
Linear Time Solution to Prime Factorization by
Tissue P Systems with Cell Division

Xingyi Zhang1, Yunyun Niu2, Linqiang Pan2, Mario J. Pérez-Jiménez3

1 School of Computer Science and Technology
Anhui University, 230039 Hefei, China
xyzhanghust@gmail.com

2 Key Laboratory of Image Processing and Intelligent Control
Department of Control Science and Engineering
Huazhong University of Science and Technology, 430074 Wuhan, China
niuyunyun1003@163.com, lqpan@mail.hust.edu.cn

3 Department of Computer Science and Artificial Intelligence
University of Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
marper@us.es

Summary. Prime factorization is useful and crucial for public-key cryptography, and its
application in public-key cryptography is possible only because prime factorization has
been presumed to be difficult. A polynomial-time algorithm for prime factorization on a
quantum computer is given by P. W. Shor in 1997. In this work, a linear-time solution
for prime factorization is given on a kind of biochemical computational devices – tissue
P systems with cell division, instead of physical computational devices.

1 Introduction

In math, prime factorization is the breaking down of a composite number into
smaller primes, which when multiplied together equal the original integer. Cur-
rently, though the prime factorization problem is not known to be NP-hand, no
efficient algorithm is publicly known. It is generally considered intractable. The
presumed computational hardness of this problem is at the heart of several algo-
rithms in cryptography such as RSA [15].

Many areas of mathematics and computer science have been brought to bear on
the prime factorization problem, including elliptic curves, algebraic number theory,
and quantum computing. A polynomial-time algorithm for prime factorization on
a quantum computer is given by P. W. Shor in 1997 [16]. This will have significant
implications for cryptography if a large quantum computer is ever built. However,
before a practical quantum computer appears, it is still of interest to find any
reasonable computational devices for solving prime factorization problem. In this
work, we shall give a linear-time solution to prime factorization on a class of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51402379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

356 X. Zhang et al.

biochemical computational devices – tissue P systems with cell division, instead of
physical computational devices.

Tissue P systems with cell division is a class of computational devices in mem-
brane computing. Membrane computing is an emergent branch of natural com-
puting, which is inspired by the structure and the functioning of living cells, as
well as the organization of cells in tissues, organs, and other higher order struc-
tures. The devices in membrane computing, called P systems, provide distributed
parallel and non-deterministic computing models. Since Gh. Păun introduced the
first P system in [12], this area is heavily investigated. Please refer to [13] for an
introduction of membrane computing, and refer to [17] for further bibliography.

Informally, a P system consists of a membrane structure, in the compartments
of which one places multisets of objects which evolve according to given rules in
a synchronous, non-deterministic, maximally parallel manner. Tissue P systems
are a class of P systems, where membranes are placed in the nodes of a graph.
It is a net of processors dealing with symbols and communicating these symbols
along channels specified in advance. The communication among cells is based on
symport/antiport rules, which was introduced to P systems in [11]. Symport rules
move objects across a membrane together in one direction, whereas antiport rules
move objects across a membrane in opposite directions. This model has two bio-
logical inspirations (see [9]): intercellular communication and cooperation between
neurons. In [14], tissue P systems are endowed with the ability of getting new cells
based on the mitosis or cellular division, thus obtaining the ability of generating
an exponential amount of workspace in polynomial time. Such variant of tissue P
systems is called tissue P systems with cell division.

Tissue P systems with cell division were widely investigated for solving NP-
complete problems. Some of them deal with non-numerical NP-complete decision
problems, such as SAT problem [14], 3-coloring problem [2], vertex cover [4]. Others
deal with numerical NP-complete decision problems, that is, decision problems
whose instances consist of sets or sequences of integer numbers, such as subset
sum [3], partition problem [5]. Although prime factorization we shall consider is a
numerical problem, it is neither a decision problem nor an optimization problem.
In this work, we shall construct a family of tissue P systems with cell division,
which can decompose integer numbers in a linear time with respect to the length
of binary representation of the integer to be factored. As a result of computation,
a prime number is sent to a prefixed output membrane, instead of yes or no.

Up to now, besides there are two polynomial-time solutions to prime factor-
ization by P systems with active membranes [6, 10], one well known polynomial
algorithm that solves factorization problem is based on quantum computer [16]. As
the case of quantum computer, the solution given in this work indicates how pow-
erful tissue P systems with cell division can be, although at this moment nobody
knows how to build a biochemical computer.

The paper is organized as follows. In Section 2, some preliminaries are recalled.
The formal definition of tissue P systems with cell division is given in Section
3. A family of tissue P systems that uniformly solve the factorization problem is

Factorization by Tissue P Systems with Cell Division 357

presented in Section 4, with a short overview of the computation and the necessary
resources. Conclusions and comments are presented in Section 5.

2 Preliminaries

An alphabet Σ is a non-empty set, whose elements are called symbols. An ordered
sequence of symbols is a string. The number of symbols in a string u is the length
of the string, and it is denoted by |u|. As usual, the empty string (with length 0)
will be denoted by λ. The set of strings of length n built with symbols from the
alphabet Σ is denoted by Σn and Σ∗ = ∪n≥0Σ

n. A language over Σ is a subset
from Σ∗.

A multiset m over a set A is a pair (A, f), where f : A → N is a mapping. If
m = (A, f) is a multiset, then its support is defined as supp(m) = {x ∈ A | f(x) >
0} and its size is defined as

∑
x∈A f(x). A multiset is empty (resp. finite) if its

support is the empty set (resp. finite).
If m = (A, f) is a finite multiset over A, and supp(m) = {a1, . . . , ak}, then

it will be denoted as m = {{af(a1)
1 , . . . , a

f(ak)
k }}. That is, superscripts indicate

the multiplicity of each element. If f(x) = 0 for any x ∈ A, then this element is
omitted.

3 Tissue P Systems with Cell Division

In [8, 9], the first definition of the model of tissue P systems was proposed, where
the membrane structure did not change along the computation. We now shall
introduce a model of tissue P systems with cell division based on the cell-like
model of P systems with membranes division [14]. The biological inspiration of
this model is clear: alive tissues are not static network of cells, since new cells are
generated by membrane fission in a natural way.

The main features of this model, from the computational point of view, are
that cells are not polarized (the contrary holds in the cell-like model of P systems
with active membranes, see [13]); the cells obtained by division have the same
labels as the original cell and if a cell is divided, its interaction with other cells or
with the environment is blocked during the division process. In some sense, this
means that while a cell is dividing it closes its communication channels with other
cells and with the environment.

Formally, a (function) computing tissue P system with cell division of degree
q ≥ 1 and order (m,n), m ≥ 1, n ≥ 1, is a tuple of the form

Π = (Γ, Σ,Λ, w1, . . . , wq, E ,R, iin, iout),

where:

1. Γ is the alphabet of objects;

358 X. Zhang et al.

2. Σ = {a1, . . . , am} is an ordered input alphabet strictly contained in Γ ;
3. Λ = {b1, . . . , bn} is an ordered output alphabet contained in Γ ;
4. w1, . . . , wq are strings over Γ , describing the initial multisets of objects placed

in the cells of the system at the beginning of the computation;
5. E ⊆ Γ is the set of objects in the environment in arbitrarily copies each;
6. R is a finite set of rules of the following forms:

(a) (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗;
Communication rules; 1, 2, · · · , q identify the cells of the system, 0 is the
environment; when applying a rule (i, u/v, j), the objects of the multiset
represented by u are sent from region i to region j and simultaneously the
objects of the multiset v are sent from region j to region i (|u| + |v| is
called the length of the communication rule (i, u/v, j));

(b) [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q}, a, b, c ∈ Γ , and i 6= iout;
Division rules; in reaction with an object a, the cell is divided into two
cells with the same label; all the objects in the original cells are replicated
and copies of them are placed in each of the new cells, with the exception
of the object a, which is replaced by the object b in the first new cell and
by c in the second one; the output cell cannot be divided;

7. iin ∈ {1, 2, . . . , q} is the input cell;
8. iout ∈ {0, 1, 2, . . . , q} is the output cell.

The rules of a system as above are used in the non-deterministic maximally
parallel manner. In each step, all cells which can evolve must evolve in a maximally
parallel way (in each step we apply a multiset of rules which is maximal, no further
rule can be added). This way of applying rules has only one restriction when a cell
is divided, the division rule is the only one which is applied for that cell in that
step; the objects inside that cell do not evolve by means of communication rules.
Their labels precisely identify the rules which can be applied to them.

A configuration of tissue P system with cell division is described by all multi-
sets of objects over Γ associated with all the cells present in the system and the
multiset of objects over Γ −E associated with environment. The initial configura-
tion of the system Π with input w ∈ Σ∗ is the tuple (w1, w2, . . . , wiinw, . . . , wq;
∅); that is, the corresponding configuration after adding the multiset w to the
content of the input cell iin. The computation starts from the initial configura-
tion and proceeds as defined above. When there is no rule can be applied, the
computation stops. Only halting computations give a result. If C = {Ci}i<r is
a halting computation, where Ci are configurations, then the result of compu-
tation Output(C) = (Cr−1

b1
(iout), Cr−1

b2
(iout), . . . , Cr−1

bn
(iout)), where Cr−1

bj
(iout),

1 ≤ j ≤ n, is the multiplicity of object bj in the region iout in the halting configu-
ration Cr−1.

For a function f , we denote the domain of f by D(f) and the range of f by
R(f). For a tissue P system with cell division Π having ordered input alphabet
Σ = {a1, a2, . . . , am} and ordered output alphabet Λ = {b1, b2, . . . , bn}, and partial
function f : Nm → Nn, function f is encoded in a unary notation in the following

Factorization by Tissue P Systems with Cell Division 359

way: (α1, . . . , αm) ∈ D(f) is expressed by aα1
1 aα2

2 . . . aαm
m ; (β1, . . . , βn) ∈ R(f) is

expressed by bβ1
1 bβ2

2 . . . bβn
n .

Definition 1. We say that a partial function f : Nm → Nn is computed in poly-
nomial time by a family Π = {Π(t) | t ∈ N} of tissue P systems with cell division
in unary encoding if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(t) from t ∈ N.

• There exist a polynomial-time computable function s over the domain D(f) of
function f such that:
− for each u = (α1, . . . , αm) ∈ D(f), s(u) is a natural number and aα1

1 . . . aαm
m

is an input multiset of the system Π(s(u));
− the family Π is polynomially bounded with regard to (f, s), that is, there

exists a polynomial function p, such that for each u = (α1, . . . , αm) ∈ D(f)
every computation of Π(s(u)) with input aα1

1 . . . aαm
m is halting and, more-

over, it performs at most p(|u|) steps;
− the family Π is sound with regard to (f, s), that is, for each u = (α1, . . . ,

αm) ∈ D(f), if there exists a computation C of Π(s(u)) with input
aα1
1 . . . aαm

m such that Output(C) = (β1, . . . , βn), then f(u) = (β1, · · · , βn);
− the family Π is complete with regard to (f, s), that is, for each u = (α1, . . . ,

αm) ∈ D(f), if f(u) = (β1, · · · , βn), then every computation C of Π(s(u))
with input aα1

1 . . . aαm
m has Output(C) = {β1, . . . , βn}.

In the Definition 1, the input and output are encoded in unary notation. How-
ever, in classical complexity theory, based upon Turing machine, switching from
binary to unary encoding generally corresponds to simplify the problem. In this
work, binary encoding is used for integer factorization problem. In what follows,
we will give the definition that a function is computed by a family of P systems
with cell division in binary encoding. In the case of binary encoding, the input
alphabet is not asked to be ordered, and no output alphabet is fixed.

A (function) computing tissue P system with cell division with input of degree
q ≥ 1 is a tuple of the form

Π = (Γ,Σ,w1, . . . , wq, E ,R, iin, iout),

where:

1. Γ is the alphabet of objects;
2. Σ is an (un-ordered) input alphabet strictly contained in Γ ;
3. w1, . . . , wq are strings over Γ , describing the initial multisets of objects placed

in the cells of the system at the beginning of the computation;
4. E ⊆ Γ is the set of objects in the environment in arbitrarily copies each;
5. R is a finite set of rules of the following forms:

(a) (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗;

360 X. Zhang et al.

(b) [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q}, a, b, c ∈ Γ , and i 6= iout;
6. iin ∈ {1, 2, . . . , q} is the input cell;
7. iout ∈ {0, 1, 2, . . . , q} is the output cell.

In semantics, P systems having un-ordered alphabets is the same with P sys-
tems with ordered input and output alphabets except for the way of encoding
input and output. In the unary encoding, the sizes of ordered input and output
alphabets are related with the dimensions of domain and range of function that
is computed. Specifically, an ordered input alphabet {a1, . . . , am} and an ordered
output alphabet {b1, . . . , bn} can encode each function whose domain (resp. range)
is a subset of Nm′

(m′ ≤ m) (resp. Nn′ (n′ ≤ n)). In the binary encoding, the size
of alphabet is related with both input value and output value. For example, for
the function f(x) = 22x

(x ∈ N) and an input n, the length of input n in binary
expression is blg nc + 1, and the length of output f(n) in binary expressions is
2n + 1, which is an exponential function with respect to blg nc+ 1. For functions
such as f(x) = 22x

, maybe, we need exponential (with respect to the input size)
large alphabet to encode the function in P systems, hence we cannot construct
a family of P systems with cell division in polynomial time by Turing machine
to compute functions such as f(x) = 22x

. It depends on the property of function
whether a function can be computed by tissue P systems with cell division in
binary encoding.

For prime factorization problem, the factors are less than the integer to be
factored. In fact enables us to find a reasonable binary encoding for prime factor-
ization problem. Specifically, we shall use the method from [7] to encode binary
numbers by multisets of objects. Let xk−1, · · · , x1, x0 (with k ≥ 1) be the binary
representation of integer x ≥ 0, that is, x =

∑k−1
i=0 xi2i. We use the objects from

the following alphabet Ak, for k ≥ 1:

Ak = {〈b, j〉 | b ∈ {0, 1}, j ∈ {1, 2, · · · , k}}.
Objects 〈b, j〉 is used to represent bit b in position j in the binary encoding of an
integer number. Hence, to represent the above number x we will use the following
multiset (actually, a set) of objects:

〈xk−1, k − 1〉, · · · , 〈x1, 1〉, 〈x0, 0〉.
Let us remark that the alphabet Ak depends on the length of the binary repre-
sentation of the number x. Moreover, it is clear that with Ak we can represent all
integer numbers in the range 0, 1, · · · , 2k − 1. In order to distinguish between the
objects that represent the bits of different integers A and B, a leading label A,B
are used to mark each element in the multiset. To this aim, the alphabet Ak is
modified as follows:

A′k = {〈l, b, j〉 | l ∈ {A, B}, b ∈ {0, 1}, j ∈ {1, 2, · · · , k}}.
In this way, the i-th bit of A (that is, ai) and the j-th bit of B (that is, bj) are
represented by the objects 〈A, ai, i〉 and 〈B, bj , j〉, respectively.

Factorization by Tissue P Systems with Cell Division 361

In general, we give the following definition that a function is computed by P
systems with cell division in binary encoding.

Definition 2. We say that a partial function f : N→ N is computed in polynomial
time by a family Π = {Π(t) | t ∈ N} of tissue P systems with cell division in binary
encoding if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(t) from t ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over the
domain D(f) of function f such that:
− for each u ∈ D(f), s(u) is a natural number and cod(u) is an input multiset

of the system Π(s(u));
− the family Π is polynomially bounded with regard to (f, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ D(f) every
computation of Π(s(u)) with input cod(u) is halting and, moreover, it per-
forms at most p(|u|) steps;

− the family Π is sound with regard to (f, cod, s), that is, for each u ∈ D(f),
if there exists a computation C of Π(s(u)) with input cod(u) and the objects
in region iout in the last configuration of C encode (β1, · · · , βq) ∈ Nq, then
f(u) = (β1, · · · , βq);

− the family Π is complete with regard to (f, cod, s), that is, for each u ∈
D(f), if f(u) = (β1, · · · , βq) ∈ Nq, then in every computation of Π(s(u))
with input cod(u), the objects in region iout in the last configuration encode
(β1, · · · , βq).

4 A Linear Time Solution to the Factorization Problem

When we discuss the prime factorization problem, it is necessary to distinguish two
different versions of the problem: decision problem version and function problem
version.

The decision problem version of prime factorization can be formulated as “is
n a composite number?” (or equivalently: “is n a prime number?”). This version
is natural and useful because most well-studied complexity classes are defined
as classes of decision problems, not function problems. But the decision problem
version of prime factorization is much easier than the problem of finding the factors
of n. Specifically, it can be solved in polynomial time (with respect to the number
of digits of n) with the AKS primality test [1].

The function problem version of prime factorization: given an integer n, find
an integer d with 1 < d < n that divides n (or conclude that n is prime). It is
trivially in the class FNP, but we do not known whether it lies in class FP or not.
This version is generally considered intractable, which means that no polynomial-
time (with respect to the instance size) algorithm is known that solves it on every

362 X. Zhang et al.

instance; and it is the version solved by most practical implementations. In this
work, we shall consider a restricted version of prime factorization problem, based
on the following two facts. (1) Given an algorithm for integer factorization, one
can factor any integer down to its constituent prime factors by repeated applica-
tion of this algorithm. (2) Not all numbers of a given length are equally hard to
factor. Semiprimes (the product of two prime numbers) are believed as the hardest
instances of integer factorization for currently known techniques.

Problem 1. NAME: factorization.
– INSTANCE: a positive integer number which is the product of two prime num-
bers.
– OUTPUT: the prime factor that is not greater than another one.

Next, we shall construct a family {Π(k)}k∈N of tissue P systems with cell
division to factor integers, where each system Π(k) can decompose all numbers of
length k in binary form, provided that an appropriate input multiset is given. The
resolution is a brute force algorithm, which consists of the following stages:

• Generation Stage: By division, all the possible pairs of integer numbers of
length k in binary form are produced (one pair for each membrane with label
2).

• Pre-checking Stage: In this stage, the product of each pair of integer numbers
of length k is calculated.

• Checking Stage: The system checks whether or not there exists a pair of integer
numbers such that their product equals to the number n to be composed.

• Output Stage: The system sends to the output region a prime number.

For each k ∈ N,

Π(k) = (Γ (k), Σ(k), w1, w2,R(k), E(k), iin, iout),

with the following components:

• Γ (k) = Σ(k) ∪ {ai, bi, 〈X, 0, i〉, fi, gi | 0 ≤ i ≤ k − 1}∪
{〈A, j, i〉, 〈B, j, i〉, 〈A′, j, i〉, 〈B′, j, i〉 | 0 ≤ i ≤ k − 1, 0 ≤ j ≤ 1}∪
{〈Aj , l, i〉, 〈Bj , l, i〉 | 0 ≤ i ≤ k − 1, 0 ≤ j ≤ dlg ke+ 1, 0 ≤ l ≤ 1}∪
{ci | 0 ≤ i ≤ 4k + dlg 2ke+ dlg ke+ 5} ∪ {c′i | 1 ≤ i ≤ dlg ke+ 2k + 3}∪
{〈C, 0, i〉, 〈C, 1, i〉 | 0 ≤ i ≤ 2k − 1} ∪ {〈i, j〉 | 0 ≤ i, j ≤ k − 1}∪
{di | −1 ≤ i ≤ k − 2} ∪ {ei | −1 ≤ i ≤ k − 1} ∪ {z}.

• Σ(k) = {〈n, 0, i〉, 〈n, 1, i〉 | 0 ≤ i ≤ k − 1}.
• w1 = {{c0}}.
• w2 = {{a0a1 · · · ak−1b0b1 · · · bk−1z}} ∪ {{〈i, j〉 | 0 ≤ i, j ≤ k − 1}}.
• R(k) is the set of rules:

1. Division rule:
r1,i ≡ [ai]2 → [〈A, 0, i〉]2[〈A, 1, i〉]2, for 0 ≤ i ≤ k − 1;
r2,i ≡ [bi]2 → [〈B, 0, i〉]2[〈B, 1, i〉]2, for 0 ≤ i ≤ k − 1.

Factorization by Tissue P Systems with Cell Division 363

2. Communication rules:
r3,i ≡ (1, ci/c2

i+1, 0), for 0 ≤ i ≤ 2k − 1;
r4 ≡ (1, c2k/z, 2);
r5,i ≡ (2, c2k+i/c2

2k+i+1, 0), for 0 ≤ i ≤ dlg 2ke − 1;
r6,i,j ≡ (2, c2k+dlg 2ke〈A, j, i〉/c2k+dlg 2ke+1〈A0, j, i〉, 0),

for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ 1;
r7,i,j ≡ (2, c2k+dlg 2ke〈B, j, i〉/c2k+dlg 2ke+1〈B0, j, i〉, 0),

for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ 1;
r8 ≡ (2, c2k+dlg 2ke+1/c′1c2k+dlg 2ke+2, 0);
r9,i ≡ (2, c2k+dlg 2ke+i/c2k+dlg 2ke+i+1, 0), for 2 ≤ i ≤ dlg ke+ 2k + 4;
r10,i ≡ (2, c′i/c′i+1, 0), for 1 ≤ i ≤ dlg ke+ 2k + 2;
r11,i,j,l ≡ (2, 〈Aj , l, i〉/〈Aj+1, l, i〉2, 0),

for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ dlg ke, 0 ≤ l ≤ 1;
r12,i,j,l ≡ (2, 〈Bj , l, i〉/〈Bj+1, l, i〉2, 0),

for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ dlg ke, 0 ≤ l ≤ 1;
r13,i,j ≡ (2, 〈Adlg ke+1, 0, i〉〈Bdlg ke+1, 0, j〉〈i, j〉/〈C, 0, i + j〉, 0),

for 0 ≤ i, j ≤ k − 1;
r14,i,j ≡ (2, 〈Adlg ke+1, 0, i〉〈Bdlg ke+1, 1, j〉〈i, j〉/〈C, 0, i + j〉, 0),

for 0 ≤ i, j ≤ k − 1;
r15,i,j ≡ (2, 〈Adlg ke+1, 1, i〉〈Bdlg ke+1, 0, j〉〈i, j〉/〈C, 0, i + j〉, 0),

for 0 ≤ i, j ≤ k − 1;
r16,i,j ≡ (2, 〈Adlg ke+1, 1, i〉〈Bdlg ke+1, 1, j〉〈i, j〉/〈C, 1, i + j〉, 0),

for 0 ≤ i, j ≤ k − 1;
r17,i ≡ (2, 〈C, 0, i〉〈C, 0, i〉/〈C, 0, i〉, 0), for 0 ≤ i ≤ 2k − 2;
r18,i ≡ (2, 〈C, 0, i〉〈C, 1, i〉/〈C, 1, i〉, 0), for 0 ≤ i ≤ 2k − 2;
r19,i ≡ (2, 〈C, 1, i〉〈C, 1, i〉/〈C, 0, i〉〈C, 1, i + 1〉, 0), for 0 ≤ i ≤ 2k − 2;
r20,i,j ≡ (2, c′dlg ke+2k+3〈C, 1, i〉〈n, j, k − 1〉/λ, 0),

for k ≤ i ≤ 2k − 2, 0 ≤ j ≤ 1;
r21,i,j ≡ (2, c4k+dlg 2ke+dlg ke+5〈C, j, i〉〈n, j, i〉/〈X, 0, i〉, 0),

for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ 1;
r22 ≡ (2, 〈X, 0, k − 1〉/dk−2, 0);
r23,i ≡ (2, di〈X, 0, i〉/di−1, 0), for 0 ≤ i ≤ k − 2;
r24 ≡ (2, d−1/ek−1, 0);
r25,i,j ≡ (2, 〈Adlg ke+1, j, i〉〈Bdlg ke+1, j, i〉ei/〈Adlg ke+1, j, i〉

〈Bdlg ke+1, j, i〉ei−1, 0), for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ 1;
r26 ≡ (2, e−1/f0, 0);
r27,i ≡ (2, 〈Adlg ke+1, 1, i〉〈Bdlg ke+1, 0, i〉ei/〈Adlg ke+1, 1, i〉

〈Bdlg ke+1, 0, i〉f0, 0), for 0 ≤ i ≤ k − 1;
r28,i,j ≡ (2, fi〈Bdlg ke+1, j, i〉/fi+1〈B′, j, i〉, 0), for 0 ≤ i ≤ k − 2, 0 ≤ j ≤ 1;
r29,j ≡ (2, fk−1〈Bdlg ke+1, j, k − 1〉/〈B′, j, k − 1〉, 0), for 0 ≤ j ≤ 1;
r30,i,j ≡ (2, 〈B′, j, i〉/λ, 3), for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ 1;
r31,i ≡ (2, 〈Adlg ke+1, 0, i〉〈Bdlg ke+1, 1, i〉ei/〈Adlg ke+1, 0, i〉

〈Bdlg ke+1, 1, i〉g0, 0), for 0 ≤ i ≤ k − 1;
r32,i,j ≡ (2, gi〈Adlg ke+1, j, i〉/gi+1〈A′, j, i〉, 0), for 0 ≤ i ≤ k − 2, 0 ≤ j ≤ 1;

364 X. Zhang et al.

r33,j ≡ (2, gk−1〈Adlg ke+1, j, k − 1〉/〈A′, j, k − 1〉, 0), for 0 ≤ j ≤ 1;
r34,i,j ≡ (2, 〈A′, j, i〉/λ, 3), for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ 1.

• E(k) = Γ (k).
• iin = 2 is the input cell.
• iout = 3 is the output cell.

4.1 An Overview of the Computation

A family of tissue P systems with cell division is constructed as above. Let n be
an instance of the prime factorization problem, where n is the integer number to
be decomposed and k is the total number of binary bits to represent n. Then we
consider a size mapping on the set of instances defined as s(u) = k. The coding
of the instance is the multiset cod(u) = 〈n, ik−1, k − 1〉〈n, ik−2, k − 2〉 · · · 〈n, i0, 0〉,
where ij = 0 or 1 (0 ≤ j ≤ k− 1) is the bit at position j in the binary encoding of
n. In what follows, we will informally describe how the tissue P system with cell
division Π(s(u)) with input cod(u) works.

Let us start with the generation stage. This stage has two parallel processes,
which is described in two items.

• On one hand, in the cell with label 1 by using the rule r3,i the object ci is
multiplied until step 2k; starting from c0 object ci grows its subscript by one
in each step. Therefore, 4k copies of c2k are obtained in the cell with label 1
at step 2k.

• On the other hand, in the cell with label 2 the division rules r1,i and r2,i are
applied. For each object ai (which is used to generate the two possible bits at
position i in the binary encoding of integer number A), two cells labeled by
2 are produced, one of them containing a new object 〈A, 0, i〉 and the other
one containing another new object 〈A, 1, i〉. Object 〈A, 0, i〉 (resp. 〈A, 1, i〉)
represents the fact that the bit at position i in the binary encoding of A
is 0 (resp. 1). Similarly, for each object bi (which is used to generate the two
possible bits at position i in the binary encoding of integer number B), two cells
labeled by 2 are also produced, one of them containing a new object 〈B, 0, i〉
and the other one containing another new object 〈B, 1, i〉. The objects ai, bi are
non-deterministically chosen, after 2k steps of division we obtain exactly 4k

cells with label 2, each of them encoding one possible pair of integer numbers
A and B whose values range from 0 to 2k − 1. The object z is duplicated,
hence a copy of z appears in each cell with label 2. Note that after step 2k the
cells with label 2 cannot divide any more, because the objects ai and bi are
exhausted.

The pre-checking stage starts from step 2k + 1, in this stage, the product of
each pair of integer numbers in cell with label 2 is calculated. At the step 2k + 1,
there are 4k copies of c2k in the cell with label 1, and there are 4k cells with label
2, each of them containing a copy of z, so the rule r4 is enabled and applied.

Factorization by Tissue P Systems with Cell Division 365

Due to the maximality of the parallelism of using the rule r4, each cell with label
2 gets precisely one copy of c2k. In the next dlg 2ke steps, by the rule r5,i, the
object c2k+i is duplicated and its subscript increases by one in each step; so at
step 2k + dlg 2ke + 1, there are at least 2k copies of c2k+dlg 2ke in each cell with
label 2. Once object c2k+dlg 2ke is generated, by the rules r6,i,j – r7,i,j , each copy
of objects 〈A, j, i〉 and 〈B, j, i〉, 0 ≤ i ≤ k − 1, 0 ≤ j ≤ 1, together with a copy
of object c2k+dlg 2ke, is traded for one copy of objects 〈A0, j, i〉, 〈B0, j, i〉, and one
copy of object c2k+dlg 2ke+1 at step 2k + dlg 2ke+ 2.

From step 2k + dlg 2ke+ 3 to step 2k + dlg 2ke+ dlg ke+ 3, by the rules r11,i,j,l

and r12,i,j,l, the objects 〈Aj , l, i〉 and 〈Bj , l, i〉 duplicate themselves until getting
at least k + 1 copies of objects 〈Adlg ke+1, l, i〉 and 〈Bdlg ke+1, l, i〉. In the following
computation, k copies of these objects are used to obtain the product of integer
numbers A and B, the other one copy of these objects is used to output the
computing result.

For any two k-bits integer numbers A =
∑k−1

i=0 xi2i (xi = 0 or 1) and
B =

∑k−1
i=0 yi2i (yi = 0 or 1), the product of A and B can be written as

A×B =
∑k−1

i=0

∑k−1
j=0 xiyj2i+j . In order to get the product, we will first compute

the contribution of each pair of bits xi and yj , and then sum all the contributions.
Specifically, the rules r13,i,j – r16,i,j are used to get the contribution of each pair
of bits; the rules r17,i – r19,i are used to get the sum of all contributions. Since
each cell with label 2 contains at least k + 1 copies of objects 〈Adlg ke+1, j, i〉 and
〈Bdlg ke+1, j, i〉, j = 1 or 0, the process of computing the product of each pair of
bits ai and bj only needs one step, which produces some bits of the result C as
well as the carry bits. It takes at most 2k steps to sum all the bits by the rules
r17,i – r19,i. In this way, after step 4k + dlg 2ke + dlg ke + 4 the product of two
integer numbers in each cell with label 2 is computed and the pre-checking stage is
finished. At this moment, the subscript of object cj reaches 4k+dlg 2ke+dlg ke+4
by the rules r8 and r9,i, while the subscript of object c′i reaches dlg ke+ 2k + 3 by
the rule r10,i.

The checking stage starts from step 4k+dlg 2ke+dlg ke+5 with the application
of the rules r20,i,j , r21,i,j , r22 and r23,i. The rules r20,i,j are used to check whether
the “efficient” length of bits of the product is greater than k − 1, thus whether
there exists at least one position i, k ≤ i ≤ 2k − 2, in the product having bit 1. If
there exists such position in the binary encoding of the product, then the product
must be greater than n. In this case, at least one of objects 〈C, 1, i〉, k ≤ i ≤ 2k−2,
must appear in this cell. By the rule r20,i,j , objects 〈n, j, k − 1〉, j = 0 or 1, are
removed. The rules r21,j,k−1 and r20 cannot be used without object 〈n, j, k − 1〉,
thus this cell with label 2 will not send objects to the output cell. If the bit on each
position i such that k ≤ i ≤ 2k− 2 equals to 0, then at that step only the rule can
be used by which object c4k+dlg 2ke+dlg ke+4 is traded for c4k+dlg 2ke+dlg ke+5. The
rues r21,i,j , r22 and r23,i are used to check whether the product equals to n.

• If the product equals to n in a cell with label 2, then all objects 〈X, 0, i〉,
0 ≤ i ≤ k − 1, should be produced in this cell by the rule r21,i,j . The rules
r22 and r23,i are used to check whether all objects 〈X, 0, i〉, 0 ≤ i ≤ k − 1, are

366 X. Zhang et al.

produced. It is performed one bit by one bit, starting from the most significant
bit. The object 〈X, 0, k − 1〉 is traded for dk−2, then dk−2 and 〈X, 0, k − 2〉
are traded for dk−3, the process continues until the position 0 is checked and
the object d−1 is produced. Since the length of the integer number n is k, this
process takes k steps. The computation passes to the output stage from step
5k + dlg 2ke+ dlg ke+ 7.

• If the product does not equal to n in a cell with label 2, then at least one
object 〈X, 0, i〉, 0 ≤ i ≤ k − 1, does not be produced in this cell. Without
loss of generality, we assume that the first object without appearing in this
cell is 〈X, 0, s〉, starting from the most significant bit, where 0 ≤ s ≤ k − 1.
By the rules r22 and r23,i, it is not difficult to find that object ds−1 will not
be produced and the computation of the system halts at that moment. That
means that this cell will not send any objects to the output cell.

The output stage starts from step 5k + dlg 2ke+ dlg ke+ 7. In this stage, if the
product of two integer numbers equals to n and the two numbers are also equal,
then one of them will be outputted to the output cell; if the product of two integer
numbers equals to n and the two numbers are not equal, then the smaller one will
be outputted to the output cell. According to the checking stage, if the product
of two integer numbers equals to n in a cell with label 2, then the object d−1

appears in this cell. The object d−1 is traded for ek−1. The rules r25,i,j , r26 and
r31,i are used to check which integer number is smaller or whether they are equal.
If object e−1 appears, then it means the fact that two integer numbers are equal,
and the integer number corresponding to objects 〈Bdlg ke+1, j, i〉 is outputted to
the output cell labeled by 3 by the rules r26, r28,i,j , r29,j , and r30,i,j . If two integer
numbers are not equal, then object f0 or g0 should appear and object e−1 does
not appear. If object f0 appears in the cell with label 2, it means the fact that
the integer number corresponding to objects 〈Adlg ke+1, j, i〉 is greater than the
integer number corresponding to objects 〈Bdlg ke+1, j, i〉, and the integer number
corresponding to objects 〈Bdlg ke+1, j, i〉 is outputted to the output cell with label 3
by the rules r26, r28,i,j , r29,j , and r30,i,j . If object g0 appears in the cell with label 2,
it means the fact that the integer number corresponding to objects 〈Adlg ke+1, j, i〉
is less than the number corresponding to objects 〈Bdlg ke+1, j, i〉, and the integer
number corresponding to objects 〈Adlg ke+1, j, i〉 is outputted to the output cell
with label 3 by the rules r32,i,j r33,j , and r34,i,j . This stage takes not more than
2k + 3 steps, and in the case that two integer numbers are equal, the output stage
takes exactly 2k + 3 steps. So the computation of the system stops after step
7k + dlg 2ke+ dlg ke+9, and the computation result can read out from the objects
in the output cell with label 3.

4.2 A Simple Example

In order to show how the tissue P systems with cell division constructed in Section
4.1 work, let us consider the factorization of integer number 2. Hence, we have
n = 2 and k = 2. The initial configuration of tissue P system with cell division

Factorization by Tissue P Systems with Cell Division 367

Π(2) for the factorization of integer number 2 is illustrated in Figure 1. From the
figure, it can be found that 2 is represented by objects 〈n, 1, 1〉 and 〈n, 0, 0〉.

1

c0

2

a
0

z

b1b0

a
1

〈0,0 〉〈0,1 〉

〈1,0 〉〈1,1 〉

〈n ,1,1〉 〈n ,0,0 〉

Fig. 1. The initial configuration of system Π(2) for factoring integer number 2

1

c1
2

2

z

b1b0

a1

〈0,0 〉〈0,1 〉

〈1,0 〉〈1,1 〉
〈n ,1,1〉

〈 A ,0,0〉

2

z

b1b0

a
1

〈0,0 〉〈0,1 〉

〈1,0 〉〈1,1 〉
〈n ,1,1〉 〈n ,0,0 〉

〈 A ,1,0〉

〈n ,0,0 〉

Fig. 2. The configuration of system Π(2) for factoring integer number 2 at step 1

At step 1, both the cell with label 1 and the cell with label 2 have rules which
can be used. In the cell with label 1, by the rule r3,0 object c0 evolves to c1 and
its number is doubled; in the cell with label 2, objects a0, a1, b0 and b1 are non-
deterministically chosen to divide this cell. Without loss of generality, we assume
that a0 is used to divide the cell with label 2. Object a0 is consumed and two
objects 〈A, 0, 0〉 and 〈A, 1, 0〉 are generated, with one object appearing in a cell
with label 2 and another one appearing in the other cell with label 2. The other
objects in the cell with label 2 are duplicated in the two new cell with label 2. The
configuration of the system at this step is shown in Figure 2.

Similar to the work of object a0, objects a1, b0 and b1 can continue to divide
the cells with label 2 in the following three steps, with one object dividing its
corresponding cell one time. At the same time, in cell with label 1 the number of
object c4 becomes 16. The configuration of the system at step 4 is shown in Figure
3. Note that at this moment all pairs of integer numbers of length 2 are generated,
with one cell with label 2 containing a pair.

After step 4, the system enters to the pre-checking stage. In this stage, the
product of each pair of integer numbers is calculated. This process is done in
parallel in the cells with label 2. The product of each pair of integer numbers is
represented by objects 〈C, i, j〉, i = 0 or 1, 0 ≤ j ≤ 3. Figure 4 gives the configura-
tion of the system when the pre-checking stage is finished. The pre-checking stage
finishes at step 15.

368 X. Zhang et al.

1

c4
16

2

z〈0,0〉〈0,1〉
〈1,0 〉〈1,1 〉

〈n ,1, 1 〉〈n ,0,0 〉

〈 A ,0, 0 〉

2

z〈0,0〉〈0,1〉
〈1,0 〉〈1,1 〉

〈n ,1, 1〉〈n ,0,0 〉

〈 A ,1, 0〉〈 A ,0,1〉 〈 A ,0,1〉

〈 B ,0,0 〉〈 B ,0,1 〉 〈 B ,0,0 〉〈 B ,0,1 〉

2

z〈0,0 〉〈0,1 〉
〈1,0〉〈1,1 〉

〈n ,1, 1〉 〈n ,0,0 〉

〈 A ,0,0 〉

2

z〈0,0 〉〈0,1 〉

〈1,0〉〈1,1 〉

〈n ,1, 1〉 〈n ,0,0 〉

〈 A ,1,1 〉〈 A ,1,1 〉 〈 A ,1, 0 〉
〈 B ,0,0 〉〈 B ,0,1 〉 〈 B ,0,0 〉〈 B ,0,1 〉

2

z〈0,1〉 〈0,0〉

〈1,1 〉 〈1,0 〉
〈n ,1, 1〉 〈n ,0,0 〉

〈 A ,0, 0 〉

2

z
〈0,0〉〈0,1〉

〈1,0 〉〈1,1 〉
〈n ,1, 1 〉 〈n ,0,0 〉

〈 A ,0,1〉〈 A ,0,1〉 〈 A ,1, 0 〉
〈 B ,0,1 〉 〈 B ,1, 0〉 〈 B ,0,1 〉〈 B ,1, 0 〉

2

z
〈0,0 〉〈0,1〉

〈1,0 〉〈1,1〉

〈n ,1, 1〉 〈n ,0,0 〉

〈 A ,1,1 〉

2

z
〈0,0 〉〈0,1 〉

〈1,0〉〈1,1 〉

〈n ,1, 1〉 〈n ,0,0 〉

〈 A ,1,1 〉〈 A,0,0 〉 〈 A ,1, 0 〉
〈 B ,0,1 〉 〈 B ,1, 0 〉 〈 B ,0,1 〉 〈 B ,1, 0〉

2

z〈0,0〉〈0,1〉
〈1,0 〉〈1,1 〉

〈n ,1, 1 〉 〈n ,0,0 〉

〈 A ,0,1〉

2

z〈0,0〉〈0,1〉

〈1,0 〉〈1,1 〉

〈n ,1, 1 〉 〈n ,0,0 〉

〈 A ,0,1 〉〈 A ,0,0 〉 〈 A ,1, 0 〉
〈 B ,1,1 〉 〈 B ,0,0 〉 〈 B ,1,1 〉〈 B ,0,0 〉

2

z〈0,0 〉〈0,1〉

〈1,0 〉〈1,1〉

〈n ,1, 1〉 〈n ,0,0 〉

〈 A ,1,1 〉

2

z〈0,0 〉〈0,1 〉

〈1,0 〉〈1,1 〉

〈n ,1, 1〉 〈n ,0,0 〉

〈 A ,1,1 〉〈 A,0,0 〉 〈 A ,1, 0 〉
〈 B ,1,1 〉 〈 B ,0,0 〉 〈 B ,1,1 〉 〈 B ,0,0 〉

2

z
〈0,0〉〈0,1〉

〈1,0 〉〈1,1 〉

〈n ,1, 1 〉 〈n ,0,0 〉

〈 A ,0,1〉

2

z〈0,0〉〈0,1〉

〈1,0 〉〈1,1 〉
〈n ,1, 1 〉 〈n ,0,0 〉

〈 A ,0,1〉〈 A ,0,0 〉 〈 A ,1, 0 〉
〈 B ,1,1 〉 〈 B ,1, 0 〉 〈 B ,1,1 〉〈 B ,1, 0〉

2

z
〈0,0 〉〈0,1 〉

〈1,0〉〈1,1 〉

〈n ,1, 1〉 〈n ,0,0 〉

〈 A ,1,1 〉

2

z〈0,0 〉〈0,1 〉

〈1,0〉〈1,1 〉
〈n ,1, 1〉 〈n ,0,0 〉

〈 A,1,1 〉〈 A ,0, 0 〉 〈 A ,1, 0〉
〈 B ,1,1 〉 〈 B ,1, 0〉 〈 B ,1,1 〉 〈 B ,1, 0 〉

Fig. 3. The configuration of system Π(2) for factoring integer number 2 at step 4

The checking stage starts at step 16. In this stage, the system compares each
product represented by objects 〈C, i, j〉, i = 0 or 1, 0 ≤ j ≤ 3, with the integer
number 2 represented by objects 〈n, 1, 1〉 and 〈n, 0, 0〉. If there exists at least one
position i, 2 ≤ i ≤ 3, at which the bit of a product equals to 1 (that is, there exists
object 〈C, 1, 2〉 or 〈C, 1, 2〉), then this object together with objects 〈n, 1, 1〉 and c′8
is removed from the corresponding cell with label 2. If the product equals to the
integer number 2, then both object 〈X, 0, 1〉 and object 〈X, 0, 0〉 will appear in
the corresponding cell with label 2. Figure 5 gives the configuration of the system
when the checking stage is finished.

The output stage starts at step 20. In this stage, each cell with label 2 which
contains the product that equals to the integer number 2, outputs the integer
number that is not greater than another one. Such integer number is represented
by objects of the form 〈A′, i, j〉 or 〈B′, i, j〉, i, j = 0, 1. The configuration of the
system at step 25 is shown in Figure 6. From Figure 6, it is not difficult to find
that, among 16 cells with label 2 there are two cells having objects of those forms.
In a cell with label 2 the objects are 〈A′, 0, 1〉, 〈A′, 1, 0〉, in another cell with label
2 the objects are 〈B′, 0, 1〉, 〈B′, 1, 0〉. These objects will be sent to the output cell
from cells with label 2. In fact, they represent the same integer number 1.

Factorization by Tissue P Systems with Cell Division 369

1

z
16

2

c15
4

〈C ,0,0〉〈C ,0,1〉
〈C ,0,2〉
〈n ,1,1 〉〈n ,0,0 〉

〈A2, 0,0 〉
2

2

c15
4

〈C ,0,0〉〈C ,0,1〉
〈C ,0,2〉

〈n ,1,1〉〈n ,0,0 〉

〈A2,1,0 〉
2〈A2, 0,1〉

2

〈A2, 0,1〉
2

〈B2, 0,0 〉
2

〈B2, 0,1〉
2

〈B2, 0,0 〉
2

〈B2, 0,1〉
2

2

c15
4

〈C ,0,0〉〈C ,0,1〉
〈C ,0,2 〉
〈n ,1,1〉 〈n ,0,0 〉

〈A2, 0,0 〉
2

2

c15
4

〈C ,0,0〉〈C ,0,1〉
〈C ,0,2〉

〈n ,1,1〉 〈n ,0,0 〉

〈A2,1,1〉
2〈A2,1,1〉

2

〈A2,1,0 〉
2

〈B2, 0,0 〉
2〈B2, 0,1〉

2

〈B2, 0,0 〉
2

〈B2, 0,1〉
2

2

c15
4

〈C ,0,1〉 〈C ,0,0〉
〈C ,0,2〉
〈n ,1,1〉 〈n ,0,0 〉

〈A2, 0,0 〉
2

2

c15
4

〈C ,1,0 〉〈C ,0,1〉

〈C ,0,2〉
〈n ,1,1 〉 〈n ,0,0 〉

〈A2, 0,1〉
2〈A2, 0,1〉

2

〈A2,1,0 〉
2

〈B2, 0,1〉
2 〈B2,1,0 〉

2

〈B2, 0,1〉
2

〈B2,1,0 〉
2

2

c15
4

〈C ,0,0〉〈C ,1,1 〉
〈C ,0,2〉

〈n ,1,1〉 〈n ,0,0 〉

〈A2,1,1〉
2

2

c15
4

〈C ,1,0 〉〈C ,1,1 〉
〈C ,0,2〉

〈n ,1,1〉 〈n ,0,0 〉

〈A2,1,1〉
2

〈A2, 0,0 〉
2

〈A2,1,0 〉
2

〈B2, 0,1〉
2

〈B2,1,0 〉
2

〈B2, 0,1〉
2

〈B2,1,0 〉
2

2

c15
4

〈C ,0,0〉〈C ,0,1〉

〈n ,0,0 〉

〈A2, 0,1〉
2

2

c15
4

〈C ,0,0〉〈C ,1,1 〉

〈C ,0,2〉

〈n ,1,1 〉〈n ,0,0 〉

〈A2, 0,1〉
2

〈A2, 0,0 〉
2

〈A2,1,0 〉
2

〈B2,1,1〉
2

〈B2, 0,0 〉
2

〈B2,1,1〉
2

〈B2, 0,0 〉
2

2

c15
4

〈C ,0,0〉〈C ,0,1〉

〈n ,0,0 〉

〈A2,1,1〉
2

2

c15
4

〈C ,0,0〉〈C ,1,1 〉

〈n ,0,0 〉

〈A2,1,1〉
2〈A2, 0,0 〉

2

〈A2,1,0 〉
2

〈B2,1,1〉
2 〈B2, 0,0 〉

2

〈B2,1,1〉
2

〈B2, 0,0 〉
2

2

c15
4

〈C ,0,0〉〈C ,0,1〉

〈C ,0,2 〉

〈n ,1,1 〉 〈n ,0,0 〉

〈A2, 0,1〉
2

2

c15
4

〈C ,1,0 〉〈C ,1,1 〉
〈C ,0,2 〉

〈n ,1,1 〉 〈n ,0,0 〉

〈A2, 0,1〉
2

〈A2, 0,0 〉
2

〈A2,1,0 〉
2

〈B2,1,1〉
2

〈B2,1,0 〉
2

〈B2,1,1〉
2

〈B2,1,0 〉
2

2

c15
4

〈C ,0,0〉〈C ,1,1 〉

〈n ,0,0 〉

〈A2,1,1〉
2

2

c15
4

〈C ,1,0 〉〈C ,0,1〉
〈C ,0,2 〉

〈n ,0,0 〉

〈A2,1,1〉
2〈A2, 0,0 〉

2

〈A2,1,0 〉
2

〈B2,1,1〉
2〈B2,1,0 〉

2

〈B2,1,1〉
2

〈B2,1,0 〉
2

c ' 8c '
8

c ' 8

c ' 8c ' 8c ' 8
c ' 8

c ' 8c '
8c ' 8

c ' 8

〈C ,0,2〉 c ' 8

〈n ,1,1〉

c ' 8〈C ,1,2 〉

〈n ,1,1 〉

〈C ,1,2 〉 c ' 8

〈n ,1,1 〉

〈C ,1,2 〉 c ' 8

〈n ,1,1 〉

〈C ,1,3 〉
〈n ,1,1 〉

c ' 8

Fig. 4. The configuration of system Π(2) for factoring integer number 2 at step 15

4.3 Necessary Resources

From the overview of the computation, it can be found that the family {Π(k)}k∈N
constructed above can solve the factorization problem in a linear time with respect
to the size of the integer to be factored. In what follows, we point out this family
of tissue P systems with cell division can be constructed in polynomial time by
deterministic Turing machine.

It is easy to check that the rules of a system Π(k) of the family are defined
recursively from the value k. The necessary resources to build an element of the
family are of a polynomial order, as shown below:

• Size of the alphabet: k2 + 35k + (4k + 2)dlg ke+ dlg 2ke+ 11 ∈ O(k2).
• Initial number of cells: 3 ∈ O(1).
• Initial number of objects: k2 + 2k + 2 ∈ O(k2).
• Number of rules: 4k2 + 39k + dlg 2ke+ (4k + 2)dlg ke+ 4 ∈ O(k2).
• Maximal length of a rule: 6 ∈ O(1).

Therefore, a deterministic Turing machine can build the tissue P system Π(k)
in a polynomial time with respect to k.

370 X. Zhang et al.

1

z
16

2

c16
3

〈C ,0,1〉〈C ,0,2〉
〈n ,1,1 〉 〈 X ,0,0〉

〈A2, 0,0 〉
2

2

c16
3

〈C ,0,1〉〈C ,0,2〉
〈n ,1,1 〉 〈 X ,0,0〉

〈A2,1,0 〉
2〈A2, 0,1〉

2

〈A2, 0,1〉
2

〈B2, 0,0 〉
2

〈B2, 0,1〉
2

〈B2, 0,0 〉
2

〈B2, 0,1〉
2

2
c16
3

〈C ,0,1〉〈C ,0,2〉

〈n ,1,1〉 〈 X ,0,0〉

〈A2, 0,0 〉
2

2

c16
3

〈C ,0,1〉〈C ,0,2〉
〈n ,1,1〉 〈 X ,0,0〉

〈A2,1,1〉
2〈A2,1,1〉

2

〈A2,1,0 〉
2

〈B2, 0,0 〉
2〈B2, 0,1〉

2

〈B2, 0,0 〉
2

〈B2, 0,1〉
2

2

c16
3

〈C ,0,1〉〈C ,0,2〉

〈n ,1,1 〉 〈 X ,0,0〉

〈A2, 0,0 〉
2

2

c16
4

〈C ,1,0 〉〈C ,0,1〉

〈C ,0,2〉
〈n ,1,1 〉 〈n ,0,0 〉

〈A2, 0,1〉
2〈A2, 0,1〉

2

〈A2,1,0 〉
2

〈B2, 0,1〉
2 〈B2,1,0 〉

2

〈B2, 0,1〉
2

〈B2,1,0 〉
2

2

c16
2

〈C ,0,2〉

〈 X ,0,1〉 〈 X ,0,0〉

〈A2,1,1〉
2

2

c16
3

〈C ,0,2 〉
〈 X ,0,1〉

〈A2,1,1〉
2

〈A2, 0,0 〉
2

〈A2,1,0 〉
2

〈B2, 0,1〉
2

〈B2,1,0 〉
2

〈B2, 0,1〉
2

〈B2,1,0 〉
2

2

c16
3

〈C ,0,2〉

〈 X ,0,0〉

〈A2, 0,1〉
2

2

c16
2

〈C ,0,2〉
〈 X ,0,1〉 〈 X ,0,0〉

〈A2, 0,1〉
2

〈A2, 0,0 〉
2

〈A2,1,0 〉
2

〈B2,1,1〉
2

〈B2, 0,0 〉
2

〈B2,1,1〉
2

〈B2, 0,0 〉
2

2
c16
3

〈C ,0,1 〉

〈 X ,0,0〉

〈A2,1,1〉
2

2
c16
3

〈C ,1,1 〉

〈 X ,0,0〉

〈A2,1,1〉
2〈A2, 0,0 〉

2

〈A2,1,0 〉
2

〈B2,1,1〉
2 〈B2, 0,0 〉

2

〈B2,1,1〉
2

〈B2, 0,0 〉
2

2

c16
3

〈C ,0,1〉〈C ,0,2〉

〈n ,1,1 〉 〈 X ,0,0〉

〈A2, 0,1〉
2

2
c16
3

〈C ,1,0 〉〈C ,0,2〉

〈 X ,0,1〉 〈n ,0,0 〉

〈A2, 0,1〉
2

〈A2, 0,0 〉
2

〈A2,1,0 〉
2

〈B2,1,1〉
2

〈B2,1,0 〉
2

〈B2,1,1〉
2

〈B2,1,0 〉
2

2

c16
3

〈C ,1,1 〉
〈 X ,0,0〉

〈A2,1,1〉
2

2

c16
4

〈C ,1,0 〉〈C ,0,1〉
〈C ,0,2 〉

〈n ,0,0 〉

〈A2,1,1〉
2〈A2, 0,0 〉

2

〈A2,1,0 〉
2

〈B2,1,1〉
2〈B2,1,0 〉

2

〈B2,1,1〉
2

〈B2,1,0 〉
2

c '
8

c ' 8

c ' 8

c ' 8c '
8

c ' 8

c ' 8

c ' 8c ' 8c ' 8
c ' 8

〈C ,1,0 〉

〈n ,0,0 〉

〈C ,0,1〉
〈n ,1,1〉

c ' 8

Fig. 5. The configuration of system Π(2) for factoring integer number 2 at step 19

5 Conclusions and Comments

Prime factorization problem is not in itself widely useful problem. It has become
useful only because it has been found to be crucial for public-key cryptography,
and this application is in turn possible only because they have been presumed to be
difficult. Currently, no deterministic polynomial-time algorithm is known, which
can be executed on Turing machines, that solves the problem for every possible
instance. It is of interest to explore any possible and reasonable way to solve prime
factorization problem because of its importance in public-key cryptography.

Prime factorization problem is neither decision problem nor optimization prob-
lem. In this work, it is considered as a function problem, and in the framework
of tissue P systems with cell division, a linear-time solution to prime factorization
problem is given. The initial structure of the systems is very simple, which consists
of three cells. The system is initialized with inputting into the fixed input cell the
multiset that expresses the integer number n to be factored. After a linear time
with respect to the size of n (i. e., blg kc+ 1), we can read out one factor of n in
the output cell.

Factorization by Tissue P Systems with Cell Division 371

1

z
16

2

c16
3

〈C ,0,1〉〈C ,0,2〉
〈n ,1,1〉 〈 X ,0,0〉

〈A2, 0,0 〉
2

2

c16
3

〈C ,0,1〉〈C ,0,2〉
〈n ,1,1〉 〈 X ,0,0〉

〈A2,1,0 〉
2〈A2, 0,1〉

2

〈A2, 0,1〉
2

〈B2, 0,0 〉
2

〈B2, 0,1〉
2

〈B2, 0,0 〉
2

〈B2, 0,1〉
2

2
c16
3

〈C ,0,1〉〈C ,0,2〉

〈n ,1,1〉 〈 X ,0,0〉

〈A2, 0,0 〉
2

2

c16
3

〈C ,0,1〉〈C ,0,2〉
〈n ,1,1〉 〈 X ,0,0〉

〈A2,1,1〉
2〈A2,1,1〉

2

〈A2,1,0 〉
2

〈B2, 0,0 〉
2〈B2, 0,1〉

2

〈B2, 0,0 〉
2

〈B2, 0,1〉
2

2

c16
3

〈C ,0,1〉〈C ,0,2〉

〈n ,1,1 〉 〈 X ,0,0〉

〈A2, 0,0 〉
2

2

c16
4

〈C ,1,0 〉〈C ,0,1〉

〈C ,0,2〉
〈n ,1,1 〉 〈n ,0,0 〉

〈A2, 0,1〉
2〈A2, 0,1〉

2

〈A2,1,0 〉
2

〈B2, 0,1〉
2 〈B2,1,0 〉

2

〈B2, 0,1〉
2

〈B2,1,0 〉
2

2
c16
2

〈C ,0,2〉

〈A2,1,1〉
2

2

c16
3

〈C ,0,2 〉

〈A2,1,1〉
2

〈A2, 0,0 〉
2

〈A2,1,0 〉
2

〈B2, 0,1〉 〈B2,1,0 〉 〈B2, 0,1〉
2

〈B2,1,0 〉
2

2

c16
3

〈C ,0,1〉

〈 X ,0,0〉

〈A2, 0,1〉
2

2

c16
2

〈C ,0,2〉

〈A2, 0,1〉〈A2, 0,0 〉
2 〈A2,1,0 〉

〈B2,1,1〉
2

〈B2, 0,0 〉
2

〈B2,1,1〉
2

〈B2, 0,0 〉
2

2
c16
3

〈C ,0,1〉

〈 X ,0,0〉

〈A2,1,1〉
2

2
c16
3

〈C ,1,1 〉

〈 X ,0,0〉

〈A2,1,1〉
2〈A2, 0,0 〉

2

〈A2,1,0 〉
2

〈B2,1,1〉
2 〈B2, 0,0 〉

2

〈B2,1,1〉
2

〈B2, 0,0 〉
2

2

c16
3

〈C ,0,1〉〈C ,0,2〉

〈n ,1,1 〉 〈 X ,0,0〉

〈A2, 0,1〉
2

2
c16
3

〈C ,1,0 〉〈C ,0,2〉

〈n ,0,0 〉

〈A2, 0,1〉
2

〈A2, 0,0 〉
2

〈A2,1,0 〉
2

〈B2,1,1〉
2

〈B2,1,0 〉
2

〈B2,1,1〉
2

〈B2,1,0 〉
2

2

c16
3

〈C ,1,1 〉
〈 X ,0,0〉

〈A2,1,1〉
2

2

c16
4

〈C ,1,0 〉〈C ,0,1〉
〈C ,0,2 〉

〈n ,0,0 〉

〈A2,1,1〉
2〈A2, 0,0 〉

2

〈A2,1,0 〉
2

〈B2,1,1〉
2〈B2,1,0 〉

2

〈B2,1,1〉
2

〈B2,1,0 〉
2

c '
8

c ' 8

c '
8

c ' 8

c ' 8

c ' 8

c ' 8

c ' 8c ' 8c ' 8
c ' 8

d
0

d 0

〈C ,1,0 〉

〈n ,0,0 〉

〈 B' ,0,1 〉 〈 B' ,1,0 〉

〈 A' ,0,1 〉 〈 A' ,1,0 〉

〈C ,0,2〉

〈n ,1,1 〉
c ' 8

Fig. 6. The configuration of system Π(2) for factoring integer number 2 at step 25

P system is a highly distributed parallel model of computation. Currently,
nobody knows how to build a biochemical computer/an artificial tissue-like com-
puter. P systems may be implemented using molecules, cells or a large computer
network such as the Internet. Although it goes beyond the scope of this work to
discuss the implementation of P systems, clearly, it is of particular interest and it
is a big challenging topic.

Acknowledgements

The work was supported by National Natural Science Foundation of China
(61033003, 61003038 and 30870826), Ph.D. Programs Foundation of Ministry of
Education of China (20100142110072), Fundamental Research Funds for the Cen-
tral Universities (2010ZD001), and Natural Science Foundation of Hubei Province
(2008CDB113 and 2008CDB180). Mario J. Pérez-Jiménez also acknowledges the
support of the project TIN2009-13192 of the Ministerio de Ciencia e Innovación of
Spain, cofinanced by FEDER funds, and the “Proyecto de Excelencia con Investi-
gador de Reconocida Vaĺıa” of the Junta de Andalućıa under grant P08-TIC04200.

372 X. Zhang et al.

References

1. M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P, Annals of Mathematics 160(2)
(2004) 781–793.

2. D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo, M.A. Pérez-Jiménez, A. Riscos-Núñez, A
uniform family of tissue P system with cell division solving 3-COL in a linear time,
Theoretical Computer Science 404 (2008) 76–87.

3. D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo, M.A. Pérez-Jiménez, A. Riscos-Núñez, Solv-
ing subset sum in linear time by using tissue P system with cell division, in: Lecture
Notes in Computer Science, vol. 4527, 2007, pp. 170–179.

4. D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo, M.A. Pérez-Jiménez, A. Riscos-Núñez,
Computational efficiency of cellular division in tissue-like membrane systems, Ro-
manian Journal of Information Science and Technology 11 (3) (2008) 229–241.

5. D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo, M.A. Pérez-Jiménez, A. Riscos-Núñez, Solv-
ing the partition problem by using tissue-like P systems with cell division, in: D.
Kearney, V. Nguyen, G. Gioiosa, T. Hendtlass (Eds.), Third International Confer-
ence on Bio-Inspired Computing: Theories and Applications, Adelaide, 2008, pp.
43-48.

6. A. Leporati, C. Zandron, G. Mauri, Solving the factorization problem with P systems,
Progress in Natural Science, 17 (4) (2007) 471–478.

7. A. Leporati, C. Zandron, M.A. Gutiérrez-Naranjo, P systems with input in binary
form, International Journal of Foundation of Computer Science, 17(1) (2006) 127–
146.

8. C. Mart́ın Vide, J. Pazos, Gh. Păun, A. Rodŕıguez Patón, A new class of symbolic
abstract neural nets: tissue P systems, in: Lecture Notes in Computer Science, vol.
2387, 2002, pp. 290–299.

9. C. Mart́ın Vide, J. Pazos, Gh. Păun, A. Rodŕıguez Patón, Tissue P systems, Theo-
retical Computer Science 296 (2003) 295–326.

10. A. Obtulowicz, On P systems with active membranes solving the integer factorization
problem in a polynomial time, in: Lecture Notes in Computer Science, vol. 2235, 2001,
pp. 267–285.

11. A. Păun, Gh. Păun, The power of communication: P systems with symport/antiport,
New Generation Computing 20 (3) (2002) 295–305.

12. Gh. Păun, Computing with membranes, Journal of Computer and System Sciences
61(1) (2000) 108–143.

13. Gh. Păun, Membrane Computing. An Introduction, Springer–Verlag, Berlin, 2002.
14. Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núñez, Tissue P system with cell division,

International Journal of Computers, Communications & Control III (3) (2008) 295–
302

15. R.L. Rivest, A. Shamir, L.M. Adleman, A method for obtaining digital signatures
and public-key cryptosystems, Comunications of the ACM 21 (2) (2006) 120–126.

16. P.W. Shor, Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer, SIAM Journal on Computing 26 (5) (1997) 1484–
1509

17. P systems web page http://ppage.psystems.eu/

