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Summary. The Intra Venous Glucose Tolerance Test (IVGTT) is an experimental pro-
cedure in which a challenge bolus of glucose is administered intra-venously and plasma
glucose and insulin concentrations are then frequently sampled. An open problem is to
construct a model representing simultaneously the entire control system. In the last three
decades, several models appeared in the literature. One of the mostly used one is known
as the minimal model, which has been challenged by the dynamical model. However,
both the models have not escape from criticisms and drawbacks. In this paper we ap-
ply Metabolic P systems theory for developing new physiologically based models of the
glucose-insulin system which can be applied to the Intra Venous Glucose Tolerance Test.
We considered ten data-sets obtained from literature and for each of them we found an
MP model which fits the data and explains the regulations of the dynamics. Finally, fur-
ther analysis are planned in order to define common patterns which explain, in general,
the action of the glucose-insulin control system.

1 Introduction

Glucose is the primary source of energy for body’s cells. It is transported from the
intestines or liver to body cells via the bloodstream, and is absorbed by the cells
with the intervention of the hormone insulin produced by the pancreas. Blood glu-
cose concentration is a function of the rate of glucose which enters the bloodstream,
the glucose appearance, balanced by the rate of glucose which is removed from the
circulation, the glucose disappearance. Normally, in mammals this concentration
is tightly regulated as a part of metabolic homeostasis. Indeed, although several
exogenous factors, like food intake and physical exercise, affect the blood glucose
concentration level, the pancreatic endocrine hormones insulin and glucagon1 keep
this level in the range 70−110 mg/dl. When the blood glucose concentration level
is high, the pancreatic β−cells release insulin which lowers that concentration by
1 Others gluco-regulatory hormones are: amylin, GLP-1, glucose-dependent in-

sulinotropic peptide, epinephrine, cortisol, and growth hormone.
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Fig. 1. The glucose homeostasis.

inducing the uptake of the excess glucose by the liver and other cells and by in-
hibiting hepatic glucose production. On the contrary, when the glucose level is
low, the pancreatic α−cells release glucagon that results in increasing the blood
glucose level by acting on liver cells and causing them to release glucose into the
blood2 (see Figure 1).

If the plasma glucose concentration level is constantly out of the usual range,
then we are in presence of blood glucose problems. In particular, when this level
is constantly higher than the range upper bound (which is referred to as hyper-
glycemia), we are in presence of Diabetes: a dreadfully severe and pervasive illness
which concerns a good number of structures in the body. Diabetes is classified into
two main categories known as type I and type II, respectively. Type I diabetes is
an illness concerning the pancreas during which the body demolishes its individual
β-cells and the pancreas is no longer capable of making insulin. By means of no
insulin to stir glucose within the body units, glucose assembles in the bloodstream
and the concentrations rise. This category is most widespread among citizens be-
low 30 and frequently appears in early days. The crest beginning is 12-14 years of
period. Insulin injections are necessary for the residue of the victims’ life. Luck-
ily, Type I Diabetes results in 5 − 10% of all categories of diabetes [30]. In quick
disparity, Type II diabetes asserts the remaining 90%. It typically begins at the
age of 35 or older and is particularly widespread in the aged. This type of dia-
betes may include an amalgamation of troubles. The pancreas is at rest capable
to compose insulin, however regularly it does not compose sufficient or/and the
units are not capable to utilize the insulin. Contrasting type I diabetes, insulin
injections are not at all times essential, since the body is capable of at rest making
a little insulin. Every now and then oral prescriptions, habitual work outs and
high-quality nourishment are capable to controlling the elevated glucose heights.
However, in both the types of diabetes, the illness can lead to several compli-
cations like retinopathy, nephropathy, peripheral neuropathy and blindness [6].
2 We refer the reader to [24] for a deeper description of the processes that underlies the

glucose-insulin system.
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Fig. 2. Plots of a IVGTT data-set starting from the time of the glucose injection. The
glucose dynamics is given on the left, while the insulin dynamics is given on the right.

While different regulatory interactions in the pathogenesis of this disease remain
to be clarified [9] the number of diabetic patients is increasing [33]. This motivates
researches to study the glucose-insulin endocrine regulatory system. In particular,
the glucose-insulin system has been the object of repeated, mathematical mod-
elling attempts. The majority of the proposed models were devoted to the study
of the glucose-insulin dynamics by considering experimental data obtained by in-
travenous glucose tolerance test, shortly IVGTT, and the oral glucose tolerance
test, shortly OGTT. In these models, the insulin-glucose system is assumed to be
composed of two linked subsystems modelling the insulin action and the glucose
kinetics, respectively. Since the action of insulin is delayed with respect to plasma
glucose, the subsystems of insulin action typically includes a delay.

However, considering the limits of the existing mathematical models, a need
exists to have reliable mathematical models representing the glucose-insulin sys-
tem. The mere fact that several models have been proposed [4, 14, 23] shows
that mathematical and physiological considerations have to be carefully integrated
when attempting to represent the glucose-insulin regulatory mechanism. In par-
ticular, in order to model the IGVTT, a reasonably simple model is required. It
has to have a few parameters to be estimated and has to have dynamics consistent
with physiology and experimental data. Further, the model formulation, while ap-
plicable to model the IGVTT, should be logically and easily extensible to model
other envisaged experimental procedures.

2 The intravenous glucose tolerance test

The intravenous glucose tolerance test focuses on the metabolism of glucose in a
period of 3 hours starting from the infusion of a bolus of glucose at time t = 0.
It is based on the assumption that, in a healthy person, the glucose concentration
decreases exponentially with time following the loading dose (see Figure 2). It
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has been recommended as a method to asses the use of insulin in order to identify
subjects which may be diabetics [26]. This test makes use of an interaction between
clearance of insulin from β-cells and the actions of insulin to accelerate glucose
disappearance and to inhibit endogenous glucose production.

The IVGTT starts by rapidly, less that 3 minutes, inject into the blood stream
of a subject a 33% glucose solution (i.e. 0.33g/Kg) in order to induce an impulsive
increase of the plasma concentrations of glucose and insulin. These concentrations
are measured, by taking blood samples, during a period of three hours beginning
at injection. The samples are then analysed for glucose and insulin context. In
fact, in a healthy person, after this time interval the glucose and insulin plasma
concentrations return normal (i.e. they return to their basal levels). Differently,
this does not happen in a sick person.

Qualitatively, the plasma glucose level starts at a peak due to the injection,
drops to a minimum which is below the basal glucose level, and then gradually
returns to the basal level. At the same time, the plasma insulin concentration
rapidly rises to a peak which follows the injection, drops to a lower level which is
still above the basal insulin level, rises again to a lesser peak, and then gradually
drops to the basal level. Depending to the state of the patient, there can be wide
variations from this response. The glucose concentration may not drop below the
basal level, the first peak of insulin level may have different amplitude, there may
be no secondary peak in insulin concentration, or there may be more than two
peaks in insulin.

3 Mathematical models of the intravenous glucose tolerance
test

A variety of mathematical models, statistical methods and algorithms have been
proposed to understand different aspects of diabetes. In this section we briefly
review the two mathematical models which had the most important impact in
diabetology for modelling the intravenous glucose tolerance test. They have been
useful to assess physiological parameters and to study the glucose-insulin interac-
tions. However, they have not escape from criticism and drawbacks.

Although several others models have been proposed [2], the real start of mod-
eling glucose-insulin dynamics is due to the minimal model developed in [3, 32]. It
has been characterized as the simplest model which is able to describe the glucose
metabolism reasonably well by using the smallest set of identifiable and meaningful
parameters [3, 27]. Several versions based on the minimal model have been pro-
posed, and the reader can find further information on them in [2, 7]. The minimal
model has been formulated by using the following system of differential equations:
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dG(t)
dt

= − (p1 +X(t))G(t) + p1Gb

dX(t)
dt

= −p2X(t) + p3 (I(t)− Ib) (1)

dI(t)
dt

= p4 (G(t)− p5) t− p6 (I(t)− Ib)

where G(t) [mg/dl] and I(t) [µUI/ml] are plasma glucose and insulin concentra-
tion at time t [min], respectively. X(t) [min−1] is an auxiliary function which mod-
els the time delay of the insulin consumption on glucose. Gb and Ib are the subject
baseline blood glucose and insulin concentration, while pi, for i = 1, 2, . . . , 6, are
the model’s parameters (we refer the reader to [3, 32] for all the details connected
to these parameters). The first two equations of (1) represent the glucose disap-
pearance subsystem, while the third one describes the insulin kinetic subsystem.
In the second subsystem, the following rule is applied:

(G(t)− p5) =
{

(G(t)− p5) if G(t) > p5

0 if G(t) ≤ p5
(2)

while the multiplication by t is introduced to approximate the hypothesis that the
effect of circulating hyperglicemia on the rate of pancreatic secretion of insulin is
proportional both to the attained hyperglicemia and to the time delay from the
glucose injection [32].

Although (1) is very useful in physiology research, it has some dynamical and
mathematical drawbacks. First, some results produced by this model are not re-
alistic [10]. Second, the glucose-insulin regulatory mechanism is an integrated dy-
namical system having feedback regulations, while the minimal model is composed
of two subsystems. The parameters of these two subsystems are to be separately
fitted from the available data, but by following this approach an internal coherency
check is omitted. Last, the artificial non-observable variable X(t) is introduced to
model the delay in the action of insulin.

To overcome these drawbacks the dynamical model has been proposed in [10]:

dG(t)
dt

= −b1G(t)− b4I(t)G(t) + b7

G(t) ≡ Gb ∀t ∈ [−b5, 0) (3)
dI(t)
dt

= −b2I(t) +
b6
b5

∫ t

t−b5

G(s)ds.

It is a delay integro-differential equation model which is a more realistic representa-
tion of the glucose-insulin dynamics which follows an IVGTT. Although it retains
the physiological hypotheses underlying the first equation of (1), non-observable
state variables are not introduced. Moreover, the physiological assumption under-
lying the third equation of (1), that pancreas is able to linearly increase its rate of
insulin production with respect to the time, is not taken into account. The dynami-
cal model assumes that the glucose concentration depend i) on insulin-independent
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net glucose tissue uptake, ii) on spontaneous disappearance and iii) on constant
liver glucose production. The insulin concentration, instead, is assumed to depend
i) on a spontaneous constant-rate decay, which is due to the insulin catabolism,
and ii) on pancreatic secretion. In particular, the insulin secretion at time t is
assumed to be proportional to the average value in the b5 minutes which precede
t, where b5 is assumed to lie in a range from 5 to 30.

The term b6
b5

∫ t

t−b5
G(s)ds represents the decaying memory kernel [8], which is

introduced to model the time delay. The physiologic meaning of the delay kernel
reflects the pancreas’ sensitivity to the blood glucose concentration. At a given
time t, the pancreas will produce insulin at a rate proportional to the suitably
weighted average of the plasma glucose concentrations in the past.

The dynamical model allows simultaneous estimation of both insulin secretion
and glucose uptake parameters. However, it is conceivable that the dynamical
model may not be considerable appropriate under all circumstance [25]. This is
due to the fact that the IVGTT data related to several subjects could be best
fitted by using different delay kernels. Therefore, an extension of (3) is proposed
in [25], where a generic weight function ω is introduced in the delay integral kernel
modeling the pancreatic response to glucose level. In this way, the second equation
of (3) becomes:

dI(t)
dt

= −b2I(t) + b6

∫ ∞
0

ω(s)G(t− s)ds (4)

where ω(s) is assumed to be a non-negative square integrable function on R+ =
[0,∞), such that

∫∞
0
ω(s)ds = 1 and

∫∞
0
s · ω(s)ds is equal to the average time

delay. The idea is that different patients populations show different shapes of the
kernel function ω, and then suitable parametrization of such a function could offer
the possibility to differentiate between patient populations by means of experi-
mental parameter identification.

Despite the models (3) and (4) solve the drawbacks of the minimal model, they
made some assumptions that may not be realistic. The main restriction regards
the way used to introduce the delay, for which the justification is only based on
a subjective assumption. This limit implies the study of others ways to consider
the time delay. To this end, an alternative approach to incorporate the time delay
is analyzed in [13], where the authors propose a model which includes (3) and (4)
as special cases. In this model, the delay is modelled by using a Michaelis-Menten
form, and the effective secretion of insulin at time t is assumed to be regulated by
the concentrations of glucose in the b5 minutes which precede time t instead of the
average amount in that period.

4 MP modelling

An important problem of systems biology is the mathematical definition of a dy-
namical system which explains the observed behaviour of a phenomenon by in-
creasing what is already known about it. An important line of research of biolog-
ical modelling is aimed at defining new classes of discrete models avoiding some
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limitations of classical continuous models based on ordinary differential equations
(ODEs). In fact, very often, the evaluation of the kinetic reaction rates is problem-
atic because it may require measurements hardly accessible in living organisms.
Moreover, these measurements dramatically alter the context of the investigated
processes. In contrast to ODEs, Metabolic P systems (MP systems) [18, 16, 17, 15],
based on Păun’s P systems [28], were introduced for modelling metabolic systems.

In MP systems no single instantaneous kinetics are addressed, but rather the
variation of the whole system under investigation is considered, at discrete time
points, separated by a specified macroscopic interval τ . The dynamics is given along
a sequence of steps and, at each step, it is governed by partitioning the matter
among reactions which transform it. Metabolic P systems proved to be promising
in many contexts and their applicability was tested in many situations where
differential models are prohibitive due to the unavailability or the unreliability of
the kinetic rates [15, 21, 19, 20, 22, 5].

A Metabolic P system is essentially a multiset grammar where multiset trans-
formations are regulated by functions. Namely, a rule like a + b → c means that
a number u of molecules of kind a and u of kind b are replaced by u molecules
of type c. The value of u is the flux of the rule application. Assume to consider
a system at some time steps i = 0, 1, 2, . . . , t, and consider a substance x that is
produced by rules r1, r3 and is consumed by rule r2. If u1[i], u2[i], u3[i] are the
fluxes of the rules r1, r2, r3 respectively, in the passage from step i to step i + 1,
then the variation of substance x is given by:

x[i+ 1]− x[i] = u1[i]− u2[i] + u3[i].

In an MP system it is assumed that in any state the flux of each rule is pro-
vided by a function, called regulator. Substances, reactions, and regulators (plus
parameters which are variables different from substances occurring as arguments
of regulators) specify a discrete dynamics at steps indexed in the set N of natural
numbers. Moreover, a temporal interval τ , a conventional mole size ν, and sub-
stances masses are considered, which specify the time and population (discrete)
granularities respectively. They are scale factors that do not enter directly in the
definition of the dynamics of a system, but are essential for interpreting it at a
specific physical level of mass and time granularity.

Here we apply an algorithm, called Log-Gain Stoichiometric Stepwise Regres-
sion (LGSS) [19], to define new MP models which describe the glucose-insulin
dynamics in the IVGTT. LGSS represents the most recent solution, in terms of
MP systems, of the inverse dynamics problem, that is, of the identification of (dis-
crete) mathematical models exhibiting an observed dynamics and satisfying all the
constraints required by the specific knowledge about the modelled phenomenon.
The LGSS algorithm combines and extends the log-gain principles developed in the
MP system theory [17, 15] with the classical method of Stepwise Regression [12],
which is a statistical regression technique based on Least Squares Approximation
and a statistical F-test [11]. The method can be correctly applied independently
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Fig. 3. The dynamics calculated by means of the MP grammar given in Table 1.

from any knowledge about reaction rate kinetics, and can provide, with respect to
differential models, different and even simpler mathematical formulations.

The first MP grammar we give is the one of Table 1 which models the dynamics
depicted in Figure 2. The model is given by 2 substances (G for the blood glucose
level and I for the level of insulin) and 4 rules, the first two related to glucose and
the others related to insulin: i) r1: constant release of glucose in the blood, ii) r2:
glucose disappearance due to a term which represents the normal decay of glucose
(depending on G) and to a term which indicate the action of insulin (depending
on both G and I), iii) r3: release of insulin by the pancreas which depends on the
blood glucose level, and iv) r4: normal decay of insulin.

The MP grammar is defined for a value of τ of two minutes3 (which gives the
length of the time interval between two consecutive computed step) and allows
the calculation of the curves depicted in Figure 3. The dynamics is quite close to
the data-set we started from. In fact, the multiple coefficients of determination
R2

G and R2
I , calculated to estimate the goodness of the approximation for glucose

and insulin [1], are equal to 0.94 and 0.87 respectively4. The usage of the term
G3 in ϕ3, against the possibility of choosing monomials of G with lower degree,
expresses the high sensitivity of the pancreas β−cells for the blood glucose level
when they release insulin.
3 In order to maintain the models as accurate as possible, we adopt here a time unit
τ of two minutes because it is the minimal time granularity used in the data-sets we
considered.

4 The coefficient value ranges from 1, when the regression model perfectly fits the data,
to 0 according to the goodness of the model fit.

r1 : ∅ → G ϕ1 = 0.6
r2 : G→ ∅ ϕ2 = 0.12G+ 1.6 · 10−6G2I
r3 : ∅ → I ϕ3 = 49.9 + 0.1G3

r4 : I → ∅ ϕ4 = 0.84I

Table 1. The MP grammar which models the dynamics given in Figure 2 (τ = 2 min).
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Fig. 4. The dynamics calculated by means of the MP grammar given in Table 2.

The formula of each regulator has been calculated by means of LGSS which
selects suitable linear combinations starting from a given set of possible basic
functions, called regressors, associated to each rule. Due to the biological meaning
given to each reaction, in our analysis we forced: i) ϕ1 to be a constant, ii) ϕ2 to be
a linear combination of monomials of G and I, iii) ϕ3 to be a linear combination of
monomials of G, and iv) ϕ4 to depend on I. These assumptions, however, do not
take into account the time delays which occur in the insulin release reducing the
precision of the models. If we consider the dynamics of Figure 3, for example, the
simulation fails to describe the insulin peak which occurs between the 20th and the
40th minute. This missing peak is quite small and for this reason our approximation
seems to be enough precise, but if we try to define new MP grammars for other
data-sets related to the IVGTT, we reach very soon situations in which the missing
peaks are very high causing a dramatical lost of precision.

In the differential models introduced in Section 3, the delay of the insulin
release is approached by adding artificial substances or by considering a delay
integral kernel. Here, instead, we solve the problem by assuming that ϕ3 is given
by a linear combinations of monomial of G and of its memories. This permits to
point out in a more natural and detailed way the different delays which act in the
insulin production. If we indicate by Gt = (G[i]|0 ≤ i ≤ t) the vector containing
the time-series of glucose in a given data-set, we define the time-series Gt

−m related
to the memory of glucose shifted m steps after as the vector

Gt
−m = (Gb, Gb, . . . , Gb︸ ︷︷ ︸

m times

, G[0], G[1], . . . , G[t−m])

where Gb is the basal value of the blood glucose level5. Memories are very simple
to be managed in MP systems and increase a lot the approximation power of the
models as showed in [21], where memories have been applied in the context of
periodical function approximation.

The extension of the MP grammar of Table 1 which considers glucose memories
is given in Table 2, while the new calculated dynamics is depicted in Figure 4.
5 Since during the IVGTT the glucose level gradually returns to its basal level, here we

assume Gb to be equal to the last value of the considered glucose time-series.
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The new model provides a better data fitting for the insulin curve. The multiple
coefficient of determination for the insulin is increased from 0.87 to 0.95. Moreover
ϕ3 gives now an idea of the different phases which act in the blood release of insulin
by pointing out their strength (given by the degree of the selected monomials) and
their delay (given by the delay of the selected memories).

In our analysis we considered ten different data-sets published in literature
and obtained by applying the intravenous glucose tolerance test to ten healthy pa-
tients. All subjects have negative family histories for diabetes and other endocrine
diseases. During the test, the patients were on no medications and had no current
illness. Each test has been performed during the morning after an overnight fast,
and for the three days preceding the test each subject followed a diet composed
of 55% carbohydrates, 30% fats, and 15% proteins. The curves of the considered
data-sets are very different form each other, especially the curve related to the
insulin dynamics which exhibits values and peaks of different height and at dif-
ferent delays. In all the cases, however, we found MP models which provide good
data fitting (the average of the calculated multiple coefficients of determination
for all the models is greater than 0.95 for both glucose and insulin). In Table 3 we
provide the regulators related to four of the considered data-sets, and the plotting
of the corresponding calculated dynamics for the insulin. The depicted dynamics
exhibit examples of all the different scenarios we observed concerning the insulin
release in our data-sets. We can have situations where the insulin curve exhibits
many peaks which model the different release phases, or we can have dynamics
without significant peaks but that are in any case modelled by a delayed insulin
secretion (this is the case of data-set 1).

The total number of monomials used to define ϕ3 can be changed by acting
on the thresholds used by LGSS during the computing of its statistical tests. The
models provided here have been defined trying to balance their simplicity with their
power of approximation. Each model provides a sort of picture of the metabolism
of the subject which have been analysed.

r1 : ∅ → G ϕ1 = 0.6
r2 : G→ ∅ ϕ2 = 0.12G+ 1.6 · 10−6G2I
r3 : ∅ → I ϕ3 = 1.5 · 10−5G6 + 0.25G2

−6 + 0.17G2
−8

+2.65G−16 + 3.6G−26

r4 : I → ∅ ϕ4 = 0.65I

Table 2. The MP grammar which models the dynamics given in Figure 2 (τ = 2 min)
enriched with the usage of glucose memories (subscripts give the delay in minutes of each
memory).
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Data-set Regulators

ϕ1 = 0.011
1 ϕ2 = 6.6 · 10−5GI

ϕ3 = 0.5G2
−4

ϕ4 = 0.16I

ϕ1 = 0.056
2 ϕ2 = 5.2 · 10−4I + 8.1 · 10−5GI

ϕ3 = 3.76 · 10−6G7 + 0.74G2
−8 + 0.02G3

−20 + 0.21G2
−40 + 10−4G5

−68

ϕ4 = 0.49I

ϕ1 = 0.12
3 ϕ2 = 0.02G+ 1.9 · 10−4GI

ϕ3 = 0.04G3
−2 + 3.3 · 10−5G6

−6 + 0.44G2
−20 + 0.04G3

−24

ϕ4 = 0.5I

ϕ1 = 0.11
ϕ2 = 6.2 · 10−4GI

4 ϕ3 = 0.1G2
−2 + 0.9G−6 + 1.07G−10 + 2.4 · 10−4G4

−24

+5.4 · 10−7G6
−32 + 5.3 · 10−8G7

−34

ϕ4 = 0.4I

Table 3. MP regulation and the calculated insulin dynamics related to four of the
considered data-sets (τ = 2 min).

5 Conclusions and ongoing work

The main goal of this work was to study the possible application of MP systems
as an alternative to model the intravenous glucose tolerance test. In Section 2
we briefly described the test, while Section 3 reviewed two mathematical models
which had the most important impacts in diabetology and analysed their limits
and drawbacks. In Section 4 we proposed the use of Metabolic P systems to model
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the IVGTT data-sets by combining some principles of MP systems with statistical
techniques to obtain MP models of IVGTT. Our preliminary results and analysis
suggest that glucose-insulin metabolism needs a careful evaluation which makes
evident different aspects related to different subjects. MP models seem to provide
comprehensive tools for discovering personalized glucose-insulin dynamics. Fur-
ther analysis should permit to characterize the differentiation between subjects
by considering physiological parameters such as the height, the weight, the work,
the sport activity, and so on. Despite these differences, we are working in order to
point out common features in the regulation governing the release of insulin. Our
regression approach allows us a quantitative analysis which could highlight results
which have been only theorized during the development of the differential models.
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