
∂φ

∂ν
> 0,

a contradiction.

We now consider the issue of uniqueness of positive solutions to (1.1). We include a
proof for completeness (see however [29] and [18]).

Lemma 2.3. Let 0 ≤ p ≤ 1 and q ≥ 1, with p and q not simultaneously equal to 1. Then
there exists at most one positive solution to (1.1).

Proof. We use ideas from [7]. Take two positive solutions u1 and u2, then
∫

Ω

(−∆u1

u1
+

∆u2

u2

)
(u2

1 − u2
2) = 0. (2.4)

On the other hand, integrating by parts, we obtain that
∫

Ω
−∆u1

(
u2

1 − u2
2

u1

)
=

∫

Ω
∇u1 · ∇

(
u2

1 − u2
2

u1

)
−

∫

Γ1

up−1
1 (u2

1 − u2
2) +

∫

Γ2

uq−1
1 (u2

1 − u2
2),

and hence, using (2.4) we get

0 =
∫

Ω
∇u1 · ∇

(
u2

1 − u2
2

u1

)
−∇u2 · ∇

(
u2

1 − u2
2

u2

)

+
∫

Γ1

(up−1
2 − up−1

1 )(u2
1 − u2

2) +
∫

Γ2

(uq−1
1 − uq−1

2 )(u2
1 − u2

2).
(2.5)

Finally, since
∫

Ω
∇u1 · ∇

(
u2

1 − u2
2

u1

)
−∇u2 · ∇

(
u2

1 − u2
2

u2

)
=

∫

Ω
u2

1

∣∣∣∣∇
(

u2

u1

)∣∣∣∣
2

+ u2
2

∣∣∣∣∇
(

u1

u2

)∣∣∣∣
2

,

we obtain from (2.5) that
∫

Γ1

(up−1
2 − up−1

1 )(u2
1 − u2

2) +
∫

Γ2

(uq−1
1 − uq−1

2 )(u2
1 − u2

2) ≤ 0.

Since p ≤ 1 ≤ q, not both equal to 1, we conclude that u1 = u2.
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Remark 2. The proof of Lemma 2.3 continues to be valid if we replace the nonlinear
boundary condition on Γ1 or Γ2 (or both) by zero, or by a nonhomogeneous Dirichlet
condition. This will be also used in the sequel.

We now include a further uniqueness result in a situation where Lemma 2.3 is not
applicable.

Lemma 2.4. If 1 > q ≥ p and λ ≤ 0 then there exists at most one positive solution to
(1.1).

Proof. Let u1, u2 be positive solutions to (1.1). We want to show that u1 = u2. Let

v1(x) = u1−q
1 (x) and v2(x) = u1−q

2 (x).

It is not hard to show that

−∆vi =
q

1− q

|∇vi|2
vi

+ λ(1− q)vi,

for i = 1, 2. Now let w(x) = v1(x)− v2(x) and assume that w has a positive maximum in
Ω. We have





−∆w − q

1− q

1
v1
∇w · ∇(v1 + v2) +

q

1− q

( |∇v2|2
v1v2

)
w − λ(1− q)w = 0 in Ω,

∂w

∂ν
= (1− q)

(
v

p−q
1−q

1 − v
p−q
1−q

2

)
on Γ1,

∂w

∂ν
= 0 on Γ2.

Since the coefficient of w in the equation is positive, the strong maximum principle and
Hopf’s principle imply that w is a positive constant c. However, this is impossible, since
the unique constant which solves the previous equation is c = 0.

We conclude that w does not have a positive maximum in Ω, and thus v1 ≤ v2. By
a symmetric argument we get v1 = v2, and the uniqueness of the positive solution is
proved.

3 A priori bounds

This section is dedicated to prove that we have a priori bounds for the positive solutions
to (1.1) in the cases q ≥ 1, 1 < p < m/(m− 2). We consider first the case q > 1. For our
argument below, we need to prove existence and uniqueness of solutions to an auxiliary
problem.

Lemma 3.1. Let q > 1 and R > 0 and consider the problem:




−∆z = µz in Ω,

z = R on Γ1,
∂z

∂ν
= −zq on Γ2.

(3.1)

Then, there exists a positive solution to (3.1) if, and only if, µ < Λ(D, D). Moreover, the
solution is unique.
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Proof. Uniqueness follows by Lemma 2.3 (see Remark 2). Assume that there exists a
positive solution z of (3.1). Let φ be the eigenfunction associated to Λ(D, D). Multiplying
(3.1) by φ and integrating by parts, we get

∫

∂Ω

∂φ

∂ν
z = (µ− Λ(D, D))

∫

Ω
zφ

whence we deduce that µ < Λ(D, D) since ∂φ/∂ν < 0 on ∂Ω.
To prove existence, we will use the method of sub and supersolutions. It is clear that

z = 0 is subsolution of (3.1). We are next constructing a supersolution. Take µ < Λ(D, D).
By (2.2) in Proposition 2.1, there exists ρ > 0 (large enough) such that µ < Λ(D, N + ρ).
Thanks to (2.3) in Proposition 2.1, we can find a small δ such that µ < Λδ(D, N + ρ),
where Λδ(D,N + ρ) denotes the first eigenvalue of the problem





−∆φ = λφ in Ωδ,

φ = 0 on Γ1,δ,
∂φ

∂ν
+ ρφ = 0 on Γ2,

with Ωδ = Ω ∪ {x ∈ Rm : dist(x,Γ1) < δ} and Γ1,δ = {x ∈ Rm \ Ω : dist(x,Γ1) = δ}. Let
φ1 be the eigenfunction associated to this eigenvalue (which is strictly positive in Ω). It
can be proved that z = Kφ1 is supersolution of (3.1). Indeed, in Ω

−∆z = KΛδ(D, N + ρ)φ1 > µz,

while on Γ1

z = Kφ1 > R

for large K, and finally on Γ2

∂z

∂ν
= −Kρφ1 ≥ −Kqφq

1,

which also holds for sufficiently large K. Since z ≤ z, the existence of a solution follows.

In order to simplify the proof of the a priori bounds below, we are showing next that
it is sufficient to get a bound for the solutions on Γ1.

Lemma 3.2. Let I ⊂ (−∞, Λ(N, D)) be a bounded interval, and assume that there exists
a positive constant M such that

sup
Γ1

u ≤ M

for every positive solution (λ, u) to (1.1) with λ ∈ I. Then, there exists a positive constant
C such that

sup
Ω

u ≤ C

for every positive solution (λ, u) to (1.1) with λ ∈ I.

Proof. First of all notice that Λ(N, D) < Λ(D,D). Thus there exists a unique positive
solution to (3.1) with µ = Λ(N, D) and R = M , which we are denoting by z.

On the other hand, if (λ, u) is a solution to (1.1) with λ ∈ I, then λ < Λ(N,D), and
it follows that u is a subsolution to (3.1) with µ = Λ(N, D) and R = M . Since there
exist arbitrarily large supersolutions (cf. the proof of Lemma 3.1), we deduce thanks to
uniqueness that u ≤ z. This concludes the proof with C = supΩ z.
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Finally, we prove the a priori bounds. We use a blow-up argument as in [19].

Lemma 3.3. If q > 1, 1 < p < m/(m− 2) and I ⊂ (−∞,Λ(N, D)) is a bounded interval,
then there exists a constant C such that

sup
Ω

u ≤ C

for every positive solution (λ, u) with λ ∈ I.

Proof. By Lemma 3.2 it is enough to show that the solutions are bounded on Γ1. We argue
by contradiction: assume that the conclusion is false and hence there exists a sequence
{λn} ⊂ I with corresponding solutions un, such that

Mn = max
Γ1

un = un(xn) → +∞.

With no loss of generality, we may assume λn → λ0 and xn → x0 ∈ Γ1. Let

vn(y) =
un(xn + M

−(p−1)
n y)

Mn
.

This sequence is uniformly bounded and verifies vn(0) = maxΩ vn(x) = 1 and




−∆vn =
λn

M
2(p−1)
n

vn in Ωn,

∂vn

∂ν
= vp

n on (Γ1)n,

∂vn

∂ν
= −M q−p

n vq
n on (Γ2)n.

Where Ωn = {y : xn +M
−(p−1)
n y ∈ Ω}, Γi,n = {y : xn +M

−(p−1)
n y ∈ Γi}, i = 1, 2 (observe

that Ωn → Rm
+ , Γ1,n → ∂Rm

+ ). It is now a standard matter to pass to the limit (see the
details in [17]) and obtain that vn → v, which is a positive and bounded solution to




−∆v = 0 in Rm

+ ,
∂v

∂ν
= vp on ∂Rm

+ ,

with v(0) = 1, a contradiction with the nonexistence result of [22], since p is subcritical,
1 < p < m/(m− 2).

We finally consider the case q = 1, 1 < p < m/(m − 2). Since the arguments are
entirely similar to those used before, we only sketch the proof.

Lemma 3.4. If q = 1, 1 < p < m/(m − 2) and I ⊂ (−∞, Λ(N, N + 1)) is a bounded
interval, then there exists a constant C such that

sup
Ω

u ≤ C,

for every positive solution (λ, u) with λ ∈ I.
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Sketch of the proof. It follows exactly as in Lemma 3.1 that the problem




−∆z = µz in Ω,

z = R on Γ1,
∂z

∂ν
+ z = 0 on Γ2,

(3.2)

where R > 0, has a unique solution if and only if µ < Λ(D, N +1). Thus with an argument
as in Lemma 3.2 (considering the solution to (3.2) with µ = Λ(N, N + 1) < Λ(D, N + 1))
it follows that we only need to bound the solutions on Γ1. It is easily seen that, once this
is done, the proof of Lemma 3.3 carries over to the present situation with no changes at
all, since the exponent q did not play any role there.

4 Bifurcation results

This section is dedicated to some results on bifurcation from infinity and from zero. The
first statement is related with bifurcation from infinity and it is well known when one of
the two parts of the boundary, Γ1 or Γ2, is not present, see [5] and [32].

Proposition 4.1. Assume q < 1 and p ≤ 1. There exists an unbounded continuum
C∞ ⊂ R × C(Ω) of positive solutions to (1.1) bifurcating from infinity at λ = λ1, with
λ1 = Λ(N − 1, N) when p = 1 and λ1 = 0 when p < 1. Moreover, this is the unique
bifurcation point from infinity. Furthermore, if δ0 > 0 is small enough and N = [λ1 −
δ0, λ1 + δ0]× {u ∈ C(Ω) : ‖u‖∞ ≥ 1},

1. either C∞ \ N is bounded in R× C(Ω). In this case, C∞ \ N meets the set {(λ, 0) :
λ ∈ R}, or

2. C∞ \ N is unbounded in R× C(Ω).

Finally, if p > q the bifurcation direction is to the left, if p < q the bifurcation is to the
right and if p = q it is to the right when |Γ2| > |Γ1| or to the left when |Γ2| < |Γ1|.
Proof. The existence of the continuum of positive solutions to (1.1) bifurcating from in-
finity follows analogously to [5]. Let us show the assertion on the bifurcation direction.
Assume that p, q < 1 and let (λn, un) be positive solutions to (1.1) with λn → 0 and
‖un‖∞ →∞ as n →∞. Integrating (1.1) we get

−
∫

Γ1

up
n +

∫

Γ2

uq
n = λn

∫

Ω
un.

Dividing by ‖un‖p∞, we have

−
∫

Γ1

(
un

‖un‖∞

)p

+ ‖un‖q−p
∞

∫

Γ2

(
un

‖un‖∞

)q

= λn‖un‖1−p

∫

Ω

(
un

‖un‖∞

)
. (4.1)

Taking into account that un/‖un‖∞ → 1 in C(Ω) (cf. [5]), we have that λn < 0 when
p > q, while λn > 0 when p < q. Finally, if p = q, the left-hand side of (4.1) converges
to −|Γ1|+ |Γ2|, and this implies that for large n, sgn λn = sgn(|Γ2| − |Γ1|). The proof for
p = 1 is similar.
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The following proposition is related to bifurcation from the trivial solution, u ≡ 0, see
[5] and [28].

Proposition 4.2. Assume p > 1 and q ≥ 1. There exists an unbounded continuum
C0 ⊂ R × C(Ω) of positive solutions to (1.1) emanating from the trivial solution at λ =
λ1(N, N + 1) when q = 1 and λ = 0 when q > 1. Moreover, this is the unique point of
bifurcation from the trivial solution, and with respect to the bifurcation direction:

1. If p > q (resp. p < q) then the bifurcation direction is to the right (resp. to the left).

2. If p = q then the bifurcation direction is to the right (resp. to the left) for |Γ2| > |Γ1|
(resp. |Γ2| < |Γ1|).

Proof. The existence of C0 follows by [28], and the bifurcation directions are calculated as
in the proof of Proposition 4.1.

5 Proofs of the theorems

This final section is devoted to the proof of the theorems. We are dedicating a separate
subsection to each theorem.

5.1 Case I. p < 1 < q

We analyze now the existence and uniqueness of positive solutions to (1.1) when the
exponents verify p < 1 < q.

Proof of Theorem 1.1. Since uniqueness follows from Lemma 2.3, and nonexistence for
λ ≥ Λ(N,D) from Lemma 2.2, we only have to show existence for λ < Λ(N, D). For this
aim, we use the method of sub and supersolutions.

Let us look for the supersolution first. Since λ < Λ(N,D), we have λ < Λ(N − η,D)
for small positive η, and thus Proposition 2.1 implies the existence of a unique θ such that
λ = Λ(N − η, N + θ). Let φ be an associated normalized positive eigenfunction. That is,
φ verifies 




−∆φ = λφ in Ω,
∂φ

∂ν
= ηφ on Γ1,

∂φ

∂ν
= −θφ on Γ2.

Our supersolution will be given by u = Mφ. Indeed, the equation is trivially satisfied,
while on Γ1 we get

∂u

∂ν
= M

∂φ

∂ν
= Mηφ ≥ Mpφp = up

if M is large enough. On Γ2 we have

∂u

∂ν
= M

∂φ

∂ν
= −Mθφ ≥ −M qφq = −uq

taking M larger if necessary. Therefore u is a supersolution to (1.1).
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To obtain a subsolution, since λ < Λ(N, D) by Proposition 2.1 there exists η > 0 such
that λ = Λ(N − η, D). Let z a positive solution to





−∆z = λz in Ω,

∂z

∂ν
= ηz on Γ1,

z = 0 on Γ2.

(5.1)

Take
u = εz

as the desired subsolution. In Ω we have −∆u = λu. On Γ1 we get

∂u

∂ν
= ε

∂z

∂ν
= εηz ≤ εpzp = up

if ε is small enough. On Γ2 we just have u = 0. Therefore u is a subsolution to (1.1).
By taking a small enough ε or a large enough M , we can achieve u ≤ u, and the

existence of a positive solution follows. This concludes the proof.

5.2 Case II. p, q > 1

In this section we deal with the case p, q > 1. Since the proof of Theorem 1.2 is the most
complicated one, we divide it in several lemmas.

Lemma 5.1. There exists Λ, 0 ≤ Λ ≤ Λ(N, D) such that, for λ > Λ problem (1.1) does
not have positive solutions, while it has a positive solution for λ < Λ.

Proof. We first remark that the nonexistence of positive solutions for λ ≥ Λ(N,D) follows
by Lemma 2.2. Thus, let

Λ = sup{λ ∈ R : (1.1) has at least a positive solution},
which verifies Λ ≤ Λ(N, D) < ∞. Moreover, Λ ≥ 0, since, according to Proposition 4.2,
an unbounded continuum C0 of positive solutions to (1.1) bifurcates from (0, 0). Since in
addition we have bounds for the solutions thanks to Lemma 3.3, we deduce that there
exists a positive solution for every λ < 0. Thus only the existence of solutions when
λ ∈ (0,Λ) remains to be proved, provided that Λ > 0.

Fix λ ∈ (0, Λ), so there exists λ0 ∈ (λ,Λ) such that for λ = λ0 there exists a positive
solution to (1.1), denoted by u0. It is clear that u0 is supersolution of (1.1) for λ ≤ λ0.
For this λ there exists θ > 0 for which λ = Λ(N,N + θ). Let φ be an associated positive
eigenfunction, that is, a solution to





−∆φ = λφ in Ω,
∂φ

∂ν
= 0 on Γ1,

∂φ

∂ν
= −θφ on Γ2.

It is easy to show that u = εφ is subsolution of (1.1) for small ε. Hence, there exists a
positive solution to (1.1) for every λ ∈ (0, Λ). This concludes the proof.
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We are next showing that, in case Λ > 0, a minimal positive solution exists for every
λ ∈ (0,Λ).

Lemma 5.2. Assume Λ > 0. For every 0 < λ < Λ there exists a minimal positive solution
to (1.1), denoted by uλ.

Proof. Let us consider the problem





−∆w = λw in Ω,
∂w

∂ν
= 0 on Γ1,

∂w

∂ν
= −wq on Γ2.

(5.2)

It can be proved as in Lemma 3.1 that problem (5.2) admits a unique positive solution if
and only if λ ∈ (0, Λ(N, D)) (cf. Remark 2 for the uniqueness). We denote it by wλ.

Moreover, every solution u to (1.1) is a supersolution of (5.2), while we can construct
subsolutions as small as desired, as in the proof of Lemma 5.1. Thus by uniqueness we
have that u(x) ≥ wλ(x), for every solution u to (1.1). A standard iterative argument
shows that the minimal solution uλ exists. This concludes the proof.

To prove the existence of two solutions and the uniqueness of the positive stable solution
in (0,Λ), we are going to use general results from [2]. Hence we need to show that our
problem is in the general setting of [2].

Let P be the cone of positive functions of C(Ω). With the ordering induced by P ,
C(Ω) is an ordered Banach space, with a normal cone which has nonempty interior, see
Example 1.11 in [2]. Consider the interval I = [−1, Λ + 1] and let

β > sup
λ∈I

{‖u(λ)‖∞},

where u(λ) is any solution to (1.1). Observe that since p < m/(m − 2), we have that
β < ∞ (cf. Lemma 3.3). Take K > 0, and rewrite our problem as





(−∆ + K)u = (λ + K)u in Ω,
∂u

∂ν
= up on Γ1,

∂u

∂ν
+ Ku = Ku− uq on Γ2.

Let K1 : Cα(Ω) 7→ C2,α(Ω), α ∈ (0, 1), be the operator such that f 7→ u = K1f being u
the solution to 




(−∆ + K)u = f in Ω,
∂u

∂ν
= 0 on ∂Ω.

This operator can be extended to a linear compact and strongly positive map, denoted
again by K1, K1 : C(Ω) 7→ C1(Ω), see Theorem 4.2 in [2].
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Consider now the operators K2 : C1,α(Γ1) 7→ C2,α(Ω), g 7→ v = K2g, where v is the
unique solution to 




(−∆ + K)v = 0 in Ω,
∂v

∂ν
= g on Γ1,

∂v

∂ν
= 0 on Γ2,

and K3 : C1,α(Γ2) 7→ C2,α(Ω), g 7→ w = K3g, where w is the unique solution to




(−∆ + K)w = 0 in Ω,
∂w

∂ν
= 0 on Γ1,

∂w

∂ν
+ Kw = g on Γ2.

Now, by [1], K2 and K3 can be extended to linear compact maps from C(∂Ω) to C(Ω).
Hence, it is not hard to prove that u is a solution to (1.1) if, and only if,

u = F (u, λ) = K1((λ + K)u) +K2(γ(up)) +K3(γ(Ku− uq)),

where γ : C(Ω) 7→ C(∂Ω) is the trace operator.
On the other hand, F is a differentiable operator. It is compact on bounded sets and

strongly increasing for fixed λ (cf. [2] for definitions). In addition, the partial derivatives

∂uF (u0, λ0)ξ = K1(λ0 + K)ξ +K2(pγ(up−1
0 ))ξ +K3(γ(K − quq−1

0 ))ξ

and
∂λF (u0, λ0)µ = µK1u0

are also strongly positive provided K is large enough. Indeed, K1 is strongly positive, and
if ξ is nonnegative and nontrivial, then η = ∂uF (u0, λ0)ξ is equivalent to η = η1 +η2 where

η1 = K1((λ0 + K)ξ), η2 = K2(pγ(up−1
0 ))ξ +K3(γ(K − quq−1

0 ))ξ.

Taking K > max{0,−λ0} it follows that η1 ∈ int P . On the other hand, η2 verifies




(−∆ + K)η2 = 0 in Ω,
∂η2

∂ν
= pup−1

0 ξ on Γ1,

∂η2

∂ν
+ Kη2 = (K − quq−1

0 )ξ on Γ2.

So, if we take
K > max{0,−λ0, qβ

q−1}, (5.3)

we get K ≥ qβq−1 ≥ quq−1
0 , and so η2 ∈ int P . This proves the claim, and shows that

problem (1.1) can be cast into the general setting of [2]. We state now the already claimed
existence result.

Lemma 5.3. Assume that Λ > 0. Then, for all λ ∈ (0,Λ) there exist at least two positive
solutions to (1.1) and one positive solution for λ = Λ.
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Proof. We can directly apply Theorem 20.9 of [2] (see the arguments after Proposition
20.8 there and Theorem 7.4 in [3]) and conclude the existence of at least two positive
solutions for λ ∈ (0, Λ) and at least a positive solution for λ = Λ.

We remark that, if we denote ρ = r(u0, λ0) the spectral radius of ∂uF (u0, λ0), then ρ
satisfies

1
ρ
(K + λ0)−K = Λ(N − p

ρ
up−1

0 , N + K +
1
ρ
(quq−1

0 −K)). (5.4)

This will be used in what follows.
We finally proceed to show the uniqueness of the stable solution. We recall that given

a positive solution (λ0, u0) of (1.1) we say that it is stable (resp. unstable) if the principal
eigenvalue of the linearization around (λ0, u0) is positive (resp. negative), that is,

Λ(N − pup−1
0 , N + quq−1

0 ) > λ0 (resp. Λ(N − pup−1
0 , N + quq−1

0 ) < λ0). (5.5)

We are then involved in proving the next result.

Theorem 5.4. Assume that q < p or q = p and |Γ2| > |Γ1|. Then the minimal positive
solution uλ is the unique positive stable solution to (1.1) for all λ ∈ (0,Λ).

The proof of Theorem 5.4 uses some important tools from [2] and [10]. The first result
needed provides us with a complete picture of the structure of the set of positive solutions
around a stable or neutrally stable solution (that is, the first eigenvalue of the linearization
equals zero).

Lemma 5.5. Let (λ0, u0) be a positive solution to (1.1) with λ = λ0.

1. If (λ0, u0) is stable, that is, if first inequality of (5.5) holds, then, there exists ε > 0
and a differentiable mapping u : I = (λ0 − ε, λ0 + ε) 7→ P such that u(λ0) = u0

and (λ, u(λ)) is a positive solution to (1.1) for each λ ∈ I. Moreover, the mapping
λ 7→ u(λ) is increasing and there exists a neighborhood V of (λ0, u0) in R× P such
that if (λ, u) ∈ V is a solution to (1.1), then (λ, u) = (λ, u(λ)) for some λ ∈ I.

2. If (λ0, u0) is neutrally stable, that is,

Λ(N − pup−1
0 , N + quq−1

0 ) = λ0, (5.6)

let Φ0 be the principal eigenfunction associated with Λ(N − pup−1
0 , N + quq−1

0 ), that
is, Φ0 verifies 




−∆Φ0 − λ0Φ0 = 0 in Ω,
∂Φ0

∂ν
− pup−1

0 Φ0 = 0 on Γ1,

∂Φ0

∂ν
+ quq−1

0 Φ0 = 0 on Γ2.

(5.7)

Then, there exists ε > 0 and a differentiable mapping (λ, u) : J = (−ε, ε) 7→ R × P
such that (λ(0), u(0)) = (λ0, u0) and for each s ∈ J , (λ(s), u(s)) is a positive solution
to (1.1). Moreover,

λ(s) = λ0 + s2λ2 + O(s3), u(s) = u0 + sΦ0 + s2Ψ0 + O(s3), (5.8)
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as s ' 0 and
∫
Ω Φ0Ψ0 = 0. Moreover, there exists a neighborhood W of (λ0, u0) in

R×P such that if (λ, u) ∈ W is a positive solution to (1.1), then (λ, u) = (λ(s), u(s))
for some s ∈ J . Moreover,

sgnλ′(s) = sgn (Λ(N − pu(s)p−1, N + qu(s)q−1)− λ(s)). (5.9)

Proof. Denote

f(ρ) =
1
ρ
(K + λ0)−K

and

g(ρ) = Λ
(

N − p

ρ
up−1

0 , N + K +
1
ρ
(quq−1

0 −K)
)

.

By (5.3), it is clear that f is a decreasing function, while g is increasing. If (λ0, u0)
is stable, i.e., the first inequality of (5.5) holds, then g(1) > f(1) and so 1 is not an
eigenvalue of ∂uF (u0, λ0). Thus Id−∂uF (u0, λ0) is a topological isomorphism and we can
apply Proposition 20.6 of [2] and conclude the first paragraph.

If (5.6) holds, 1 is an eigenvalue of ∂uF (u0, λ0) with a positive eigenfunction, so we
can apply Propositions 20.7 and 20.8 of [2]. Finally, observe that from Proposition 20.8
of [2] it follows that

sgnλ′(s) = sgn(1− r(u(s), λ(s))).

Taking into account (5.4) it is not hard to show that

sgn(1− r(u(s), λ(s))) = sgn(Λ(N − pu(s)p−1, N + qu(s)q−1)− λ(s)).

This completes the proof.

Proposition 5.6. Assume that q ≤ p. Let (λ0, u0) be a neutrally stable positive solution
to (1.1) with λ = λ0. Then,

λ2 < 0,

where λ2 is defined by (5.8).

Proof. By Lemma 5.5, for s ∈ J , we have




−∆(u0 + sΦ0 + s2Ψ0 + O(s3)) = λ0u0 + sλ0Φ0 + s2λ0Ψ0 + s2λ2u0 + O(s3) in Ω,

∂(u0 + sΦ0 + s2Ψ0 + O(s3))
∂ν

= (u0 + sΦ0 + s2Ψ0 + O(s3))p on Γ1,

∂(u0 + sΦ0 + s2Ψ0 + O(s3))
∂ν

= −(u0 + sΦ0 + s2Ψ0 + O(s3))q on Γ2.

After differentiating twice in s and setting s = 0, we obtain




−∆Ψ0 − λ0Ψ0 = λ2u0 in Ω,

∂Ψ0

∂ν
− pup−1

0 Ψ0 =
p(p− 1)

2
up−2

0 Φ2
0 on Γ1,

∂Ψ0

∂ν
+ quq−1

0 Ψ0 = −q(q − 1)
2

uq−2
0 Φ2

0 on Γ2.

(5.10)
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Finally, multiplying (5.10) by Φ0, integrating and taking into account (5.7), we obtain

λ2

∫

Ω
u0Φ0 =

1
2

(
q(q − 1)

∫

Γ2

Φ3
0u

q−1
0 − p(p− 1)

∫

Γ1

Φ3
0u

p−1
0

)
. (5.11)

The sign of λ2 can be determined by Picone’s identity, (see Section 4 in [6] and Lemma 4.1
in [26], for instance). Let u, v ∈ C2(Ω)∩C1(Ω) be such that v/u ∈ C(Ω) and Υ : [0,∞) 7→
R an arbitrary C1 function. Then

∫

Ω
Υ(

v

u
)(−v∆u + u∆v) = −

∫

Ω
Υ′(

v

u
)u2

∣∣∣∇
(v

u

)∣∣∣
2
−

∫

∂Ω
Υ(

v

u
)[v

∂u

∂ν
− u

∂v

∂ν
]. (5.12)

Observe that
−Φ0∆u0 + u0∆Φ0 = 0,

and so taking Υ(t) = t2, v = Φ0 and u = u0 in (5.12), we have that

0 = −2
∫

Ω
Φ0u0

∣∣∣∣∇
(

Φ
u0

)∣∣∣∣
2

−
∫

∂Ω

(
Φ0

u0

)2

[Φ0
∂u0

∂ν
− u0

∂Φ0

∂ν
],

hence ∫

∂Ω

(
Φ0

u0

)2

[Φ0
∂u0

∂ν
− u0

∂Φ0

∂ν
] < 0,

or equivalently,

(q − 1)
∫

Γ2

uq−2
0 Φ3

0 < (p− 1)
∫

Γ1

up−2
0 Φ3

0.

Since q ≤ p, by (5.11) we finally deduce that λ2 < 0.

As an easy consequence of Lemma 5.5, relation (5.9) and Proposition 5.6, we obtain:

Corollary 5.7. Let (λ0, u0) be a positive neutrally stable solution to (1.1). Then, there
exists ε > 0 such that for each λ ∈ (λ0 − ε, λ0), (1.1) has two positive solutions, one of
them stable and the other one unstable. Moreover, there exist a neighborhood N of (λ0, u0)
in R× P such that (1.1) does not have positive solutions in N for λ > λ0.

Finally, we need to prove that any solution to (1.1) is unstable for negative λ.

Proposition 5.8. Assume that p ≥ q > 1 and let (λ0, u0) be a positive solution to (1.1)
with λ0 ≤ 0. Then, (λ0, u0) is unstable.

Proof. By (5.5), we have to prove that Λ(N − pup−1
0 , N + quq−1

0 ) < λ0. For this (see for
instance Lemma 2.2 in [16]), it suffices to find a positive function u such that





−∆u ≤ λ0u in Ω,
∂u

∂ν
− pup−1

0 u ≤ 0 on Γ1,

∂u

∂ν
+ quq−1

0 u ≤ 0 on Γ2,

with some inequality strict (that is ≤ 0 and 6≡ 0). Take r ∈ [q, p] and consider u = ur
0.

Then, in Ω since λ0 ≤ 0 and r > 1, we get

−∆(ur
0) = r(1− r)ur−2

0 |∇u0|2 + rλ0u
r
0 ≤ λ0u

r
0,
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while on Γ1
∂ur

0

∂ν
− pup−1

0 ur
0 = (r − p)ur+p−1

0 ≤ 0,

and finally, on Γ2,
∂ur

0

∂ν
+ quq−1

0 ur
0 = (q − r)ur+q−1

0 ≤ 0.

Hence u0 is unstable.

Now, we are ready to prove the uniqueness of stable solution. We use a similar argu-
ment to the one used in Theorem 3.7 of [21], see also [11], [12], [23], [24] and [30] where
the idea of using the “turning direction” at all possible “turning points” is used.

Proof of Theorem 5.4. We show that the minimal solution uλ is stable for all λ ∈ (0,Λ).
It is well known (see Proposition 20.4 in [2]) that the minimal solution is weakly stable,
i.e.,

Λ(N − pup−1
λ , N + quq−1

λ ) ≥ λ for all λ ∈ (0,Λ). (5.13)

On the other hand, in a neighborhood N of (λ, u) = (0, 0), there exists a unique positive
solution for every λ. Since the minimal solution exists for all λ ∈ (0, Λ), the unique
solution coincides with the minimal, so by Corollary 5.7 there exists λ such that for all
0 < λ ≤ λ we have that Λ(N − pup−1

λ , N + quq−1
λ ) > λ. Now, we can produce this branch

to the right to reach a value λ0 ≤ Λ such that Λ(N − pup−1
λ , N + quq−1

λ ) > λ for all λ < λ0

and
Λ(N − pup−1

λ0
, N + quq−1

λ0
) = λ0. (5.14)

If λ0 = Λ we have finished, so assume that λ0 < Λ. By (5.13) and Corollary 5.7, we can
always find λ1 ∈ (λ0,Λ) such that

Λ(N − pup−1
λ1

, N + quq−1
λ1

) > λ1.

By Lemma 5.5, part 1, we can continue to the left from uλ1 . Denote

Γ = {(λ, u(λ)) : λ ≤ λ1}.

Now, two possibilities may occur:

1. There exists λ2 < λ1 such that Λ(N − pu(λ2)p−1, N + qu(λ2)q−1) = λ2.

2. The branch Γ can be produced for all λ ≤ λ1 with Λ(N−pu(λ)p−1, N+qu(λ)q−1) > λ.

If the first possibility holds, then Corollary 5.7 is contradicted. In the second possibility, Γ
does not reach negative values of λ by Proposition 5.8. So, again two possibilities appear:

1. Γ meets the real axis {(λ, 0)}.
2. Γ degenerates in some minimal solution uλ3 .

If Γ degenerates in the axis {(λ, 0)}, since we know that the unique bifurcation point from
the trivial solution is λ = 0, then Γ degenerates in (0, 0). But, it is well known that in
a neighborhood N of (λ, u) = (0, 0) there exists a unique solution, in fact the minimal
solution. So, second possibility occurs. If λ3 is such that uλ3 satisfies (5.14), Corollary 5.7
leads to a contradiction. However, if λ3 is such that uλ3 satisfies Λ(N−pup−1

λ3
, N+quq−1

λ3
) >
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λ3, we know that in a neighborhood M of (λ3, uλ3) there exists a unique solution, again a
contradiction. So, the minimal solution uλ is stable for all λ ∈ (0, Λ) and neutrally stable
for λ = Λ.

Now, assume that for some λ0 ∈ (0, Λ) there exists a second stable solution v0 > uλ0 .
We argue as in the first part of the proof. By Lemma 5.5, part 1, there exists a branch,
say Γ′, of stable solutions of the form (λ(s), v(s)), s ∈ I, with λ(0) = λ0, v(0) = v0.
Moreover, we can continue this branch to the left until there exists a value λ∗ in which it
is noncontinuable. Since, by Proposition 5.8, all solutions are unstable for λ ≤ 0, it follows
that λ∗ ≥ 0.

If λ∗ > 0, we would have thanks to Lemma 5.5, part 1, that we arrive at a contradiction
with Corollary 5.7. Hence λ∗ = 0. Moreover, the branch Γ′ has to degenerate at (0, 0),
otherwise we could continue it thanks to Lemma 5.5, part 1. However, this contradicts the
uniqueness of solutions for λ ∼ 0, and the uniqueness of the stable solution is proved.

We finally prove the assertions about Λ.

Lemma 5.9. If p < q or p = q and |Γ2| > |Γ1|, then Λ > 0, while for p = q and
|Γ2| ≤ |Γ1|, we have Λ = 0.

Proof. If p < q or p = q and |Γ2| > |Γ1|, the assertion is immediate, since the bifurcation
from the trivial solution is to the right, according to Proposition 4.2. Thus assume p = q.
It is enough to prove that there are no positive solutions to (1.1) for λ = 0.

Assume there exists a positive solution u to (1.1) with λ = 0. If we multiply the
equation in (1.1) by u−p and integrate in Ω, we arrive at:

−p

∫

Ω
u−p−1|∇u|2 − |Γ1|+ |Γ2| = 0,

and since u is not constant, we obtain a contradiction. Hence no positive solutions exist
for λ = 0, and it follows that Λ = 0.

5.3 Case III. p, q < 1

In this subsection we deal with the case p, q < 1. Since uniqueness for p ≤ q < 1 and
λ ≤ 0 follows from Lemma 2.4, we only need to prove the assertions about existence and
nonexistence.

Proof of Theorem 1.3. According to Proposition 4.1, there is a continuum C∞ of pos-
itive solutions bifurcating from (0, +∞). We are showing next that alternative 2 in
Proposition 4.1 holds. For this, it is enough to show that the continuum C∞ cannot
meet the axis (λ, 0). Assume on the contrary that there exist solutions (λn, un) with
λn → λ0 and ‖un‖∞ → 0. Then, thanks to the simplicity of principal eigenvalues,
λn = Λ(N − up−1

n , N + uq−1
n ). We now use the properties of this eigenvalue, collected

in Proposition 2.1. We have

Λ(N − up−1
n , N + uq−1

n ) < Λ(N − up−1
n , D),

and since p < 1 and un → 0, we have that this last eigenvalue tends to −∞ as n →∞ (cf.
Remark 1). This contradiction proves that there exists a solution for all λ ≤ 0. Next, let

Λ = sup{λ ∈ R : (1.1) has a positive solution}.
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It is clear that 0 ≤ Λ < ∞, thanks to Lemma 2.2. We are showing now that there exists
a solution for all λ < Λ (of course, this is only to be proved when Λ > 0). We use the
method of sub and supersolutions.

Thanks to the definition of Λ, for every λ0 < Λ, there exists λ̄ ∈ (λ0, Λ) such that (1.1)
admits a positive solution ū with λ = λ̄. This solution is clearly a supersolution for (1.1)
with λ = λ0.

To obtain a subsolution we note that, by Proposition 2.1 there exists a unique η > 0
such that λ = Λ(N −η,D). Let ψ be an associated normalized positive eigenfunction, i.e.,
a solution to 




−∆ψ = λψ in Ω,
∂ψ

∂ν
= ηψ on Γ1,

ψ = 0 on Γ2,

and set u = εψ for a small positive ε. We claim that u is the desired subsolution. Indeed,
we only have to check it on ∂Ω. On Γ1 we get

∂u

∂ν
= ε

∂ψ

∂ν
= εηψ ≤ εpψp = up

if ε is small enough. On Γ2 we have u = 0, while

∂u

∂ν
< 0.

Therefore u is a subsolution to (1.1). Whence we obtain a positive solution for λ = λ0.
It is also clear that there exists a solution for λ = Λ, in case Λ > 0. Indeed, let

λn → Λ be an arbitrary sequence, with corresponding solutions un. Since, according to
Proposition 4.1, the only point of bifurcation from infinity is λ = 0, we obtain that the
sequence un is bounded. Thus it is standard to pass to the limit to obtain a solution u0 to
(1.1) with λ = Λ. The same reasoning as in the beginning of the proof shows that u0 6= 0,
and hence it is a positive solution to (1.1).

We finally remark that the assertions about Λ are proved exactly in the same way as
in Lemma 5.9, and therefore the proof is omitted.

5.4 Case IV. q < 1 < p

We use variational methods in this case to prove the existence of solutions. To this end,
let us consider the functional

F (u) =
1
2

∫

Ω
|∇u|2 − λ

2

∫

Ω
|u+|2 − 1

p + 1

∫

Γ1

|u+|p+1 +
1

q + 1

∫

Γ2

|u|q+1

in H1(Ω), where u+ = max{u, 0} stands for the positive part of u. Since 1 < p <
m/(m− 2), the functional F is well defined in H1(Ω). It is moreover C1. Our intention is
to apply the Mountain Pass Theorem of [4] to F . Thus we are seeing that all conditions
required are met. We begin with the important Palais-Smale condition.

Lemma 5.10. If λ < Λ(N, D) then the functional F verifies the Palais-Smale condition.
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Proof. Let un be a Palais-Smale sequence, that is a sequence such that

|F (un)| ≤ C, and F ′(un) → 0.

We have to prove that it contains a (strongly) convergent subsequence. Let us first check
that {un} is bounded in H1(Ω).

Assume for a contradiction that this is not the case, that is, passing to a subsequence

‖un‖H1(Ω) →∞.

Let
vn =

un

‖un‖H1(Ω)
.

Since vn is bounded in H1(Ω), and thanks to the compactness of the embeddings H1(Ω) ⊂
L2(Ω), H1(Ω) ⊂ Lp+1(Γ1) and H1(Ω) ⊂ Lq+1(Γ2), there exists a subsequence (that we
still denote by vn) such that

vn ⇀ v0 weakly in H1(Ω),

vn → v0 strongly in L2(Ω), Lp+1(Γ1), Lq+1(Γ2),

for a certain v0 ∈ H1(Ω).
On the other hand since vn is bounded in H1(Ω), we have

F (un)
‖un‖H1(Ω)

− 1
2
〈F ′(un), vn〉

=
(

1
2
− 1

p + 1

)
‖un‖p

H1(Ω)

∫

Γ1

|(vn)+|p+1

+
(

1
q + 1

− 1
2

)
‖un‖q

H1(Ω)

∫

Γ2

|vn|q+1 → 0.

Hence
‖un‖p

H1(Ω)

∫

Γ1

|(vn)+|p+1 → 0, (5.15)

and
‖un‖q

H1(Ω)

∫

Γ2

|vn|q+1 → 0. (5.16)

By the strong convergence of vn to v0 in Lq+1(Γ2), it follows in particular that v0 = 0 on
Γ2 (in the sense of traces). Furthermore, since 〈F ′(un), vn〉 → 0, we also have

‖un‖H1(Ω)

(∫

Ω
|∇vn|2 − λ

∫

Ω
|(vn)+|2

)
− ‖un‖p

H1(Ω)

∫

Γ1

|(vn)+|p+1

+‖un‖q
H1(Ω)

∫

Γ2

|vn|q+1 → 0.

Thus thanks to (5.15) and (5.16) we have that
∫

Ω
|∇vn|2 − λ

∫

Ω
|(vn)+|2 → 0. (5.17)
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By lower semicontinuity, it follows that
∫

Ω
|∇v0|2 − λ

∫

Ω
|(v0)+|2 ≤ 0,

and since v0 = 0 on Γ2 and λ < Λ(N, D), the variational characterization of this eigenvalue
implies that v0 = 0 in Ω. Hence by (5.17) we have

∫

Ω
|∇vn|2 → 0

which contradicts ‖vn‖H1(Ω) = 1. This proves that un is bounded in H1(Ω).
Next we prove that {un} contains a strongly convergent subsequence. Since un is

bounded in H1(Ω) there exists a subsequence (that we denote again by un) such that

un ⇀ u0 weakly in H1(Ω),

un → u0 strongly in L2(Ω), Lp+1(Γ1), Lq+1(Γ2).

Since 〈F ′(un), un〉 → 0, 〈F ′(un), u0〉 → 0, we obtain

lim
n→∞

∫

Ω
|∇un|2 = λ

∫

Ω
|(u0)+|2 −

∫

Γ1

|(u0)+|p+1 +
∫

Γ2

|u0|q+1, (5.18)

while ∫

Ω
|∇u0|2 = λ

∫

Ω
|(u0)+|2 −

∫

Γ1

|(u0)+|p+1 +
∫

Γ2

|u0|q+1, (5.19)

thanks to weak convergence. From (5.18) and (5.19) we obtain

lim
n→∞

∫

Ω
|∇un|2 =

∫

Ω
|∇u0|2

and we conclude that un converges to u0 strongly in H1(Ω).

Now we prove that the functional F verifies the geometric hypotheses required to apply
the mountain pass theorem.

Lemma 5.11. Let λ < Λ(N,D). Then the functional F verifies:

1. There exists a positive constant c such that for small enough r, F (u) ≥ cr3 if
‖u‖H1(Ω) = r.

2. There exists v0 with large H1(Ω)-norm such that F (v0) < 0.

Proof. 1. We argue by contradiction. Assume that there exists a sequence un such that

‖un‖H1(Ω) = rn → 0, and
F (un)

r3
n

→ 0. (5.20)

Let vn = un/rn. Since ‖vn‖H1(Ω) = 1 we can extract a subsequence such that

vn ⇀ v0 weakly in H1(Ω),

vn → v0 strongly in L2(Ω), Lp+1(Γ1), Lq+1(Γ2).
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From (5.20) we obtain
∫

Ω
|∇vn|2 − λ

∫

Ω
|(vn)+|2 − rp−1

n

∫

Γ1

|(vn)+|p+1 + rq−1
n

∫

Γ2

|vn|q+1 → 0. (5.21)

Hence the weak limit v0 verifies
∫

Ω
|∇v0|2 − λ

∫

Ω
|(v0)+|2 ≤ 0, v0 = 0 on Γ2.

As λ < Λ(N, D) we get v0 ≡ 0, but in this case from (5.21) we get
∫

Ω
|∇vn|2 → 0,

a contradiction with ‖vn‖H1(Ω) = 1.

2. We take any function v such that v 6= 0 on Γ1 and observe that

lim
t→∞F (tv) = −∞.

Thus it suffices with setting v0 = tv for a large enough t.

Proof of Theorem 1.4. To prove existence of solutions when λ < Λ(N, D), we just have to
use the mountain pass theorem (see [4]), since in this range of λ’s the functional F verifies
the Palais-Smale condition thanks to Lemma 5.10 and the geometric hypothesis needed
to apply it are guaranteed by Lemma 5.11.

Thus the functional F has a nontrivial critical point u, which is a weak solution to




−∆u = λu+ in Ω,
∂u

∂ν
= (u+)p on Γ1,

∂u

∂ν
= −|u|q−1u on Γ2.

(5.22)

Taking u− = min{u, 0} as a test function in the weak formulation of (5.22) it follows that
u ≥ 0. Thus by the strong maximum principle and Hopf’s Lemma we have that u is a
positive weak solution to (1.1). According to regularity theory, u ∈ C2,α(Ω) ∩ C∞(Ω).

To finish the proof, we just notice that Lemma 2.2 implies that there are no nontrivial
solutions for λ ≥ Λ(N, D).

5.5 Case V. q = 1 > p, q = 1 < p, p = 1 > q, p = 1 < q

In this section we deal with the borderline cases in which one of the powers is equal to
one. We sketch very briefly the main arguments.

5.5.1 Case q = 1 > p.

We remark first that the uniqueness of solutions is a consequence of Lemma 2.3. Thus,
we only consider the existence issue.
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By proceeding as in the proof of Lemma 2.2, it is easily shown that there are no positive
solutions for λ ≥ Λ(N, N + 1). Indeed, if φ is a positive eigenfunction associated to this
eigenvalue, and we multiply the equation in (1.1) by φ and integrate in Ω, we arrive at

(Λ(N, N + 1)− λ)
∫

Ω
uφ =

∫

Γ1

φup.

Hence, no positive solutions exist for λ ≥ Λ(N, N + 1).
To show the existence for λ < Λ(N,N + 1), we use the method of sub and superso-

lutions. The proof is similar to that of Theorem 1.1, with slight differences. We choose
η > 0 such that λ = Λ(N − η,N + 1) (this is possible thanks to Proposition 2.1), and φ a
positive associated eigenfunction, i. e. a solution to





−∆φ = λφ in Ω,
∂φ

∂ν
= ηφ on Γ1,

∂φ

∂ν
= −φ on Γ2.

It is not hard to check that u = εφ, u = Mφ are a pair of sub and supersolutions with
u ≤ u in Ω, provided ε is chosen small enough and M large enough. This shows the
existence of a positive solution. As remarked before, it is unique.

5.5.2 Case q = 1 < p.

It follows exactly as in the previous subsection that λ < Λ(N, N + 1) is a necessary
condition to have a positive solution. To show existence, we note that Proposition 4.2
implies the existence of a continuum C0 of positive solutions emanating from (λ, u) =
(Λ(N,N + 1), 0). Moreover, thanks to Lemma 3.4, the solutions are bounded in bounded
intervals of λ. Thus, the existence of positive solutions for all λ < Λ(N, N + 1) follows.

5.5.3 Case p = 1 > q.

It is easily seen again that Λ(N − 1, N) < λ < Λ(N − 1, D) is necessary for the existence
of positive solutions to (1.1) (just multiply by a positive eigenfunction φ associated to
Λ(N − 1, N) or Λ(N − 1, D) and integrate in Ω).

To show existence, we apply Proposition 4.1 to get a continuum C∞ of positive solutions
to (1.1) emanating from infinity at the eigenvalue λ = Λ(N − 1, N). By Proposition 4.1
we deduce that C∞ meets the set {(λ, 0) : λ ∈ R}. So, assume that there exists a sequence
(λn, un) such that λn → λ0 and ‖un‖∞ → 0 as n → ∞. Since un is positive, it follows
that λn = Λ(N − 1, N + uq−1

n ) → Λ(N − 1, D). This shows that a positive solution exists
for every λ ∈ (Λ(N − 1, N), Λ(N − 1, D)).

5.5.4 Case p = 1 < q.

The proof that λ ∈ (Λ(N−1, N), Λ(N−1, D)) is a necessary condition for existence can be
obtained exactly as in the previous case. Also, uniqueness is a consequence of Lemma 2.3.
Thus we only show existence.

To this aim we employ again the method of sub and supersolutions. Since λ ∈ (Λ(N −
1, N), Λ(N − 1, D)), there exists ρ > 0 such that λ = Λ(N − 1, N + ρ) (cf. Proposition
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2.1). Let φ be a positive eigenfunction associated to Λ(N − 1, N + ρ). Then, it can
be easily checked that u = εφ is subsolution of (1.1) with a small ε, while u = Mφ is
supersolution if M is large enough. Therefore the existence of a positive solution for every
λ ∈ (Λ(N − 1, N), Λ(N − 1, D)) follows.
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