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Abstract. Different ways of contrast generated rankings by feature se-
lection algorithms are presented in this paper, showing several possible
interpretations, depending on the given approach to each study. We begin
from the premise of no existence of only one ideal subset for all cases.
The purpose of these kinds of algorithms is to reduce the data set to
each first attributes without losing prediction against the original data
set. In this paper we propose a method, feature–ranking performance,
to compare different feature–ranking methods, based on the Area Under
Feature Ranking Classification Performance Curve (AURC). Conclusions
and trends taken from this paper propose support for the performance
of learning tasks, where some ranking algorithms studied here operate.

1 Introduction

It is a fact that the performance of most practical classifiers improve when
correlated or irrelevant features are removed. Feature selection attempts to select
the minimally sized subset of features according to two criteria: classification
accuracy does not significantly decrease; and resulting class distribution given
only the values for the selected features, is as close as possible to the original class
distribution, given all features. In general, the application of feature selection
helps all phases of the data mining process for successful knowledge discovery.

Feature selection algorithms can be grouped into two categories from the
point of view of a method’s output: subset of features or ranking of features.
One category is about choosing a minimum set of features that satisfies an
evaluation criterion; the other is about ranking features according to same eval-
uation measure. Ideally, feature selection methods search through the subsets
of features and try to find the best one among the competing 2m candidate
subsets (m: number of whole features), according to some evaluation function.
However, this exhaustive process may be costly and practically prohibitive, even
for a medium–sized feature set size. Other methods based on heuristic or random
search methods attempt to reduce computational complexity by compromising
performance.

When feature selection algorithms are applied as a pre–processing technique
for classification, we are interested in those attributes that better classify new
unseen data. If the feature selection algorithm provides a subset of attributes,
this subset is used to generate the knowledge model that will classify the new
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data. However, when the algorithm provides a ranking it is not easy to determine
how many attributes are necessary to obtain a good classification result.

In this work, we present different ways to compare feature rankings and show
the variety of possible interpretations depending on the study approach made.
Our intent is to learn if any dependence between classifier and ranking methods
exist as well as trying to answer two essential enquiries: What is a good feature
ranking? And, how do we value/measure a ranking? To this end, we practise
different comparisons using four feature ranking methods: χ2, Information Gain,
ReliefF and SOAP, which are commented on later. We will check the results by
calculating the success rate using three classifiers: C4.5, Näıve Bayes and nearest
neighbour.

The paper is organized as follows. In Section 2, concepts used throughout
the paper are defined. Section 3 reviews related work and the motivation of our
approach is presented, feature ranking methods and classification techniques to
be used in the experiments are described. The AURC is shown in Section 4,
experimental results in Section 5 and finally, in Section 6, the most interesting
conclusions are summarized.

2 Definitions

In this section some definitions are given to formally describe the concepts
used throughout the paper: feature ranking, classifier, classification accuracy
and ranking–based classification accuracy.

Definition 1 (Data). Let D be a set of N examples ei = (xi, yi), where xi =
(a1, . . . , am) is a set of input attributes and yi is the output attribute. Each input
attribute belongs to the set of attributes (ai ∈ A, continuous or discrete) and each
example belongs to the data (ei ∈ D). Let C be the decision attribute (yi ∈ C),
named class, which will be used to classify the data. For simplicity in the paper,
yi means “the class label of the example ei”.

Definition 2 (Feature Ranking). Let A = {a1, a2, . . . , am} be the set of m
attributes. Let r be a function r : AD → R that assigns a value of merit to each
attribute a ∈ A from D. A feature ranking is a function F that assigns a value
of merit (relevance) to each attribute (ai ∈ A) and returns a list of attributes
(a∗

i ∈ A) ordered by its relevance, with i ∈ {1, . . . , m}:
F ({a1, a2 . . . , am}) =< a∗

1, a
∗
2, . . . , a

∗
m > where r(a∗

1) ≥ r(a∗
2) ≥ . . . ≥ r(a∗

m).

By convention, we assume that a high score is indicative of a relevant attribute
and that attributes are sorted in decreasing order of r(a∗). We consider ranking
criteria defined for individual features, independently of the context of others,
and we also limit ourselves to supervised learning criteria.

Definition 3 (Classification). A classifier is a function H that assigns a class
label to a new example: H : Ap → C, where p is the number of attributes to
be used by the classifier, 1 ≤ p ≤ m. The classification accuracy (CA) is the
average success rate provided by the classifier H given a set of test examples,
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i.e., the averaged number of times that H was able to predict the class of the test
examples. Let x be a function that extracts the input attributes from the example
e, x : Am × C → Am. For a test example e∗i = (xi, yi), if H(x(e∗i )) = yi then e∗i
is correctly classified; otherwise misclassified.

In this paper, to measure the performance of the classifiers only the leaving–
one–out method will be used, because it is not dependent on randomness, like
k–fold cross–validation or hold out. In the next expression, if H(x(ei)) = yi then
1 is counted, otherwise 0. CA = 1

N

∑N
i=1 (H(x(ei)) = yi). As we are interested

in rankings, the classification accuracy will be measured with respect to many
different subsets of the ranking provided by some feature ranking methods.

Definition 4 (Ranking–based Classification). Let SF
k be a function that

returns the subset of the first k attributes provided by the feature ranking method
F (SF

k : Am → Ak). The ranking–based classification accuracy of H will be as
follows:

CAk(F, H) =
1
N

N∑

i=1

(
H(SF

k (x(ei))) = yi

)

Note that SF
1 is the first (best) attribute of the ranking provided by F; SF

2 are
the first two attributes, and thus up to m.

3 Preliminary Study

3.1 Related Work

There are few specific bibliographies where feature ranking comparison is defined.
Liu and Motoda [1] comments on the use of learning curves to demonstrate
the effect of adding attributes when a list of ordered attributes is provided.
There is a paper [2], in which attribute ranking by means of only one subgroup
are compared, that one receiving the best classification from all the subgroups
needed to obtain the learning curve. But, picking features whose importance
is greater than a threshold value [3,4], is more simple and divulged. Irrelevant
features (whose values are random) that are used as a threshold in the application
of algorithm ranking are inserted in [5].

All the ranking comparison is based on calculate the rankings performance.
Two measures currently exist to analyze this; by means of its accuracy or by the
area under ROC (Receiver Operating Characteristics) curve [6]. A ROC curve
A is said to dominate another ROC curve B if A is always above and to the
left of B. In the cases where two ROC curves do not dominate each other in
the whole range, or when the class distribution and error costs are unknown,
the area under ROC curve (AUC) is a good ”summary” for comparing these.
So, a curve A dominates to another curve B if AUC(A) > AUC(B), where
AUC(A) and AUC(B) denotes the area under ROC curve A or B, respectively,
in the ROC space. The main limitation of this measure lies in that it is only
easily applicable to problems with two classes. For a problem with c classes,
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ROC space is composed of c ∗ (c− 1) dimensions. This fact makes the use of this
techniques in problems with a considerable number of classes practically inviable
and so, although this measure is better than the previous (based on accuracy),
we will not use it. Remember that in this paper we intend to show how the user
can choose the best possible method according to what the user is looking for,
independently of type of the data set.

In all works of ranking comparison previously mentioned, the measure used
to calculate the ranking performance is the exactness obtained by a classifier,
with k first features list being different in how the threshold is fixed. This posed
the following questions: What exactly is being evaluated, the ranking, or the
method to select features? Is this correct? The value which is used in comparison
depends on three agents: generated ranking, method of fixing the threshold and
learning algorithm. The fact is that the classification model´s exactness can
change substantially depending on the features taking part; therefore the way
of choosing features seems more important than the order in which they are
chosen. Consequentially, we can say that comparisons will be right, but not
complete. Our suggestion is to directly value the ranking, without depending on
the selection method.

3.2 Description of Methods

We have chosen four criteria to rank attributes (see [7] for review), all of them
very different from each other. These feature–ranking methods are briefly de-
scribed next: χ2 (CH) was first introduced by Liu an Setiono [8] as a discretiza-
tion method and later shown to be able to remove redundant and/or irrele-
vant continuous features; Information Gain (IG) is based on the information–
theoretical concept of entropy, a measure of the uncertainty of a random vari-
able; Relief (RL) algorithm uses an approach based on the nearest-neighbour
algorithm to assign a relevance weight to each feature. Relief was originally in-
troduced by Kira and Rendell [9] and later enhanced by Kononenko [10]. Each
feature’s weight reflects its ability to distinguish among the class values; Soap
(Selection of Attributes by Projections) evaluation criterion [3] (SP) is based on
a unique value called NLC (Number of Label Changes). It relates each attribute
with the label used for classification. This value is calculated by projecting data
set elements onto the respective axis of the attribute (ordering the examples
by this attribute), then crossing the axis from the beginning to the greatest
attribute value, and counting the NLC produced.

Once feature rankings are obtained, we check the results calculating the suc-
cess rate using three classifiers. They are chosen as representatives of different
types of classifiers: c4.5 [11] (c4) is a tool that summarizes training data in the
form of a decision tree. Along with systems that induce logical rules, decision
tree algorithms have proved popular in practice. This is due in part to their ro-
bustness and execution speed, and to the fact that explicit concept descriptions
are produced, which users can interpret; The naive Bayes [12] (nb) algorithm
represents knowledge in the form of probabilistic summaries. It employs a sim-
plified version of Bayes formula to decide which class a novel instances belongs
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to; Nearest-Neighbour [13] (nn) simply finds the stored instance closest (accord-
ing to a Euclidean distance metric) to the instance to be classified (we will use
only one neighbour, 1NN).

3.3 Motivation

Firstly, we observe the quality of the four feature-ranking methods in respect to
the tree classifiers, we will use the Glass2 data set (214 examples, 9 attributes,
2 classes), since it is a representative case to discuss our motivation. Table 1
shows the rankings for χ2, Information Gain, Relief and SOAP. For each feature–
ranking method, the row rk presents the ranking of attributes and, under this
row, the classification performance for C4.5, Näıve Bayes and the Nearest Neigh-
bour technique (using only one neighbour), by using the number of attributes
from the ranking indicated in the first row, under “Subset”. Classification ac-
curacies (using the 9 attributes) from C4.5, Näıve Bayes and 1–NN are very
different: 75.5%, 62.0% and 77.3%, respectively. For example, the most relevant
attribute for χ2 and IG was 7, for Relief 3 and SOAP 1. Using only the at-
tribute 7 (CH and IG), C4.5 produced a classification success of 73.6. However,
the classification success with attribute 3 was 57.7 (RL) and 77.3 with attribute
1 (SP). The second attribute selected by χ2 and IG was 1, Relief selected 6
and SOAP, 7. The first three attributes for χ2, IG and SOAP were the same,
so these three classification results are equal. The fourth attribute breaks the
tie. Several interesting conclusions can be drawn from the analysis of Table 1:
(a) The four feature–ranking methods provide different rankings, what obvi-

Table 1. Feature–rankings for Glass2. FR: Feature–Ranking method (CH: χ2; IG:
Information Gain; RL: Relief; SP: Soap); Cl: Classifier (c4: C4.5; nb: Näıve Bayes; nn:
1–Nearest Neighbour); and rk: ranking of attributes.

Subset
FR Cl 1 2 3 4 5 6 7 8 9
CH rk 7 1 4 6 3 2 9 8 5

c4 73.6 77.9 82.2 78.5 75.5 74.8 73.6 76.1 75.5
nb 57.1 57.1 66.9 69.9 63.8 63.8 63.2 62.0 62.0
nn 66.9 79.7 75.5 82.8 88.3 81.0 77.9 77.9 77.3

IG rk 7 1 4 3 6 2 9 8 5
c4 73.6 77.9 82.2 82.2 75.5 74.8 73.6 76.1 75.5
nb 57.1 57.1 66.9 63.8 63.8 63.8 63.2 62.0 62.0
nn 66.9 79.7 75.5 84.7 88.3 81.0 77.9 77.9 77.3

RL rk 3 6 4 7 1 5 2 8 9
c4 57.7 67.5 80.4 76.7 75.5 75.5 74.8 77.9 75.5
nb 62.0 62.6 65.0 64.4 63.8 63.8 63.8 62.6 62.0
nn 58.9 75.5 81.0 83.4 88.3 83.4 81.6 81.6 77.3

SP rk 1 7 4 5 2 3 6 9 8
c4 77.3 77.9 82.8 81.6 81.6 84.1 74.9 73.0 75.5
nb 52.2 57.1 66.9 65.6 62.6 63.2 63.8 62.0 62.0
nn 72.4 79.7 75.5 79.8 80.4 82.2 81.6 77.3 77.3
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Fig. 1. Accuracy obtained by C4.5 for data set Glass2 (data from Table 1). The number
of attributes used to classify are in the abscissa and the success rate in the ordinate.

ously leads to different classification performance. (b) The pair Soap+C4.5 is
the only one that provides a classification performance (77.3) using only one at-
tribute (attribute 1) better than using the whole set of attributes (75.5). (c) The
sequence of best classification performance is, in principle, arbitrary: (SP+C4,
77.3), (SP+NN, 79.8), (SP+C4, 82.8), (IG+NN, 84.7), ({CH,IG,RL}+NN, 88.3),
(SP+NN, 84.1), ({RL+SP}+NN,81.6), (RL+NN,81.6) and the last best value
77.3, with NN. (d) It seems that NN performs very well when the number of
attributes is greater than m/2. A significant fact is that the best five attributes
with 1NN are {1,3,4,6,7}, but the best six attributes are {1,2,3,4,5,7}. Attribute
6 is not that relevant when attributes 2 and 5 are taken into account. In general, a
variable that is completely useless by itself can provide a significant performance
improvement when it is taken with others.

Figure 1 shows the classification accuracy for C4.5 by using the four feature–
ranking methods with the data set Glass2. Although the best subset exactness
is similar, SOAP performance is excellent for any feature number and is the
only method that in almost all subsets appears above average. In conclusion, we
could assert that it is the best ranking of all. The analysis based on the best
subset does not exactly show the kindness of features ranking because before
or after that subset, the results could be terrible. Taking into account these
conclusions, we want to consider the possibility of finding some insight about
when one feature–ranking is better than others for a given classifier. Therefore,
it would be interesting to explore the ranking method performance along the
learning curve described, and extracting conclusions according to the feature
proportion used.

Figure 2 shows the possible situations when we compare different rankings
for a data subsets. The question posed is: Which ranking is better to classify?
The answer would be conditioned by what the user is looking for. This means,
if the interest is the ranking identification method that gets the best classified
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Fig. 2. Fictitious example of three different kind of learning curves

subset for a learning algorithm given, we should choose Method1, remaining
conscious of what we need for that eighty percent of features. However, it has
been observed that the rest of the curve classification results are almost always
under two other methods. If we choose a features number lower than seventy
percent, Method1 results will be the worst of the three. If what we are looking
for is a best performance method along the whole curve, we must compare the
evolution of the three curves point to point. Method2 loses at the beginning
(until thirty percent of all features). With Method3, the former is always better
than the previous ones, except in the previously commented case (with eighty
percent of features). Finally, Method3 is the best, if we want to choose less than
thirty percent of the features.

4 Area Under Learning Curve

Comparing subset to subset would be a more complete comparison between two
features ranking. Comparing classification results obtained by the first feature
of the two lists (the best one), with the two best, and so on successively until
m ranked features. We could use this comparison, calculating the average of the
obtained results with each list, to compare rankings. The calculation of the area
under curve described by previous results would be a very similar study.

Area Under the Curve (AUC) is calculated applying the trapezium formula.
In our case, the curve (learning curve) is obtained adding features according to
the order assigned by ranking method.

m−1∑

i=1

(xi+1 − xi) ∗ (yi+1 + yi)
2

Definition 5 (AURC). Given a feature ranking method F and a classifier H,
we can obtain the performance of the classification method regarding the ranking
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provided by the feature ranking by measuring the area under the curve. The
curve is drawn by joining every two points (CAk(F, H), CAk+1(F, H)), where
k ∈ {1, . . . , m − 1} and m is the number of attributes. The Area Under Ranking
Classification Performance Curve AURC(F, H) will be calculated as:

AURC(F, H) =
1

2(m − 1)

m−1∑

i=1

(CAi(F, H) + CAi+1(F, H))

With this expression, for any pair (F, H), AURC(F, H) ∈ [0, 1] (in Table 3, it
appears multiplied by one hundred for a better understanding), which provides
us an excellent method to compare the quality of feature rankings with respect
to each classification method. Take into account that the best AURC correspond
to the best Ranking method.

An interesting property of this curve is that it is not monotone increasing,
i.e., for some i, it would be possible that CAi(F, H) > CAi+1(F, H).

Definition 6 (Feature–Ranking Performance). The feature–ranking per-
formance is measured as the evolution of the AURC along the ranking of features,
with step δ%. The curve is plotted, for every δ% of the attributes as follows:

AURCδ(F, H) =
1

2δ(m − 1)

δ(m−1)∑

i=1

(CAi(F, H) + CAi+1(F, H))

We must consider that the idea concerning every feature selection method (one
of them is ranking method) is that it must take the smallest number of features
as possible. If we contemplate the possibility that in each learning curve, high
and short exactnesses are compensated to the AURC calculation, we must make
a study about methods performance using first features and fixed percentages.

5 Experiments

The implementation of induction algorithms and other selectors was done using
Weka library [14] and comparison was performed with sixteen data sets from the
University of California at Irvine [15] summarized in Table 2. All the experiments
were run using leaving one out. The four methods of feature rankings are applied
to each data set, and each ranking learning curve is calculated with the three
classifiers.

Table 3 shows, for each data set, the Area Under Classification Performance
Curve. Boldprint values are the best for the three classifiers, and those underlined
are the best for corresponding classifiers. A clear conclusion can not be made,
but specific trends can: (a) Results are very similar under each classifier (last
line). There are some differences between each one of them. 1–NN is the classifier
that offers a better performance with the four feature ranking methods; C4.5 is
very close and NB is the last one. (b) If we take into account the best AURC
for each data set, 1–NN obtains better results. (c) Most of the RL cases win, so
that we could conclude that it is the best ranking method.
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Table 2. Data sets used in the experiments

Data set Id Instances Attributes Classes
anneal AN 898 38 6
balance BA 625 4 3
g credit GC 1000 20 2
diabetes DI 768 8 2
glass GL 214 9 7
glass2 G2 163 9 2
heart–s HS 270 13 2
ionosphere IO 351 34 2
iris IR 150 4 3
kr–vs–kp KR 3196 36 6
lymphography LY 148 18 4
segment SE 2310 19 7
sonar SO 208 60 2
vehicle VE 846 18 4
vowel VW 990 13 11
zoo ZO 101 16 7

Table 3. AURC value for each ranking–classifier combination

C4.5 NB 1NN
DS CHI2 IG RLF SOAP CHI2 IG RLF SOAP CHI2 IG RLF SOAP
an 97.30 97.12 96.90 97.11 85.82 86.30 86.50 86.47 98.20 98.09 97.54 97.71
bs 68.61 68.61 68.83 68.61 75.55 75.55 72.56 75.55 72.77 72.77 69.79 72.77
gc 72.39 72.39 71.71 72.31 74.74 74.74 73.89 74.22 70.16 70.16 70.38 66.83
di 72.85 72.89 73.30 72.52 75.36 75.73 75.68 75.15 68.87 69.52 68.09 67.87
gl 64.57 66.09 67.09 67.32 49.15 49.85 47.34 51.37 63.49 67.67 68.17 71.12
g2 76.65 77.11 74.35 79.03 63.27 62.50 63.50 62.27 79.41 79.64 80.37 78.91
hs 78.23 78.23 77.04 76.54 83.09 83.09 81.53 80.80 78.43 78.43 75.94 74.34
io 88.69 89.18 90.03 86.94 84.52 85.11 85..66 80.23 88.57 88.36 88.57 86.92
ir 95.11 95.11 95.22 95.22 95.56 95.56 95.56 95.56 95.00 95.00 95.56 95.56
kr 95.22 95.13 96.48 95.56 87.47 87.47 89..81 86.99 93.97 93.89 95.79 94.63
ly 74.84 75.97 75.66 75.42 78.76 80.25 80.37 80.09 76.61 81.28 82.31 80.56
se 92.23 92.15 93.37 92.96 74.63 73.79 78.26 76.77 92.78 93.11 93.87 93.26
so 73.92 73.71 76.06 75.15 67.62 67.44 69.57 68.83 84.15 83.94 84.41 83.87
ve 64.59 65.79 68.10 67.43 41.65 41.54 41.72 41.04 66.09 65.83 65.79 65.69
vw 73.98 74.20 73.96 74.59 61.96 62.46 61.65 62.17 90.67 90.66 89.63 90.52
zo 88.18 87.56 86.88 88.27 88.95 88.21 86.42 89.36 91.34 90.84 87.69 90.87
Av 79.83 80.08 80.31 80.31 74.25 74.35 74.37 74.18 81.91 82.45 82.12 81.96

In order to facilitate the comparison of diverse ranking methods from different
points of view, and to extract some conclusions, table 4 is presented. In this table
we show a summary of each time a ranking method holds the first position.
Different groups of comparisons are set: results obtained by the first features
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Table 4. Summary of times each ranking method holds first position. Results assoc-
ciated by: first features, percentages and classifiers

Results for CH IG RL SP
Exactness-1at: 26 28 20 30
AURC-2at: 18 22 16 24
AURC-3at: 15 17 15 21
AURC-4at: 14 15 16 20
AURC-5at: 15 20 18 17
AURC-25%: 17 22 21 17
AURC-50%at: 13 12 21 13
AURC-all at: 14 12 25 12
C4.5: 39 46 50 51
NB: 41 59 58 46
NN: 50 43 44 55
Total: 130 148 152 152

are situated in the first block (success rate with the first feature and the AURC
with two, three, four and five features are contrasted); the second block shows
the comparisons by percentage results (25, 50 with the whole results); and last
group is broken down by classifiers.

If we contemplate the tests done by the first features, SOAP ranking method
stands out, especially in relation with C4.5 and 1–NN classifiers, the one that
offers the best result with NB is IG, using only the first ranking features. IG
and RL obtain better results at 25% of ranking (IG: 22, rl: 21 y CH, SP: 17).
Partly through a classifier, this position is kept with C4.5 and NB, but not with
a NN in first position at 25% for Relief. From here through the whole features
set, RL is the one that most frequently holds first position. At a 100% ranking,
relief wins with a difference 25 times in comparison to CH, 12 to IG, and 10 to
SP, and wins equally at 50% of ranking features. Results are kept with these
percentages (50 and 100) for the three classifiers.

If we do the study regarding the entire eight tested by classifiers, there are
no large differences. For C4.5 classifier, SP and RL methods stand out with very
few differences regarding to IG. IG and RL are those that hold first positions
with NB, while with 1NN it is SP. SOAP and Relief, with 152, are the ones
which stayed in first position most of the time in all the tests (480); with IG
148, and with chi2 130, following.

We can adhere to the next recommendations due to the results obtained
through the last three tests (AURC, AURC´s percentage and AURC with the
first features of the arrange list): (I) AURC gives a more complete ranking good-
ness idea than the exactness obtained by a feature subset. (II) The complete best
valued list is generated by the RL algorithm. However, if we are going to work
with the first features, or with less than 25% of the features, SP and IG methods
offer better results in less time. (III) In general, the best classification results are
obtained by 1NN, although when the selected features number is smaller (less
than the 25%), the performance of C4.5 was better in the four cases than in the
rest of the classifiers.
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6 Conclusions

Traditional work, where comparisons of feature ranking algorithms are made,
mainly evaluate and compare the way of features selection instead of ranking
methods. In this paper we present a methodology for evaluating ranking, begin-
ning from the premise of no existence of any singular unique subgroup ideal for
every case, and that the best ranking will depend on what the user is looking for.

We can conclude that the Area Under Ranking Classification Performance
Curve (AURC ) shows the complete performance of the orderly features list,
globally indicating its predictive power. Based on the analysis of the evolution
of AURC, we propose the use of algorithms SP and IG for C4.5 classifier with
few features, and the use of RL with classifier 1NN in the rest of cases.

From here, our work aims to confirm if these results can be applied to other
larger data sets as well as to study in depth if any relation exists between ranking
method and selected classifier. Furthermore, we plan to increase our study with
other measures of feature evaluation.
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