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Abstract. This paper presents a comprehensive study of gene expres-
sion patterns originating from a diffuse large B–cell lymphoma (DLBCL)
database. It focuses on the implementation of feature selection and clas-
sification techniques. Thus, it firstly tackles the identification of relevant
genes for the prediction of DLBCL types. It also allows the determina-
tion of key biomarkers to differentiate two subtypes of DLBCL samples:
Activated B–Like and Germinal Centre B–Like DLBCL. Decision trees
provide knowledge–based models to predict types and subtypes of DL-
BCL. This research suggests that the data may be insufficient to accu-
rately predict DLBCL types or even detect functionally relevant genes.
However, these methods represent reliable and understandable tools to
start thinking about possible interesting non–linear interdependencies.

1 Introduction

Lymphomas are divided into two general categories: Hodgkin’s disease (HD)
and non–Hodgkin’s lymphoma (NHL). Over the past 20 years HD rates have
declined, accounting for only 1% of all cancer. By contrast, NHL cases have
increased by more than 50% during the same period in the United States [10].
They represent 4% of all cancer cases, becoming the fifth most common malig-
nancy in that country. An analysis of NHL incidence trends between 1985 and
1992 in seven European countries showed an average increase of 4.2% per year,
in the absence of an increase in the incidence of HD. In Spain, their death rate
per 100.000 people during the periods 1965–69 and 1995–98 increased 212.7%
for men and 283.9% for women [13]. These figures reveal the significance of
developing advanced diagnostic and prognostic systems for these diseases.

In the last two decades, a better understanding of the immune system and
the genetic abnormalities associated with NHL have led to the identification
of several previously unrecognized types of lymphoma. However, this is a com-
plex and expensive task. For instance, distinctions between Burkitt’s lymphoma
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and diffuse large B–cell lymphoma (DLBCL) often prove to be difficult, since
High–grade B–cell Burkitt–like lymphoma appears to be clinically similar to
DLBCL [17]. DLBCL is the most common type of NHL. There are no reliable
morphological or immunohistochemical indicators that can be used to recognize
subtypes of DLBCL. Moreover, it is fundamental to develop treatments specially
tailored to the individual requirements and profiles of patients [9].

Others authors, such as Shipp et al. [16], have studied the distinction between
DLBCL and a related germinal centre B–cell lymphoma, known as follicular
lymphoma (FL), which over the time acquires morphological and clinical features
observed in DLBCLs.

Technological advances now allow to screen the expression of thousands of
genes in parallel. Thus, gene expression profiling has become crucial for the devel-
opment of powerful diagnostic and prognostic methods for these types of cancers.
It offers an opportunity to characterise the biological behaviour of specific tu-
mours. Such an approach, which is based on the use of micro–array techniques,
may provide massive amounts of information. Therefore, there is a need for so-
phisticated algorithms capable of extracting novel and useful knowledge from a
biomedical point of view. In fact, gene–expression profiling is thought to be a
revolutionary technique to support the diagnosis of cancers [1].

A basic approach to the study of expression data consists of applying tradi-
tional statistical techniques. In many problems these methods have shown to be
unable to extract relevant knowledge from data. Thus, the Knowledge Discovery
in Databases approach (KDD) [8] represents a useful framework for addressing
the challenges of gene expression analysis. In particular, feature selection tech-
niques may significantly support diagnostic studies, based on the identification of
relevant genes or biomarkers. Clustering is another important task within KDD,
which aims to organize the information in terms of their similarity patterns [6].
Supervised classification has also become an important goal in this type of stud-
ies [5]. Techniques such as decision trees [4] or decision lists [15] may represent
more effective and understandable tools for aiding in the prediction of types or
subtypes of diseases.

In this paper, we carry out a broad study of a well–known database generated
by Alizadeh et al. [2], who investigated the identification of lymphomas and
DLBCL subtypes based on expression patterns. The data comprise 96 samples
described by the expression values of 4026 genes.

Firstly, feature selection techniques are implemented to identify relevant
genes for the prediction of lymphoma cancer types. Moreover, it allows the de-
tection of biomarkers to distinguish two subtypes of DLBCL: Activated B–Like
and Germinal Centre B–Like Lymphomas. The following methods have been im-
plemented: Information gain criterion, based on the entropy measure, the Relief
method and χ2 ranking and filtering. Decision trees are constructed to perform
classification tasks initially based on the original classes, and afterwards using
the DLBCL subtypes.

This study reveals that not only the genes identified by Alizadeh et al. are rel-
evant for the prediction of the two subtypes of DLBCL, but many others groups
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Table 1. Most relevant genes provided by Relief, InfoGain and χ2, ordered by ranking.

ReliefF Freq. InfoGain Freq. χ2 Freq.

GENE1610X • • • GENE707X • • GENE2400X • • •
GENE1636X • GENE655X • • • GENE788X • •
GENE1648X • GENE694X • • • GENE3639X • •
GENE1622X • • • GENE1622X • • • GENE707X • •
GENE1702X • GENE844X • • GENE655X • • •
GENE653X • • • GENE1635X • • GENE1992X •
GENE1637X • GENE2400X • • • GENE1675X • •
GENE712X • • GENE1610X • • • GENE694X • • •
GENE1607X • GENE717X • • GENE3767X •
GENE611X • GENE711X • GENE769X • •
GENE1647X • GENE639X • • GENE2387X • •
GENE708X • • GENE2402X • • GENE1622X • • •
GENE1651X • GENE769X • • GENE1610X • • •
GENE2402X • • GENE641X • GENE2032X •
GENE537X • GENE628X • GENE467X • •
GENE1658X • GENE669X • GENE3685X •
GENE654X • • GENE2403X • • • GENE2403X • • •
GENE1608X • GENE647X • GENE1371X •
GENE2393X • GENE712X • • GENE2033X •
GENE1641X • GENE783X • • GENE646X • •
GENE721X • GENE653X • • • GENE753X • • •
GENE651X • • GENE691X • GENE783X • •
GENE1644X • GENE753X • • • GENE764X •
GENE1635X • • GENE2495X • GENE639X • •
GENE753X • • • GENE651X • • GENE2428X •

may also be considered as relevant markers. In general, KDD techniques demon-
strate to be efficient for extracting valid and useful knowledge from biomedical
data.

2 Feature Selection for Gene Expression Data

Feature subset selection is the process of identifying and removing irrelevant or
redundant attributes. Decreasing the dimensionality of the data reduces the size
of the hypothesis space and allows learning algorithms to operate faster and more
effectively. It leads to smaller and easy–to–understand knowledge models of the
target concept. Feature selection techniques produce ranked lists of attributes,
providing the data analyst with insight into their data by clearly demonstrating
the relative merit of individual attributes.

In this study, we used three feature selection techniques, both belonging to
the filter category [7], Information Gain Attribute Ranking, ReliefF [11, 12] and
χ2 [14]. The information gain attribute ranking is often used where the sheer
dimensionality of the data precludes more sophisticated attribute selection tech-
niques, as the case being investigated here, which consist of 4026 attributes.
ReliefF works by randomly sampling an instance from the data and then locat-
ing its nearest neighbour from the same and a different class. When dealing with
noisy data the k nearest neighbours should be obtained. If the data contains mul-
tiple classes, the contributions of the k nearest neighbours can be weighted using
the prior probabilities associated with each class. The values of the attributes of
the nearest neighbours are compared to the sampled instance and used to up-
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Table 2. Most relevant genes provided by Relief, InfoGain and χ2, ordered by ranking.

ReliefF Freq. InfoGain Freq. χ2 Freq.

GENE717X • • GENE467X • • GENE2202X •
GENE2403X • • • GENE646X • • GENE2199X • •
GENE2270X • GENE3639X • • GENE844X • •
GENE784X • GENE2395X • • GENE777X • •
GENE2486X • GENE2668X • • GENE654X • •
GENE1603X • GENE788X • • GENE1990X •
GENE2489X • GENE1672X • GENE2424X • •
GENE703X • GENE2379X • GENE276X •
GENE692X • GENE770X • • GENE2862X •
GENE2271X • GENE648X • GENE794X •
GENE2401X • GENE642X • GENE770X • •
GENE1653X • GENE593X • GENE768X •
GENE1646X • GENE1606X • GENE2778X •
GENE2244X • GENE734X • GENE3764X •
GENE694X • • • GENE604X • GENE2395X • •
GENE655X • • • GENE777X • • GENE2374X • •
GENE538X • GENE1673X • GENE1324X •
GENE731X • GENE2374X • • GENE1343X •
GENE2668X • • GENE2199X • • GENE2795X •
GENE584X • GENE649X • GENE653X • • •
GENE1776X • GENE708X • • GENE1320X •
GENE713X • GENE1675X • • GENE3334X •
GENE2400X • • • GENE2387X • • GENE2000X •
GENE710X • GENE2424X • • GENE473X •
GENE714X • GENE706X • GENE1323X •

date relevance scores for each attribute. The rationale is that a useful attribute
should differentiate instances from different classes, and has the same value for
instances belonging to the same class. χ2 statistic conducts a significance test
on the relationship between the values of an attribute and the classes.

This study presents results based on the original set of genes (4026), and
on a subset of 50 relevant genes extracted from them, in order to compare our
result to that identified by Alizadeh et al. [2].

2.1 Lymphoid Malignancies

The three methods provided different results and they were compared to find
coincidences. Tables 1 and 2 show the genes selected by each method, and or-
dered by their relevance from top to bottom. The genes are represented with the
identifiers used by Alizadeh et al. Figure 1 provides the gene names associated
with each identifier. We found 8 common genes for the three methods, 25 com-
mon pairs of genes and 76 genes that were selected by only one method. Note
that there are 105 different genes in Tables 1 and 2, from 150 possible selections.

Figure 1 shows these genes in terms of degrees of relevance: Very high and
high relevance. Very highly relevant genes are those which have been selected
by all of the feature selection methods. Highly relevant genes are those which
have been identified by any two of the methods. In total, there are 8 very highly
relevant genes and 25 highly relevant genes.

The next task is to know whether these 8 very highly relevant genes or, in
the worst case, the 33 genes including the highly relevant ones, can predict a
cancer class. This will be shown using decision trees in section 3. Alizadeh et al.
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      ID Name

GENE653X Lactate dehydrogenase A
GENE655X GRSF-1=cytoplasmic G-rich mRNA sequence binding factor
GENE694X Cyclin A
GENE753X Similar to MCM2 = DNA replication licensing factor
GENE2400X Unknown
GENE2403X Unknown
GENE1610X Mig=Humig=chemokine targeting T cells
GENE1622X CD63 antigen (melanoma 1 antigen)

GENE467X C-1-Tetrahydrofolate Synthase, cytoplasmic
GENE639X hepatoma-derived growth factor
GENE646X nm23-H2=NDP kinase B=Nucleoside dephophate kinase B
GENE651X tubulin-beta
GENE654X dystrobrevin B DTN-B2=dystrophin-associated protein A0
GENE707X Topoisomerase II alpha (170kD)
GENE708X Ki67 (long type)
GENE712X Cyclin B1
GENE717X aurora/IPL1-related kinase
GENE769X 14-3-3 epsilon
GENE770X 14-3-3 epsilon
GENE777X semaphorin V=homologue of nerve growth cone guidance signaling proteins
GENE783X Glycyl tRNA synthetase
GENE788X SRPK1=serine kinase
GENE844X ets-2=ets family transcription factor
GENE1635X osteonectin=SPARC=basement membrane protein
GENE1675X FCERI=Fc epsilon receptor gamma chain=High affinity immunoglobulin epsilon receptor gamma
GENE2199X Unknown  UG Hs.71252  ESTs
GENE2374X PKC beta =Protein kinase C, beta
GENE2387X Unknown  UG Hs.181297  ESTs
GENE2395X Unknown  UG Hs.59368  ESTs
GENE2402X Unknown
GENE2424X Similar to neuropathy target esterase
GENE3639X KIAA0053
GENE2668X Mad2=MXI-1=MAX-binding protein=antagonizer of myc transcriptional activity=
                                    =Mxi-1/Max heterodimers repress c-myc targets
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Fig. 1. Relevant genes to differentiate the lymphoma classes from the complete dataset
(96 patients and 4026 attributes). The 50 most relevant genes for each feature selection
method were selected. very highly relevant means that the gene was relevant for the
three methods; highly relevant means that it was relevant for any two methods. There
is no order of relevance in the list.

discovered 50 relevant genes to differentiate the GC B–Like from the Activated
B–Like subtypes of DLBCL. However, only one of them, GENE2395X, has been
identified in our analysis.

It is important to note that several attributes are strongly correlated with
others (Pearson’s correlation coefficient greater than 0.90), even among those
genes selected as very highly or highly relevant in Figure 1. This fact shows
that most methods for feature selection do not take into account the corre-
lation among extracted features. Therefore, this information needs to be post–
processed, removing genes of similar functionality. For instance, GENE769X and
GENE770X, shown in Figure 1, or GENE1719X and GENE1720X, in Figure 2.

2.2 DLBCL Subtypes

In this section the 45 DLBCL samples are analysed. This category is divided
into to subtypes: Activated B–like DLBCL (ACL) and Germinal Centre B–like
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      ID Name

GENE1296X MCL1=myeloid cell differentiation protein
GENE1719X TTG-2=Rhombotin-2=translocated in t(11;14)(p13;q11) T cell acute lymphocytic leukemia=cysteine rich protein with LIM motif
GENE1720X TTG-2=Rhombotin-2=translocated in t(11;14)(p13;q11) T cell acute lymphocytic leukemia=cysteine rich protein with LIM motif
GENE3228X JNK3=Stress-activated protein kinase
GENE3254X Unknown  UG Hs.145058  ESTs
GENE3255X Unknown
GENE3256X JAW1=lymphoid-restricted membrane protein
GENE3258X JAW1=lymphoid-restricted membrane protein
GENE3259X Unknown  UG Hs.124922  ESTs
GENE3261X Unknown
GENE3314X Unknown
GENE3315X FMR2=Fragile X mental retardation 2=putative transcription factor=LAF-4 and AF-4 homologue
GENE3318X CD10=CALLA=Neprilysin=enkepalinase
GENE3325X Unknown  UG Hs.120245  Homo sapiens mRNA for KIAA1039 protein, partial cds
GENE3326X Unknown  UG Hs.105261  EST
GENE3327X Unknown  UG Hs.169565  ESTs, Moderately similar to !!!! ALU SUBFAMILY SB WARNING ENTRY !!!! [H.sapiens]
GENE3328X Unknown  UG Hs.136345  ESTs
GENE3329X Unknown  UG Hs.224323  ESTs, Moderately similar to alternatively spliced product using exon 13A [H.sapiens]
GENE3330X Unknown
GENE3331X Unknown  UG Hs.208410  EST, Moderately similar to !!!! ALU SUBFAMILY SB WARNING ENTRY !!!! [H.sapiens]
GENE3332X Unknown  UG Hs.120716  ESTs
GENE3335X myb-related gene A=A-myb
GENE3355X Unknown
GENE3939X Unknown  UG Hs.169081  ets variant gene 6 (TEL oncogene)
GENE3968X Deoxycytidylate deaminase
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Fig. 2. Relevant genes to differentiate Activated B–like DLBCL from Germinal Centre
B–like DLBCL (45 patients and 4026 attributes). The 50 most relevant genes for each
feature selection method were selected. There is no order of relevance in the list.

DLBCL (GCL). Among these 45 examples, 22 belong to class GCL and 23 to
class ACL.

The Relief algorithm, InfoGain and χ2 methods have been applied to select
the most relevant attributes to differentiate these sub–classes. These methods
provided 25 common attributes, which will be considered as very high relevant,
and they are enumerated in Figure 2.

Figures 1 and 2 do not include genes in common. It suggests that the genes re-
quired to differentiate among types of lymphoma cancer may be different to those
distinguishing DLBCL subtypes. Nevertheless, several genes which experts had
identified as having some functionality associated with lymphoma, are present
in the subset, among them, TTG–2 and CD10. Furthermore, others like MCL1,
JNK3 or FMR2, have not been linked to DLBCL.

3 Decision Trees

Decision trees are a useful technique in the context of supervised learning. They
perform classification by a sequence of tests whose semantics are intuitively clear
and easy to understand. Some tools, like J48, construct decision trees selecting
the best attribute by using a statistical test to determine how well it alone
classifies the training examples. Our experiments were performed by using the
WEKA library for machine learning [18].

To avoid over–estimating the prediction accuracy that occurs when a model
is trained and evaluated with the same samples, the “leave–one–out” testing
method has been used. In this case 96–fold cross–validation and 45–fold cross–
validation procedures are implemented when the lymphoma types and DLBCL
subtypes are analysed respectively.
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GENE1602X <= -0.44

| GENE2426X <= 0.59

| | GENE3959X <= 0.33: FL

| | GENE3959X > 0.33: GCB

| GENE2426X > 0.59: CLL

GENE1602X > -0.44

| GENE563X <= -0.52

| | GENE3701X <= -1.2: RAT

| | GENE3701X > -1.2: RBB

| GENE563X > -0.52

| | GENE717X <= -0.5: ABB

| | GENE717X > -0.5

| | | GENE694X <= 1.54: DLBCL

| | | GENE694X > 1.54: TCL

Tree Size = 15

Number of genes = 7 (from 4026)

Training Error = 2.08%

96-Fold CV Error = 20.84%

(a)

GENE646X <= -0.61

| GENE844X <= -1.02: CLL

| GENE844X > -1.02

| | GENE2387X <= -0.68: RAT

| | GENE2387X > -0.68

| | | GENE2374X <= 0.61: FL

| | | GENE2374X > 0.61: RBB

GENE646X > -0.61

| GENE717X <= -0.5

| | GENE3639X <= -0.28: NIL

| | GENE3639X > -0.28: ABB

| GENE717X > -0.5

| | GENE694X <= 1.54

| | | GENE2402X <= 1.45: DLBCL

| | | GENE2402X > 1.45: FL

| | GENE694X > 1.54: TCL

Tree Size = 17

Number of genes = 8 (from 33)

Training Error = 5.38%

96-Fold CV Error = 26.05%

(b)

GENE1622X <= -1.17

| GENE753X <= 0.61

| | GENE753X <= -0.88

| | | GENE653X <= -2.24: CLL

| | | GENE653X > -2.24

| | | | GENE655X <= -1.34: RBB

| | | | GENE655X > -1.34: CLL

| | GENE753X > -0.88: FL

| GENE753X > 0.61

| | GENE694X <= 0.6: RAT

| | GENE694X > 0.6

| | | GENE2403X <= 0.06: DLBCL

| | | GENE2403X > 0.06: GCB

GENE1622X > -1.17

| GENE694X <= -0.83: ABB

| GENE694X > -0.83

| | GENE694X <= 1.54

| | | GENE1610X <= -0.79: ABB

| | | GENE1610X > -0.79: DLBCL

| | GENE694X > 1.54: TCL

Tree Size = 21

Number of genes = 7 (from 8)

Training Error = 6.79%

96-Fold CV Error = 19.80%

(c)

Fig. 3. Decision trees to differentiate lymphoma classes. All of the decision trees were
generated using 96 patients. In (a) 4026 genes were used (the whole set); in (b) 33
genes (very high and high relevant); and in (c) only 8 genes (very high relevant).
Labels were assigned to each type of lymphoma cancer, based on the study by Al-
izadeh et al.: Diffuse large B–cell lymphoma (DLBCL), Germinal centre B (GCB), NI.
lymphoma node/tonsil (NIL), Activated blood B(ABB), Resting/activated T (RAT),
Transformed cell lines (TCL), Follicular lymphoma (FL), Resting blood B (RBB) and
Chronic lymphocytic leukaemia (CLL).

3.1 Prediction of Lymphoid Malignancies

Three decision trees were generated to differentiate among types of lymphoma.
The first decision tree algorithm (Figure 3a) used the complete set of genes as
input. However, the resulting tree comprises only 7 genes, producing an error
rate of 2.08% (training set as test set), and 20.84% (leave–one–out method). The
second decision tree (Figure 3b) selected 8 genes among the 33 genes extracted
by the feature selection methods, making an error rate of 5.28% (training) and
26.05% (leave–one–out). The third decision tree (Figure 3c) provides an error
rate of 6.79% (training) and 19.80% (leave–one–out). Thus, from a prediction
point of view, only those genes categorized as very higly relevant allow the gen-
eration of the best decision trees.

The gene GENE694X (cyclin A) seems to be decisive in the prediction of
lymphoma types, as it is the only one that appears in all of the decision trees. In
the first one, differentiates DLBCL from TCL; in the second one, DLBCL and FL
from TCL; and in the third one, RAT from DLBCL and GCB, and ABB and TCL
from DLBCL (although the gen GENE1610X plays an important role to separate
ABB from DLBCL). This machine learning method has remarkably recognised
a key gene, which has been previously linked to the process of cell proliferation.
Furthermore, a high protein expression of cyclin A has been associated with
prognosis outcomes in non-Hodgkin’s lymphomas [19].
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GENE3330X <= 0.38

| GENE518X <= -0.23: GCL

| GENE518X > -0.23: ACL

GENE3330X > 0.38: GCL

Tree Size = 5

Number of genes = 2 (from 4026)

Training Error = 2.23%

45-Fold CV Error = 17.78%

(a)

GENE3330X <= 0.38

| GENE3939X <= -0.82: GCL

| GENE3939X > -0.82: ACL

GENE3330X > 0.38: GCL

Tree Size = 5

Number of genes = 2 (from 25)

Training Error = 2.43%

45-Fold CV Error = 17.78%

(b)

GENE3330X <= 0.38

| GENE3512X <= -0.61: GCL

| GENE3512X > -0.61: ACL

GENE3330X > 0.38: GCL

Tree Size = 5

Number of genes = 2 (from 2)

Training Error = 2.23%

45-Fold CV Error = 8.89%

(c)

Fig. 4. Decision trees for DLBCL sub-classes. All of the decision trees were generated
using 45 patients. In (a) 4026 genes were used (the whole set); in (b) 25 genes (very
high relevant); and in (c) only 2 genes (1 was randomly chosen from the data).

3.2 Prediction of DLBCL Subtypes

Figure 4 illustrates three decision trees generated to differentiate among the
DLBCL subtypes, ACL and GCL. Two genes were sufficient to build the trees.
The gene GENE3330X has been included in all of the trees, which indicates its
relevance to achieve this classification.

However, this gene can be combined with many others without considerably
increasing the error rate. In fact, we randomly selected an a priori non–relevant
gene, the gene GENE3512X, and the error rate was even lower than earlier, about
8.8% (leave–one–out). Therefore, one may state that the difference among the
more important genes in terms of their relevance is very slight.

Based on medical research about the significance of specific genes to differen-
tiate subtypes of DLBCL, 5 genes have been selected. They are those encoding
CD10 (GENE3317X, GENE3318X and GENE3319X), BCL–6 (GENE3340X and
GENE3341X), TTG–2 (GENE1719X and GENE1720X), IRF–4 (GENE1212X
and GENE1213X) and BCL–2 (GENE2514X, GENE2536X, GENE2537X, GE-
NE2538X), and some genes belonging to the BCL–2 family (GENE385X, GE-
NE386X, GENE387X, GENE3619X and GENE3620X). The importance of these
genes has been demonstrated by Azuaje by means of the simplified fuzzy ART-
MAP model, which is a neural network–based model [3].

Results provided by the decision tree used only four genes (GENE1719X,
GEN3318X, GENE3340X and GENE385X) and the error rate was 0% (training)
and 26.67% (leave–one–out). The overfitting was very high, and therefore, these
genes are not appropriate to predict accurately the subtype of DLBCL by using
a decision tree.

4 Conclusions

A broad study of the database generated by Alizadeh et al. [2] was presented in
this paper. It focused on both the feature selection and classification tasks.

From a biomedical point of view, the relevance of specific genes reported
by Alizadeh et al. is not observed in our results. This is perhaps because other
genes may also play an important role in processes associated with this disease.
However, this conclusion may not be strongly supported by results, as these have
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been obtained from a small amount of patients, in comparison to the number of
genes.

These analyses indicate that the data are insufficient to state indisputable
conclusions. Many subsets of genes can achieve a good prediction performance,
although most of them would provide an overfitted decision tree. From a classifi-
cation point of view, some genes are indeed very important, but more data should
be included to support these observations. Alizadeh et al. inferred that a subset
of genes could accurately differentiate among two subtypes of DLBCL. Never-
theless, none of such subsets have been identified by our KDD framework. The
results also suggest that several subsets can attain the same classification aims.
In fact, many decision trees can be built by using non–identified–as–relevant
genes, producing similar error rates for the classification task. Furthermore, this
research indicates that a deep study on the non–linear inter–relationship among
genes might reveal interesting properties, as it has been discussed in [3]. With
regard to the analysis of non–linear inter–relationships among genes for distin-
guishing lymphoma subtypes, we have recently built a neural network classifier
based on 25 genes selected by the Relief method (with 3 nearest neighbours).
This model, which consisted of two hidden layers and was tested with 45–fold
cross–validation, produced an error rate equal to 0%.

This study highlights the importance of data mining techniques to extract in-
teresting patterns from biological data, the significance of the results in contrast
to statistics, and their future projection.

Acknowledgements

The research was supported by the Spanish Research Agency CICYT under
grant TIC2001–1143–C03–02.

References

1. A. A. Alizadeh, M. Eisen, D. Botstain, P. O. Brown, and L. M. Staudt, “Probing
lymphocyte biology by genomic-scale gene expression analysis,” Journal of clinical
immunology, no. 18, pp. 373–379, 1998.

2. A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosenwald, J. C.
Boldrick, H. Sabet, truc Tran, X. Yu, J. I. Powell, L. Yang, G. E. Marti, T. Moore,
J. H. Jr., L. Lu, D. B. Lewis, R. Tibshirani, G. Sherlock, W. C. Chan, T. C.
Greiner, W. Dennis D, J. O. Armitage, R. Warnke, R. Levy, W. Wilson, M. R.
Grever, J. C. Byrd, D. Botstein, P. O. Brown, and L. M. Staudt, “Distinct types
of diffuse large b–cell lymphoma identified by gene expression profiling,” Nature,
vol. 403, pp. 503–511, 2000.

3. F. Azuaje, “A computational neural approach to support discovery of gene function
and classes of cancer,” IEEE Transactions on biomedical engineering, vol. 48, no. 3,
pp. 332–339, 2001.

4. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and
regression trees. Belmont, CA: Wadsworth International Group, 1984.

5. A. D. Gordon, Classification. Chapman & Hall/CRC, 1999.
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