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ABSTRACT
This paper presents a scalable learning algorithm to classify nu-
merical, low dimensionality, high–cardinality, time–changing data
streams. Our approach, named SCALLOP, provides a set of de-
cision rules on demand which improves its simplicity and helpful-
ness for the user. SCALLOP updates the knowledge model every
time a new example is read, adding interesting rules and remov-
ing out–of–date rules. As the model is dynamic, it maintains the
tendency of data. Experimental results with synthetic data streams
show a good performance with respect to running time, accuracy
and simplicity of the model.
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1. INTRODUCTION
Medicine, meteorology, ATM transactions, retail chains, or sci-

entific projects are some examples of different fields where giga-
bytes of numerical data streams are daily generated and mined un-
der the assumption that they hide valuable information. Progress
in hardware storage and data–warehouse technologies allow mod-
ern organizations to collect vast amounts of data from proprietary
and client case histories. The inherent nonstop data traffic among
heterogeneous sources gives rise to noise, missing, and inconsist-
ency on attribute values. In addition, when data distribution is
not stationary (examples are collected over months), algorithms
based on data partitioning techniques (instance/feature sampling)
are oversensitive to both underfitting and overfitting. Furthermore,
memory and time limitations compel such systems to give an ap-
proximate answer from few scans (ideally only one) assuring that
both result and performance are not adversely affected by the order
of the examples. Mining potentially infinite data sequences im-
plies high computational cost and usually results in large, complex
and incomprehensible knowledge models, so interactive and user–
controlled systems are becoming increasingly developed moving
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on the user’s priorities to less accurate but more comprehensible
answers. For all these reasons, designing new scaling–up and scal-
able learning algorithms has consolidated as an important challenge
in recent years [11].

This paper introduces a scalable classification algorithm named
SCALLOP (Scalable Classification ALgorithm by Learning deci-
siOn Patterns) that provides a model on demand according to sev-
eral user–defined parameters. In the next sections we describe the
motivation and the basis of our approach, discussing its major draw-
backs. Next we present experimental results on numerical data sets
that show its performance mining numerical, low–dimensionality,
high–speed data steams.

2. MOTIVATION
Many scalable learning algorithms are based on decision trees,

modelling the whole search space hierarchically as disjointed hy-
percubes. The highly complex trees given by these systems cast
doubts on its capabilities as suitable knowledge representation due
to the user need to explore paths of several dozen of levels to know
interesting patterns. In addition, mining time–changing data streams
may involve to rebuild anout–of–datesub–tree, increasing the com-
putational cost to a greater extent. Within incremental learning, a
common approach to extract the concepts to be learned consists in
repeatedly applying the learner to a sliding window ofw examples.
An important issue of these approaches is to find the best value for
w that optimizes the performance as a function of the input data
[13].

Our proposal obtains a reduced set ofupdateddecision rules sor-
ted in a relevance order according to the user’s demand. From
several user–defined parameters, SCALLOP only models the re-
gions whose characteristics interest the user, showing visually the
obtained rules (see Figure 1). Contrary to decision–tree–based ap-
proaches, the whole search space is not modelled. Using a window
of size 1, those examples located inside the most influential regions
turn into hypercubes and extend its limits to the nearest different la-
bel regions. This approach makes the model to be initially unstable
since some rules could be wrongly expanded, intersecting different
labelled regions whose examples have not been read yet. To attain
the stabilization of the model, SCALLOP associates growth limits
with each rule preventing them to be extended. Such growth limits
give an excellent way to classify by voting with a reduced set of
rules, differently to decision lists.

3. THE SCALLOP ALGORITHM
Classification is generally defined as follows. An input finite

data set of training examples is given. Every training example is
a paire= (x,y) wherex is a vector ofm attribute values (each of
which may be numeric or symbolic) andy is a class discrete value
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Figure 1: Example of a rule in SCALLOP: A young person will
not be healthy if he/she eats less than 500 grs. of vegetables per
week.

named label. The goal is to obtain a modely = f (x) to classify or
decide the label for new non–labelled test examples named queries.
SCALLOP builds a model formed by several sets of decision rules,
one set per label. Henceforth, the next notation is used to describe
our approach. Letm be the number of continuous attributes. Let
Y = {y1, . . . ,yz} be the set of class labels. Letei = (xi ,yi) be theith

training example to be read, wherexi is a normalized vector inRm

andyi is a discrete value inY.
Every decision rule in SCALLOP is a set ofm closed intervals

[I jl , I ju] (one per dimension) named definition limits which define
an hypercube inside the search space.l denotes lower bound andu
upper bound.

DEFINITION 1 (EXAMPLE COVERING). An example is covered
by a rule when it belongs to the space given by its definition limits.

DEFINITION 2 (POSITIVE SUPPORT OF A RULE). The number
of examples with labely covered by a ruleR with label y is said
positive support ofR.

DEFINITION 3 (NEGATIVE SUPPORT OF A RULE). The num-
ber of examples with labely covered by a ruleRwith labely′ is the
negative support ofR.

DEFINITION 4 (CONFIDENCE OF A RULE). Let psandnsthe
positive support and the negative support of a ruleR, respectively.
The confidence ofR is defined as:C(R) = ps

ps+ns.

In order to achieve a balanced performance between the running
time and the classification accuracy, each ruleRhas associated four
relevant elements:

• Centroid C: vector inRm generated as the weighted mean
of the vectors belonging to all the examples covered byR.

• Delimiters D: set of theβ examples covered byR that are
farthest to each other.β is an user–defined parameter.

• Markers M : set ofβ representative examples covered byR.
M, D, andC are used to modify an invalid rule.

• Growth limits B: set ofm open intervals(B jl ,B ju), so that:

B jl ≤ I jl ≤ I ju ≤ B ju; ∀ j ∈ {1, . . . ,m}

The growth limits play an important role since if we know where
every rule can be expanded to, the algorithm makes stable the model
faster. Furthermore, this information is very helpful to classify new
queries because there is no need for them to be covered.

In addition, every rule keeps its positive support and its negative
support, the index of the last covered example, a boolean value that
indicates if the rule was formed from another rule instead of an
example, and a set of links to the rules with which overlap. Only
rules associated with the same label may overlap.

Moreover, the rules are kept or removed according to several
user–defined parameters: the maximum number of rules per label
(α), the update rate, the minimum positive support, and the min-
imum confidence.

The algorithm starts withα rules per label generated from the
first α read examples of each label. These rules are not hypercubes
but points. When there have been read more thanα examples for
a certain labelyi , three different situations are differentiated with
every new exampleei = (xi ,yi):

• Positive covering: xi is covered by one or several rules asso-
ciated with the same labelyi .

• Possible expansion: xi is not covered by any rule in the
model but there is at least one rule associate with the same la-
bel that can be extended to cover it without overlapping with
a different labelled rule.

• Negative covering: xi is covered by one or several rules as-
sociated with a different labely′ 6= yi .

Cases 1 and 3 take turns to be firstly checked. If none of them
come true, then the actions associated with the case 2 are run.
After each pruning (everyγ read examples), SCALLOP counts how
many times the cases 1 and 3 come true. For the nextγ examples
SCALLOP will check firstly that case with the highest count ac-
cording to the precedingγ examples.

In the two first cases SCALLOP updates the delimiters and the
markers of the involved rules when they have coveredβ new ex-
amples (Figure 2). LetE be the set of theβ latest examples covered
by a rule so thatX = D∪M∪E. The first delimiter selectedd1 is
the most distant pointd1∈ X to the centroid (C) of the rule. The
first marker selectedm1 is the nearest point to the middle point of
d1 andC. The remaining delimiters are selected fromX according
to the greatest Euclidean distance from the centroid of new delim-
iters: the second delimiterd2 is the most distant point tod1 (c′),
the third delimiterd3 is the most distant point to the centroid of
d1 andd2 (c′′), the fourth delimiterd4 is the most distant point to
the centroid ofd1, d2 andd3, and so on. The markers are updated
with the same criterion ofm1. The second markerm2 is the nearest
point to the middle point ofd2 andC. The third markerm3 is the
nearest point to the middle point ofd3 andC, and so on.

Positive covering: every rule that coversxi increases its positive
support by one unit, updates the index of the last covered example
and moves its centroid. When the first ruleRp that covers the new
example is found, the other rules that may also cover it are found
thanks to the links ofRp to them.

Possible expansion: a ruleRg can be expanded to seize the point
xi if it fulfills two conditions:

• xi is not beyond the growth–bounds ofRg, that is: ∀ j ∈
{1, . . . ,m} · xi j ∈ (B jl ,B ju)

• The resulting extended rule does not intersect with any other
rule associated with a label different from that ofRg.

Only one rule out of all the candidate ones is expanded: the one
whosegrowth is the smallest and now coversxi .
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Figure 2: Updating the delimiters (di) and the markers (mi) of a rule with β = 4.

DEFINITION 5 (GROWTH OF A RULE). LetRbe a rule inRm.
Letx be a point inRm. The growthGof the ruleRto cover the point
xi is defined as:

G(R,xi) =
m

∏
j=1, g j>0

10φ g j −
m

∏
j=1, r j>0

10φ r j ;

g j = u j − l j ; u j = max(xi j ,R.I ju);
l j = min(xi j ,R.I jl ); r j = R.I ju−R.I jl ; φ ∈N

In order to measure only the new region that is taken when a
rule R extends, thegrowth takes into account only those dimen-
sions for which there is expansion. Since SCALLOP normalizes
each attribute value in [0,1] before processing an example, the term
10φ is used to avoid that a rule without expansion in a certain di-
mensionk (Ikl = Iku) has greatergrowththan a rule with expansion
in such a dimension and the same intervals in the rest of dimen-
sions. For example, consider two rules inR2, Ra andRb, which
can be extended to cover a new pointx= {0.5,0.5}, so that:Ra.I =
{[0.1,0.4]; [0.5,0.5]} (a segment) andRb.I = {[0.1,0.4]; [0.6,0.7]}
(a rectangle). Without the term10φ , it results in:G(Ra,x) = 0.4−
0.3; G(Rb,x) = 0.4 ·0.2−0.3 ·0.1. That is, contrary to expected,
Ra grows morethanRb. We have usedφ = 3 in our experiments.

When a ruleRg extends, it may overlap with other rules asso-
ciated with the same labelyi so that SCALLOP updates the set of
links for each rule in both directions.

Negative covering: whenxi is covered by a rule associated with
a different labely′, the covering ruleRn with the nearest centroid to
xi is founded as in the first case. If the new confidence ofRn is still
greater than or equal to the minimum given by the user, then the
negative support is increased by one unit. If the new confidence is
smaller than the minimum given by the user, then a new ruleRx for
xi is added to the model. In addition,Rn is split into two new rules
R′n that do not coverxi . Each new rule may be partially or totally
covered by a previous rule (which must be linked throughRn). If
R′n is totally covered by other ruleRc, then it is not included in the
model. IfR′n overlaps withRc, then both rules update to each other
the set of links. Before adding them to the model, the growth limits
of each new rule are updated with the growth limits ofRn.

Although the new examplexi may be covered by several rules
associated with a different label, only the rule whose centroid is the
nearest toxi is split. We have decided on this criterion under the
assumption that if the examplexi belongs to a pattern, then near
examples associated with the same labelyi must be read shortly
after, and wrong rules will be corrected. Ifxi is a noisy example or
belongs to a minority pattern, thenRx will be removed in the next
pruning. So every time a noisy examplex is read, dividing only
one rule instead of all the rules that coverx avoids an unnecessary
computational cost.

3.1 Refining the model
The set of rules is refined everyγ new examples.γ is an user–

defined parameter. First, an iterative procedure is run to join rules
associated with the same label. When no union is possible the
procedure ends. In every iteration, the two nearest rules to each
other whose union is possible are analyzed. The two nearest rules
are those whose resulting volume is the smallest in relation to the
volume of the rest of the possible unions. The unionRu from two
rules Ra and Rb of the same label is done if two conditions are
fulfilled: 1) Ru does not intersect with any rule associated with a
different label; 2) the resulting hypercube is located inside the hy-
percube obtained from the growth bounds ofRa andRb.

In a second step every rule has to satisfy two conditions to stay in
the model: 1) must cover at least one of the lastδ read examples; 2)
the positive support must be greater than or equal to the minimum
given by the user (as percentage of the total number of examples
read at that time).δ is another user parameter. If noise is present in
data, thosewrongrules that stem from noise are likely to have a low
support and a variable update rate. If after this prune the number
n of rules is still greater thanα, then they are sorted by both the
positive support and the index of the last covered example, in a
decreasing order, so that the lastn−α rules are directly removed.
The rules that stay in the model reset the negative support.

Before removing a ruleRr , some rules associated with a different
label may update their growth bounds. IfRr was extended with one
of the lastδ read examples and was not split ever, then SCALLOP
takes it as a valid minority rule (not noise). Therefore, the rules
of different label that will remain in the model should not extend
across the region given by the definition limits ofRr (Figure 4). To
avoid wrong expansions that may involve a splitting shortly after,
SCALLOP updates the growth bounds of every different labelled
rule Rs that overlaps withRr in all dimensions except onej, so
that:

if Rr .I jl > Rs.I ju then Rs.B ju ←min(Rs.B ju,Rr .I jl )
if Rr .I ju < Rs.I jl then Rs.B jl ←max(Rs.B jl ,Rr .I ju)

3.2 Classifying new queries by voting
If a new queryQ is covered by a ruleRq, then Q is directly

classified as the label associated withRq. If there is no rule that
covers the new query, SCALLOP tries to infer which labels are not
possible forQ and it is classified by voting. Figure 3 shows this
procedure. If the query is beyond the growth bounds of all the rules
associated with a certain labell , thenl is rejected to classifyQ. If
Q is beyond the growth bounds of a ruleRy with labely, then the
votes againsty are increased by one unit. If a ruleRt of labelt can
be extended to coverQ (it is inside the growth bounds ofRt and
the resulting expansion does not intersect with any rule associated
with a label different toy), then the votes fort are increased by one
unit. Thus, the label assigned is that with the highest number of
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Algorithm 1 classifyTest

Input: Q: Vector inRm;
Output: label: Discrete;
begin

if there is a ruleRq that coversQ then
label← the label associated withRq

else
for all labelyk ∈Y do {Y = {y1, . . . ,yz}}

validLabel[k]← false
for all ruleR associated with the labelyk do

if Q is beyond the growth limits ofR then
votesAgainst[k]← votesAgainst[k] + 1

else
if R can extend to coverQ then

validLabel[k]← true
votesFor[k]← votesFor[k] + 1

end if
end if

end for
end for
label← decide(validLabel,votesFor,votesAgainst,received)

end if
end

Figure 3: Algorithm to classify new test examples.

votes. When two labels have the same number of votes, the label
distribution (received) decides which is the class value for the new
query.

4. EMPIRICAL EVALUATION
We have run all our experiments on an AMD x86/1.4Ghz and

256Mb DDR RAM PC running Windows XP. SCALLOP have been
tested for 15 continuous attributes using a method similar to [4].
The concepts to be learned are created by randomly generation of
decision trees with 8 levels (128 concepts to be learned). Each leaf
is randomly assigned a class label between only two possible val-
ues, 0/1. The tree was grown in each internal node with a random
pair (attribute,value) that is consistent with the path from the root
to such a node. For every example of the training stream, the 15
attribute values are generated with a simple uniform number gen-
erator as a stream of pseudo–random numbers in the real interval
[0,1]. The class label associated with each training example is then
assigned according to the target tree. As in [4], we carried out all
tests without ever writing the training examples to disk (i.e., gen-
erating them on the fly and passing them directly to the algorithm).

We have evaluated three aspects of the performance given by
SCALLOP: the prediction accuracy, the stabilization speed, and
the running time. They have been measured for different sizes of
the training stream. We have added a class label noise level of 1%
so that every 100 examples, one of them was passed with a random
label. For each training set, 10% of examples were used for test-
ing. We have carried out ten evaluations for each training and ten
training for each size. The values used for the parameters of the
algorithm were:α = 100, β = 3, γ = 104, δ = 2 ·104, minimum
confidence 90% and minimum positive support 0.01%.

Table 1 shows the results obtained with respect to the accuracy
and the stability given by SCALLOP. The last row shows the res-
ults for a changing–tree, so that every hundred thousand examples
the target tree was replaced making SCALLOP to reject the gener-
ated rules. From 1 million examples, the tree was stationary. The
accuracy becomes stable from one million examples like the num-

Table 1: Performance given by SCALLOP learning 128 con-
cepts of 15 continuous dimensions. NE is the number of ex-
amples; CA is the classification accuracy; TC is the percentage
of test examples covered by the ruleset; AC is the accuracy ob-
tained by direct covering; NR is the final number of rules; NS
is the total number of rules split during the process; and RP is
the number of new rules generated beforeα examples of each
label are read.

NE %CA %TC %AC NR NS RP
5·104 66.0±0.70 29.3 28.8 190 780 480
1·105 74.0±0.40 45.5 45.4 185 1400 1000
2·105 84.0±0.17 64.5 64.4 185 2150 2050
3·105 91.5±0.15 73.6 73.5 185 2550 3080
4·105 93.0±0.11 81.8 81.7 185 3150 4180
5·105 94.0±0.11 84.9 84.9 185 3225 5380
1·106 95.3±0.02 90.4 90.4 170 3330 12370
5·106 95.8±0.02 90.3 90.3 137 4000 72200

Table 2: Running time to build the model and classify 10% test
examples. NE is the number of examples; TL is the time needed
to built the model (in seconds); TC is the time to classify the test
examples (in seconds); and %UE is the percentage of examples
that are not used to update the model.

NE TL TC %UE
5·104 65 0.4 42
1·105 115 0.6 33
2·105 165 1.0 24
3·105 210 1.3 18
4·105 250 1.6 16
5·105 290 1.6 15
1·106 340 2.2 6
5·106 925 10.8 1

ber of covered examples. It is important the high percentage of test
examples correctly classified without direct cover for5 ·104 tests
(more than 37% of correctly classified) and for105 (about 30%).
The number of split rules does not increase under a linear trend but
from one million examples tends to be asymptotic bounded. From
five million examples, the number of final rules is very near to the
number of concepts to be learned.

Table 2 shows the results obtained in running time (seconds).
Column TL shows that the running time to update the model is pro-
portionally decreasing as the number of examples increases, so that
the system’s stability increases as the number of examples. Column
UE shows that the quality of the rules is increasingly nearer to the
real concepts to be extracted. These results lead us to think that
SCALLOP is a good choice to mine major patterns from continu-
ous data streams.

When the number of examples is over a million, SCALLOP is
able to process about 5000 examples per second, what gives an
idea of the good performance of our approach.

5. RELATED WORK
There is a huge literature on incremental learning and rule learn-

ing [3, 13, 5]. Decision tree based classifiers for mining very large
databases are Gehrke et al.’s BOAT [6] and Agrawal et al.’s SPRINT
[12]. BOAT obtains an approximate tree through a sample of fixed
size. Previous approaches based on subsampling methods are also
proposed by Catlett [2]. In contrast, SPRINT is a disk–based learner
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Figure 4: Updating the growth bounds of a rule in R3. The
rules R2 and R3 overlap in two dimensions (x,z), whereasR1
and R3 overlap only in one dimension.R2.B3u is updated with
R3.I3l and R3.B3l is updated with R2.I3u (= R2.I3l = 0), respect-
ively. R1.B is not changed.

that use all the examples and focus on optimizing sequential access
to disk.

Recent works on mining data streams has been introduced by
Domingos et al. in [4] (VFDT) and [9] (CVFDT), building a de-
cision tree using constant time and memory per example. Their
approach is based on Hoeffding bounds [8], which guarantee that
the output is asymptotically nearly identical to that given by a batch
conventional learner from enough examples. They also apply Hoeff-
ding’s inequalities to build a scaling–up method that is applicable
to any induction algorithm based on discrete search [10]. There is
also large literature on scaling–up algorithms [7, 1].

6. CONCLUSIONS
A scalable classification learning algorithm based on decision

rules and prototypes has been introduced in this paper. Providing
a model on demand, which improves its simplicity and helpfulness
for the user, we have developed a system for mining numerical,
low–dimensionality, high–speed, time–changing data streams that
updates the model with each new example. With a refining method
as part of the algorithm, SCALLOP is able to removeout–of–date
rules that have become uninteresting for the user and wrong rules
caused by noise. This periodical pruning does not adversely affect
the computational cost but rather speeds up its subsequent updating
by helping to make the model more stable.

The strong point of our algorithm is that the generated rulesknow
where can extend to, what provides few rules to classify new quer-
ies without decreasing the accuracy. This approach is different to
decision tree based algorithms in that the whole search space is not
modelled and the new queries are classified by voting. The per-
formance of SCALLOP is excellent, as for prediction accuracy as
running time.

7. FUTURE WORK
Our future research directions are oriented to drop irrelevant di-

mensions, and recover dropped attributes turned relevant later (there
is no much literature on feature selection from data streams). We
are also studying to deal with nominal attributes in order to be able
to compare SCALLOP with another classification algorithms, as
CVFDT [9] and SPRINT [12].
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