
dP Automata versus Right-Linear
Simple Matrix Grammars

Gheorghe Păun1,2, Mario J. Pérez-Jiménez2

1 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania

2 Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es, marper@us.es

Summary. We consider dP automata with the input string distributed in an arbitrary
(hence not necessary balanced) way, and we investigate their language accepting power,
both in the case when a bound there is on the number of objects present inside the system
and in the general case. The relation with right-linear simple matrix grammars is useful
in this respect. Some research topics and open problems are also formulated.

1 Introduction

dP automata are a class of computing devices considered in membrane computing
area in order to have a distributed language accepting machinery, with the strings
to recognize being split among the components of the system and with these com-
ponents working in parallel on the input strings. In the general case, dP systems
consist of a given number of components in the form of a usual symport/antiport
P system, which can have their separate inputs and communicate from skin to skin
membranes by means of antiport rules like in tissue-like P systems. Such devices
were introduced in [7] and further investigated in [3], [8], [9], mainly comparing
their power with that of usual P automata and with families of languages in the
Chomsky hierarchy. In the basic definition and in all these papers, following the
style of the communication complexity area (see, [4]), the so-called balanced mode
of introducing the input string is considered: the string is split in equal parts,
modulo one symbol, and distributed among components.

Here we consider the general case, with no restriction on the input string distri-
bution; each component just takes symbols from the environment when it can do
it it, without any restriction on their number. This is a very natural and general
set-up, which, however, was only incidentally investigated so far. Two cases are
distinguished: with a bound on the size of the system (on the total number of ob-
jects present inside) and without such a bound. Both cases are naturally related to

CORE Metadata, citation and similar papers at core.ac.uk

Provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51402275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

294 Gh. Păun, M.J. Pérez-Jiménez

a classic family of regulated grammars, the simple matrix grammars of [5] (see also
[2]). Actually, as expected, right-linear simple matrix grammars are closely related
to dP automata, and we will examine below this connection (looking for mutual
simulations among the two types of language identifying machineries). This con-
nection was already pointed out in [8], where the conjecture was formulated that,
in the same way as a usual finite automaton can be simulated by a P automaton,
a right-linear simple matrix grammar can be simulated by a dP automaton. We
confirm here this conjecture (in the general, not the balanced case).

2 Formal Language Theory Prerequisites

The reader is assumed to have some familiarity with basics of membrane comput-
ing, e.g., from [6], [10], and of formal language theory, e.g., from [2], [11], but we
recall below all notions necessary in the subsequent sections.

In what follows, V ∗ is the free monoid generated by the alphabet V , λ is
the empty word, V + = V ∗ − {λ}, and |x| denotes the length of the string x ∈
V ∗. REG, LIN, CF, CS, RE denote the families of regular, linear, context-free,
context-sensitive, and recursively enumerable languages, respectively.

Essential below will be the right-linear simple matrix grammars introduced
in [5]. Such a grammar of degree n ≥ 1 is a construct of the form G =
(N1, . . . , Nn, T, S, M), where N1, N2, . . . , Nn, T are pairwise disjoint alphabets (we
denote by N the union of N1, . . . , Nn), S /∈ T ∪ N , and M contains matrices of
the following forms:

(i) (S → x), x ∈ T ∗,
(ii) (S → A1A2 . . . An), Ai ∈ Ni, 1 ≤ i ≤ n,
(iii) (A1 → x1B1, . . . , An → xnBn), Ai, Bi ∈ Ni, xi ∈ T ∗, 1 ≤ i ≤ n,
(iv) (A1 → x1, . . . , An → xn), Ai ∈ Ni, xi ∈ T ∗, 1 ≤ i ≤ n.

A derivation starting with a matrix of type (ii) continues with an arbitrary
numbers of steps which use matrices of type (iii) and ends by applying a matrix
of type (iv).

We denote by L(G) the language generated in this way by G and by RSMn

the family of languages L(G) for right-linear simple matrix grammars G of degree
at most n, for n ≥ 1. The union of all these families is denoted by RSM∗. The
strict inclusions RSMn ⊂ RSMn+1, n ≥ 1, are known. Moreover, REG = RSM1,
RSM∗ ⊂ CS, RSM∗ is incomparable with LIN and CF , all languages in RSM∗
are semilinear, and this family is closed under union, intersection with regular
languages, direct and inverse morphisms (but not under intersection, complement
and Kleene +).

Clearly, a normal form can be easily found for these grammars: in matrices of
type (iii) we can ask to have xi ∈ T ∪ {λ}, 1 ≤ i ≤ n, and in matrices of type (iv)
we can have xi = λ for all 1 ≤ i ≤ n.

dP Automata versus Right-Linear Simple Matrix Grammars 295

3 dP Automata

We introduce now the computing devices we investigate in this paper, also giving
a relevant example.

As usual in membrane computing, the multisets over an alphabet V are repre-
sented by strings in V ∗; a string and all its permutations correspond to the same
multiset, with the number of occurrences of a symbol in a string representing the
multiplicity of that object in the multiset. (We work here only with multisets of
finite multiplicity.) The terms “symbol” and “object” are used interchangeably, all
objects are here represented by symbols.

A dP automaton (of degree n ≥ 1) is a construct

∆ = (O, E,Π1, . . . , Πn, R),

where:

(1) O is an alphabet (of objects);
(2) E ⊆ O (the objects available in arbitrarily many copies in the environment);
(3) Πi = (O, µi, wi,1, . . . , wi,ki , E, Ri,1, . . . , Ri,ki) is a symport/antiport P system

of degree ki (O is the alphabet of objects, µi is a membrane structure of degree
ki, wi,1, . . . , wi,ki are the multisets of objects present in the membranes of µi

in the beginning of the computation, E is the alphabet of objects present – in
arbitrarily many copies – in the environment, and Ri,1, . . . , Ri,ki are finite sets
of symport/antiport rules associated with the membranes of µi; the symport
rules are of the form (u, in), (u, out), where u ∈ O∗, and the antiport rules
are of the form (u, out; v, in), where u, v ∈ O∗; note that we do not have an
output membrane), with the skin membrane labeled with (i, 1) = si, for all
i = 1, 2, . . . , n;

(4) R is a finite set of rules of the form (si, u/v, sj), where 1 ≤ i, j ≤ n, i 6= j, and
u, v ∈ O∗, uv 6= λ.

The systems Π1, . . . , Πn are called components of ∆ and the rules in R are
called communication rules. For a rule (si, u/v, sj), |uv| is the weight of this rule.

Using a rule (u, in), (u, out) associated with a membrane i means to bring in the
membrane, respectively to send out of it the multiset u; using a rule (u, out; v, in)
associated with a membrane i means to send out of the membrane the objects of
multiset u and, simultaneously, to bring in the membrane, from the region sur-
rounding membrane i, the objects of multiset v. A communication rule (si, u/v, sj)
moves the objects of u from component Πi to component Πj , simultaneously with
moving the objects in the multiset v in the opposite direction.

Each component Πi can take symbols from the environment, work on them by
using the rules in sets Ri,1, . . . , Ri,ki , and communicate with other components by
means of rules in R.

A halting computation with respect to ∆ accepts the string x = x1x2 . . . xn

over O if the components Π1, . . . ,Πn, starting from their initial configurations,
using the symport/antiport rules as well as the inter-components communication

296 Gh. Păun, M.J. Pérez-Jiménez

rules, in the non-deterministic maximally parallel way, bring from the environment
the substrings x1, . . . , xn, respectively, and eventually halts. A problem appears
in the case when several objects are read at the same time from the environment,
by several rules or by a single rule of the form (u, out; v, in), with |v| ≥ 2; in
such a case any permutation of the symbols brought in the system in the same
step are considered as a valid substring of the input string (thus, a computation
can recognize several strings, differing to each other by permutations of certain
substrings). Note that we impose here no condition on the relative lengths of
strings x1, x2, . . . , xn (as it is done in previous papers dealing with dP automata,
under the influence of communication complexity area). We denote by L(∆) the
language of all strings recognized by ∆ in this way, and by LdPn the family of
languages L(∆), for ∆ of degree at most n ≥ 1. The union of all these families is
denoted by LdP∗.

The dP automata are synchronized devices, a universal clock exists for all
components, marking the time in the same way for the whole dP automaton.
When the system has only one component, then we obtain the usual notion of a P
automaton, as investigated in a series of papers (mainly in the extended version,
with a terminal alphabet of objects – see the respective chapter in [10] and the
references therein). We denote by LP the family of languages recognized by P
automata. Hence, LP = LdP1 and, from [3], it is known that REG ⊂ LP ⊂ CS
and LP is incomparable with CF .

We consider now a somewhat surprising example, of a dP automaton of degree
2, generating a complex language, L1 = {ww | w ∈ {a, b}∗}. The automaton is
given in Figure 1, in the standard way of representing a dP automaton. We have
O = {a, b, c1, c2, d, #} and E = {a, b}.

All antiport rules which bring objects from the environment are of weight one,
hence the number of objects present in the system is constant, four in each compo-
nent. In the first step, objects d release c2a in the skin region of the first component
and c1a in the second. Each symbol a can bring either an a or a b from the en-
vironment and, at the same time, the objects c1, c1 are interchanged between the
two components (otherwise, they release the trap object #, which will oscillate
forever across membranes (1, 1), respectively, (2, 1), and the computation never
stops). With c1α, α ∈ {a, b}, in the first component and c2β, β ∈ {a, b}, in the
second one, the only continuation which does not release the trap object is possi-
ble when α = β, by using the communication rule (s1, c1α/c2α, s2) (if one of the
symbols α, β brings new symbols from the environment, the corresponding c1, c2

should enter the membrane (1, 2) or (2, 2), bringing out the object #). We obtain
a configuration as that we started with, hence the process can be iterated. If, at
any moment when c2 is in Π1 and c1 is in Π2, one of the rules (c2α, in), α ∈ {a, b},
is used in the first component, or (c1α, in), α ∈ {a, b}, is used in the second com-
ponent, then this should be done simultaneously in both components, otherwise
again one of c1, c2 has to release the trap object. In conclusion, the strings read
from the environment by the two components are identical, hence L(∆) = L1.

dP Automata versus Right-Linear Simple Matrix Grammars 297

'

&

$

%

'

&

$

%

º

¹

·

¸

º

¹

·

¸
º

¹

·

¸

º

¹

·

¸

-¾

s1

d

(1,1)

a

c2

(c2a, out; d, in)

(c2a, in)

(c2b, in)

(#, in)

(#, out)

#
(#, out; c1, in)

(#, out; c2, in)

(a, out; a, in)

(a, out; b, in)

(b, out; a, in)

(b, out; b, in)

(s1, c1a/c2a, s2)

(s1, c1b/c2b, s2)

(s1, c2/c1, s2)

s2

d

(2,1)

c1

a

(c1a, out; d, in)

(c1a, in)

(c1b, in)

(#, in)

(#, out)

(2,2)(1,2)

#
(#, out; c2, in)

(#, out; c1, in)

(a, out; a, in)

(a, out; b, in)

(b, out; a, in)

(b, out; b, in)

Fig. 1. A dP automaton recognizing the language L1.

Note the important facts that the system reads the input in a balanced way and
that it is bounded, the total number of objects present inside is always bounded by
a constant (8 in our case) given in advance. This last characteristics is important,
so that we denote by LdP b

n, n ≥ 1, the family of languages recognized by bounded
dP automata of degree at most n; when n is not specified, we replace it by ∗.

4 The Power of dP Automata

We start by reformulating in a more general way a result already suggested by a
proof in [9].

Theorem 1. LdP b
n ⊆ RSMn, for all n ≥ 1.

Proof. Let ∆ be a dP automaton of degree n (with the set of objects O) which is
bounded. Then, the set of all its configurations is finite. Let σ0, σ1, . . . , σp be this
set, with σ0 being the initial configuration. We construct the following right-linear
simple matrix grammar:

298 Gh. Păun, M.J. Pérez-Jiménez

G = (N1, . . . , Nn, O, S, M), with
Ni = {(σj)i | 0 ≤ j ≤ p}, i = 1, 2, . . . , n,

M = {(S → (σ0)1(σ0)2 . . . (σ0)n)}
∪ {(σi)1 → α1(σj)1, . . . , (σi)n → αn(σj)n) |

from configuration σi the dP automaton ∆ can pass to
the configuration σj by a correct transition, taking from the
environment the objects α1, . . . , αn by its components, where
αs ∈ O ∪ {λ}, 1 ≤ s ≤ n}

∪ {(σh)1 → λ, . . . , (σh)n → λ) | σh is a halting configuration}.

Note that all nonterminals in the rules of a matrix contain the same “core in-
formation”, namely the current configuration of the system, hence the complete
control of the system working is obtained in this way. The equality L(∆) = L(G)
is obvious. 2

This result cannot be extended to arbitrary dP automata. Actually, we have:

Theorem 2. LdP2 −RSM∗ 6= ∅.
Proof. Let us consider the following dP automaton:

∆ = (O, E, Π1,Π2, R), with
O = {a, c, d, e, f, #},
E = {a, c, d, e},

Π1 = (O, []s1
, f, E, {(f, out; a, in), (a, out; aa, in)}),

Π2 = (O, [[] (2,1)]s2
, E, {(f, out; d, in), (a, out; c, in), (d, out; e, in)},

{(f, out; f, in)}),
R = {(s1, a/λ, s2)}.

For an easier examination of the work of the system, we also represent it graph-
ically, in Figure 2.

Let us look for strings accepted by this dP automaton which are of the form
aidcje, for some i, j ≥ 1.

After introducing the symbol a in the first component, let us assume that for
n ≥ 0 steps we use here the rule (a, out; aa, in), hence we produce 2n copies of a in
Π1, while the second component uses the rule (f, out; f, in) ∈ R(2,1). Suppose now
that p ≥ 0 copies of a remains in the first component and the others r = 2n−p are
moved to the second component. Here, all r copies of a must go out, in exchange
of objects c, hence the string read by the second component starts with cr. At the
same time or one step before, the second component must introduce the symbol
d. This object becomes immediately e, hence the exchange of a for c should be
done either in the same step with reading d or at the same time with reading e in

dP Automata versus Right-Linear Simple Matrix Grammars 299

'

&

$

%

'

&

$

%

¾

½

»

¼

-

s1

f

(f, out; a, in)

(a, out; aa, in)

(s1, a/λ, s2)

s2

f

f

(2,1)

(f, out; f, in)

(f, out; d, in)

(d, out; e, in)

(a, out; c, in)

Fig. 2. A dP system recognizing a language not in RSM∗

the second component (because any permutation of the objects is allowed in the
string, either variant is possible). However, after e, we do not want to have any
symbol, hence all copies of a were already moved to the second component, and
thus the work of the first component stops. When introducing the symbol d in
the second component, the p copies of a from the first component cannot use the
rule (a, out; aa, in), but they must come immediately in the second component, to
introduce c here at the same time with introducing e. Therefore, if the string has
the form aidcje, then i = j = 2n for some n ≥ 0 (n = 0 is obtained if the unique
a introduced in the first step in Π1 is immediately sent to component Π2).

Consequently, L(∆) ∩ a∗dc∗e = {a2ndc2ne | n ≥ 0}, which is not in RSM∗,
hence also L(∆) is not in RSM∗: this family is closed under intersection with
regular languages and contains only semilinear languages. 2

Note that the previous construction takes the input string in an almost bal-
anced way, and, if in the first step, the first component uses a rule (f, out; dea, in)
instead of (f, out; a, in), then we have a balanced functioning, hence the result in
the previous theorem holds true also for the balanced way of defining the recog-
nized string.

We pass now to the counterpart of Theorem 1 announced above.

Theorem 3. RSMn ⊆ LdP b
n+1, for all n ≥ 1.

Proof. Let us consider a right-linear simple matrix grammar G =
(N1, . . . , Nn, T, S, M) as introduced in Section 2, with the alphabets
N1, N2, . . . , Nn (their union is denoted by N) and T . Matrices of the form (i),
(S → x), x ∈ T ∗, can be replaced by matrices of forms (ii), (iii) and (iv), in an
obvious way, hence we assume that we do not have such matrices. We assume all
matrices labeled in a one-to-one way; let mj : (A1 → x1B1, . . . , An → xnBn), with
1 ≤ j ≤ k, be all matrices of type (iii), with Ai, Bi ∈ Ni, xi ∈ T ∗, 1 ≤ i ≤ n.
Similarly, let mj : (A1 → x1, . . . , An → xn), with k + 1 ≤ j ≤ p, be all matrices of

300 Gh. Păun, M.J. Pérez-Jiménez

type (iv), with Ai ∈ Ni, xi ∈ T ∗, 1 ≤ i ≤ n. Without any loss of the generality we
can assume that all strings xi in these matrices are from T ∪ {λ}.

For each matrix, of any form, mj : (A1 → u1, . . . , Ai → ui, . . . , An → un), let
us consider the symbol [mj , Ai → ui] (thus identifying the matrix and its ith rule),
and let Xj(i) be a shorthand for it. Consider the alphabets

Mi = {Xj(i) | 1 ≤ j ≤ p}, for all 1 ≤ i ≤ n.

We also denote by M ′
i the alphabet of primed symbols in Mi.

For a matrix mj : (A1 → x1B1, . . . , An → xnBn) of type (iii), let us denote
lhsj = A1A2 . . . An and rhsj = B1B2 . . . Bn. Similarly, for a matrix mj : (A1 →
x1, . . . , An → xn) of type (iv), we denote lhsj = A1A2 . . . An.

If rhsj = lhsk, then we write mj ; mk. Similarly, we write S ; mj if
(S → A1A2 . . . An) ∈ M and A1A2 . . . An = lhsj .

For a set Q, we denote by Q also the multiset consisting of the elements of Q,
with the multiplicity one for each of them (hence Q can be considered also as the
string composed by the elements of the set, in any ordering).

We are now ready to construct the dP system we look for (a0 is an arbitrary
symbol of T fixed in advance):

∆ = (O, E, Π1, . . . , Πn+1, R), with :

O =
n⋃

i=1

(Mi ∪M ′
i) ∪ T ∪ {ci | 1 ≤ i ≤ n} ∪ {d, f, #},

E = T,

Πi = (O, [[]
(i,1)

[]
(i,2)

]
si

, λ, M ′
iTci,#, Rsi , R(i,1), R(i,2)),

Rsi = {(a, out; b, in) | a, b ∈ T},
R(i,1) = {(X ′

j(i), out; Xj(i), in),
(Xj(i)cia, out;X ′

j(i)cia, in) | 1 ≤ j ≤ p,

if Xj(i) = [mj , Ai → aBi], a ∈ T}
∪ {(X ′

j(i)a, out; Xj(i)a, in),
(Xj(i)cia, out;X ′

j(i)cia, in) | 1 ≤ j ≤ p, a ∈ T,

if Xj(i) = [mj , Ai → Bi]}
∪ {(#, in), (#, out)},

R(i,2) = {(#, out; ci, in)}
∪ {(#, out; Xj(i), in) | 1 ≤ j ≤ p, if Xj(i) = [mj , Ai → Bj]},

for all 1 ≤ i ≤ n,

Πn+1 = (O, [[]
(n+1,1)

]
sn+1

, c1 . . . cnf, M2
1 . . . M2

nTnan
0 , ∅, R(n+1,1)),

R(n+1,1) = {(Xj(1) . . . Xj(n)an
0 , out; f, in) | 1 ≤ j ≤ p if S ; mj}

∪ {(Xk(1)a1 . . . Xk(n)an, out; Xj(1)a1 . . . Xj(n)an, in)
| 1 ≤ j, k ≤ p, ai ∈ T, 1 ≤ i ≤ n, if mj ; mk}

dP Automata versus Right-Linear Simple Matrix Grammars 301

∪ {(Xj(1)c1a1 . . . Xj(n)cnan, in)
| ai ∈ T, 1 ≤ i ≤ n, if mj is a terminal matrix},

R = {(si, λ/ci, sn+1),
(si, ci/Xj(i)a, sn+1,

(si, Xj(i)cia/λ, sn+1) | 1 ≤ j ≤ p, 1 ≤ i ≤ n, a ∈ T}.
This dP system, with one component Πi and with Πn+1 given in full details,

is represented in Figure 3.

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

6

?

6

?

6

?

s1

(1,1)

(1,2)

. . .

si

(i, 1)

(i, 2)

. . .

sn

(n,1)

(n,2)

sn+1

(n+1,1)

(a, out; b, in), a, b ∈ T

(X ′

j(i), out; Xj(i), in),

(Xj(i)cia, out; X ′

j(i)cia, in),

if Xj(i) = [mj , Ai → aBi], a ∈ T, 1 ≤ j ≤ p

(X ′

j(i)a, out; Xj(i)a, in),

(Xj(i)cia, out; X ′

j(i)cia, in),

if Xj(i) = [mj , Ai → Bi], 1 ≤ j ≤ p, a ∈ T

(#, in)

(#, out)

(#, out, ci, in)

(#, out; Xj(i), in),

if rule i in mj is Ai → Bi, 1 ≤ j ≤ p

(si, λ/ci, sn+1)

(si, ci/Xj(i)a, sn+1), a ∈ T, 1 ≤ j ≤ p

(si, Xj(i)cia/λ, sn+1), a ∈ T, 1 ≤ j ≤ p

c1c2 . . . cnf

⋃n

i=1
M2

i

T n

an
0

(Xj(1) . . . Xj(n)an
0 , out; f, in) if S ; mj

(Xk(1)a1 . . . Xk(n)an, out; Xj(1)a1 . . . Xj(n)an, in), if mj ; mk

(Xj(1)c1a1 . . . Xj(n)cnan, in) if mj is terminal

Fig. 3. The dP system in the proof of Theorem 3

The components Πi, 1 ≤ i ≤ n, simulate the corresponding “component” of the
grammar G, while Πn+1 is a “synchronizer” of the other components, it takes no

302 Gh. Păun, M.J. Pérez-Jiménez

objects from the environment. All rules which bring objects from the environment
are uniport rules, hence the system is bounded, the number of objects inside it
remains constant during the computation.

We start by sending objects ci from Πn+1 to components Πi, simultaneously
releasing from membrane (n + 1, 1) some objects Xj(i), 1 ≤ i ≤ n, for a matrix
mj which can follow immediately after an initial matrix of G; each symbol Xj(i)
is accompanied by a copy of the symbol a0, arbitrarily chosen from T .

In the next step, we have to exchange the symbol ci from Πi with Xj(i)a0

from Πn+1 (if ci remains unused in Πi, then it will release the trap object # from
membrane (i, 2), and the computation will never halt).

In the next step, ci comes back to Πi, and in this component we have two
possibilities:

(1) The rule i from mj is of the form Ai → aBi, and then we use a rule
(a0, out; b, in), for some b ∈ T , and (X ′

j(i), out; Xj(i), in).
Now, we check whether the simulation of the rule in G is correct (hence b was

the right symbol to take from the environment, i.e., a = b): ci cannot return to
Πn+1 alone and cannot stay unused in Πi. The only continuation which does not
lead to an infinite computation is to use the rule (Xj(i)cia, out; X ′

j(i)cia, in). These
three objects, Xj(i)cia, can now move together to Πn+1. The only continuation
is to move again ci in Πi, for all i, and to exchange Xj(1) . . . Xj(n) for some
Xk(1) . . . Xk(n) in Πn+1, for mj ; mk.

We return in this way to a situation similar to that we have started with: object
ci in Πi and Xk(i) in Πn+1.

(2) If the rule i from mj is of the form Ai → Bi, and we use a rule (a0, out; b, in),
for some b ∈ T , then the computation will never stop: we do not have a rule for in-
troducing Xj(i) alone in membrane (i, 1), hence Xj(i) must release the trap object
from membrane (i, 2). Therefore, we have to use the rule (X ′

j(i)a, out; Xj(i)a, in)
from R(i,1) (at the same time, the object ci comes to Πi). As above, the three
objects Xj(i)cia can move together to Πn+1, where, while ci moves to Πi, we
exchange Xj(1) . . . Xj(n) for some Xk(1) . . . Xk(n) in Πn+1, for mj ; mk.

Also in this case we return to a situation similar to that we have started with:
object ci in Πi and Xk(i) in Πn+1.

The process can be continued. Checking the correctness of the simulation of
the rules in G is done in components Πi, the fact that the rules which are simul-
taneously checked form a matrix of G is ensured by the component Πn+1.

When a terminal matrix is simulated, component Πn+1 halts the computation
by using the rule (Xj(1)c1a1 . . . Xj(n)cnan, in) (if we do not “hide” also the objects
ci in membrane (n + 1, 1), then these objects have to go to components Πi, where
no rule can use them other than the trap-releasing ones).

We conclude that L(G) = L(∆). 2

dP Automata versus Right-Linear Simple Matrix Grammars 303

5 Final Remarks

Let us first synthesize all previous results and remarks in a diagram – see Figure
4. The arrows indicate inclusions; if the arrow is marked with a dot, then that
inclusion is known to be proper. The inclusions RSMn ⊂ RSMn+1, n ≥ 1, are
known to be proper, hence also the hierarchy LdP b

n, n ≥ 1, is infinite, but we do not
know languages proving the strictness of inclusions LdP b

n ⊆ RSMn ⊆ LdP b
n+1, n ≥

1, with the exception of the inclusion RSM1 ⊂ LdP b
2 , because RSM1 = REG

and LdP b
2 contains non-regular languages (see, e.g., the example in Section 3).

Similarly, we do not know whether the inclusions LdPn ⊆ LdPn+1, n ≥ 2, are
proper – but we conjecture that this is the case.

LdP b
1 = LP b = REG = RSM1

6

6

t t

LdP1 = LP

LdP b
2

6
©©©©©*

t

LdP2

6

RSM2

6

LdP b
3

©©©©©* 6

LdP3

6

6

RSM3

6

.

6

RSM∗ = LdP b
∗

©©©©©* 6

LdP∗

t

t

t

Fig. 4. The hierarchy of the families RSMn, LdP b
n, and LdPn

304 Gh. Păun, M.J. Pérez-Jiménez

Further open problems and research topics about dP systems can be found in
the papers mentioned in the bibliography – the study of dP automata is one of
the recently introduced and most active branches of membrane computing.

Acknowledgements

Work supported by Proyecto de Excelencia con Investigador de Reconocida Vaĺıa,
de la Junta de Andalućıa, grant P08 – TIC 04200.

References

1. E. Csuhaj-Varju, G. Vaszil: About dP automata
2. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer,

Berlin, 1989.
3. R. Freund, M. Kogler, Gh. Păun, M.J. Pérez-Jiménez: On the power of P and dP

automata. Annals of Bucharest University. Mathematics-Informatics Series, 2010 (in
press).

4. J. Hromkovic: Communication Complexity and Parallel Computing: The Application
of Communication Complexity in Parallel Computing. Springer, Berlin, 1997.

5. O. Ibarra: Simple matrix grammars. Information and Control, 17 (1970), 359–394.
6. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
7. Gh. Păun, M.J. Pérez-Jiménez: Solving problems in a distributed way in membrane

computing: dP systems. Int. J. of Computers, Communication and Control, 5, 2
(2010), 238–252.

8. Gh. Păun, M.J. Pérez-Jiménez: P and dP automata: A survey. Rainbow of Computer
Science (C.S. Calude, G. Rozenberg, A. Salomaa, eds.), LNCS, Springer, Berlin, 2010
(in press).

9. Gh. Păun, M.J. Pérez-Jiménez: An infinite hierarchy of languages defined by dP
Systems. Theoretical Computer Sci., in press.

10. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Handbook of Membrane Computing. Ox-
ford University Press, 2010.

11. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. 3 volumes, Springer,
Berlin, 1998.

12. The P Systems Website: http://ppage.psystems.eu.

