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Summary. In this paper we present an approach to modelling, verification and testing
for cell-like P-systems based on Event-B and the Rodin platform. We present a general
framework for modelling P systems using Event-B, which we then use to implement two
P-system models in the Rodin platform. For each of the two models, we use the associated
Pro-B model checker to verify properties and we present some of the results obtained.

1 Introduction

Membrane computing, the field initiated by Gheorghe Păun [14], studies comput-
ing devices, called P systems, inspired by the functioning and structure of the
living cell.

In the last years, the research on various programming approaches related to
P systems ([6], [16]) and formal semantics ([4], [2], [7]), or with respect to decid-
ability of some model checking properties [5], has created the need for methods
for formally verifying and testing such systems.

Formal verification has been studied for different variants of P systems by using
rewriting logic and the Maude tool [2] or, for stochastic systems [3], PRISM and
associated probabilistic temporal logic [10]. More recently, NuSMV [9] and Spin
[13] have been used to verify various properties of transition P systems. Various
approaches to building test cases for such P systems have also been proposed [8],
[11], [12].

Event-B is a formal modeling language introduced about 10 years ago by J.R.
Abrial [1], used for developing mathematical models of complex systems which
behave in a discrete fashion. Event-B is an evolution of the B language, one of the
most used modeling language in industry since its introduction in the 90s. The
efforts for developing Event-B have been supported by two European research
projects: RODIN1, which produced a first platform for Event-B called Rodin, and
DEPLOY2, which is currently enhancing this platform based on feedback from
1 http://rodin.cs.ncl.ac.uk - Project running between 2004-2007
2 http://deploy-project.eu - Project running between 2008-2012
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its industrial partners (Bosch, SAP, Siemens and Space Systems Finland), which
experiment with the latest development of the platform.

The core technology behind Rodin platform is theorem-proving, but also model-
checking (ProB) or animation tools (Anim-B) have been integrated as plug-ins.

In this paper we propose a new approach for verifying and testing transition P
systems, based on Event-B and its associated model-checker, ProB. Given the in-
dustrial support for Event-B and the strength of the Rodin platform, this approach
will have an important impact on the practical use of P systems.

The paper is structured as follows. The next section presents general notions
about P systems, the Event-B language, the Rodin platform and the model checker
Pro-B. In Section 3 we present a general framework for modeling P systems using
Event-B. This is then used to implement two P-system models in the Rodin plat-
form: a simple example in Section 4 and a tritrophic ecosystem in Section 5. For
each of the two models, we use the associated Pro-B model checker to verify prop-
erties and we present the results obtained. Finally, some conclusions and future
work are given in Section 6.

2 Background

2.1 P systems

A basic cell-like P system is defined as a hierarchical arrangement of membranes
identifying corresponding regions of the system. With each region there are asso-
ciated a finite multiset of objects and a finite set of rules; both may be empty. A
multiset is either denoted by a string u ∈ V ∗, where the order is not considered, or
by ΨV (u). The following definition refers to one of the many variants of P systems,
namely cell-like P systems, which use transformation and communication rules
[15]. We will call these processing rules. From now onwards we will refer to this
model as simply a P system.

Definition. A P system is a tuple Π = (V, µ, w1, ..., wn, R1, ..., Rn), where V is a
finite set, called alphabet ; µ defines the membrane structure, which is a hierarchical
arrangement of n compartments called regions delimited by membranes - these
membranes and regions are identified by integers 1 to n; wi, 1 ≤ i ≤ n, represents
the initial multiset occurring in region i; Ri, 1 ≤ i ≤ n, denotes the set of processing
rules applied in region i.

The membrane structure, µ, is denoted by a string of left and right brackets
([, and ]), each with the label of the membrane it points to; µ also describes the
position of each membrane in the hierarchy.

The rules in each region have the form u → (a1, t1)...(am, tm), where u is a
multiset of symbols from V , ai ∈ V , ti ∈ {in, out, here}, 1 ≤ i ≤ m. When such a
rule is applied to a multiset u in the current region, u is replaced by the symbols ai

with ti = here; symbols ai with ti = out are sent to the outer region or outside the
system when the current region is the external compartment and symbols ai with
ti = in are sent into one of the regions contained in the current one, arbitrarily
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chosen. In the following definitions and examples all the symbols (ai, here) are
used as ai. The rules are applied in maximally parallel mode which means that
they are used in all the regions at the same time and in each region all the objects
to which a rule can be applied must be the subject of a rule application [14].

Electrical charges from the set {+,−, 0} can be also associated with mem-
branes, obtaining P systems with polarizations. In this case, with the same nota-
tions from the above definition, we can have many types of rules:

• evolution rules, associated with membranes and depending on the label and
the charge of the membranes:
[u → v]pi , p ∈ {+,−, 0}, u ∈ V, v ∈ V ∗;

• communication rules, sending an object into a membrane and possibly changing
its polarization:
u[ ]pi → [v]fp

i , p, fp ∈ {+,−, 0}, u, v ∈ V ;
• communication rules, sending an object out of a membrane and possibly chang-

ing the polarization of the membrane:
[u]pi → [ ]fp

i v, p, fp ∈ {+,−, 0}, u ∈ V , v ∈ V ∪ {λ}
A configuration of the P system Π, is a tuple c = (u1, ..., un), where ui ∈ V ∗, is

the multiset associated with region i, 1 ≤ i ≤ n. A derivation of a configuration c1

to c2 using the maximal parallelism mode is denoted by c1 =⇒ c2. Within the set
of all configurations we will distinguish terminal configurations: c = (u1, ..., un) is
a terminal configuration if there is no region i such that ui can be further derived.

2.2 Event-B and Rodin

Event-B is based on set theory as its mathematical foundation. The Event-B mod-
els are abstract state machines in which transitions between states are implemented
as events.

An Event-B model is made of several components. Each component can be
either a machine or a context. Contexts contain the static structure of the system:
sets, constants and axioms. Axioms define the main properties of sets and con-
stants. On the other hand, machines contain the dynamic structure of the system:
variables, invariants, and events. Invariants state the properties of variables and
events defines the dynamic of the transition system.

An event is a state transition with the following simplified structure:

Event eventName
refines <list of refined events (if any) >

when
grd1 :

...
grdn :

then
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act1 :
...

actn :
end

Guards (grd1, . . . , grdn) are necessary conditions for an event to be enabled.
They are theorems derivable from invariants, axioms and previously declared
guards. An event may have no guards; in this case it is permanently enabled.

Actions (act1, . . . , actn) describe how the occurrence of an event will modify
some of the variables of the machine. All actions of an event are performed at the
same time. An action might be either deterministic (using the normal assignment
operator :=) or non-deterministic. Non-deterministic actions use the :∈ operator;
they have the form x :∈ { set of possible values }, in which case an arbitrarily
chosen value from the set of possible values is assigned to the variable x.

A very important Event-B concept is refinement, which allows a model to be
developed gradually. When the model is finished, a Rodin Platform tool, called
Proof Obligation Generator, decides what is to be proved in order to ensure the
correctness of the model (e.g. invariant preservation, consistency between original
and refined models). Therefore, the proving mechanism provides the guarantee of
a formally correct model before the model checker is actually used. This is a big
strength of the Rodin platform

2.3 ProB - more than just another model checker

ProB is an animation and model checking tool which accepts B-models, but is also
integrated within the Rodin platform. Unlike, most model checking tools, ProB
works on higher-level formalisms and so it enables a more convenient modeling.

Properties of an Event-B model can be verified using either the ProB version
within the Rodin platform or the standalone version, which offers a greater range
of facilities, such as computation of operation coverage or the possibility to find
states satisfying a predicate or enabling an operation. When the standalone version
is used, the model can be automatically translated in the B language and imported
into ProB.

ProB supports automated consistency checking, which can be used to detect
various errors in B specifications. The animation facilities allow: to visualize, at
any moment, the state space, to execute a given number of operations, to see the
shortest trace to current state. Properties that are intended to be verified can be
formulated using the LTL or the CTL formalism.

3 The Event-B model of a P system

In this section we present the main ideas about how to build the Event-B model
of a P system.
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For each object x that appears on the left side of a rule, we introduce a variable
xc, representing the number of objects of that type that can be consumed. When
the rule is applied, this variable is decreased accordingly. For each object x that
appears on the right side of a rule, we introduce a variable xp representing the
number of produced objects of that type. When the rule is applied, the variable is
incremented. Furthermore, in multi-membrane systems, variables are indexed by
membrane numbers.

For each rule we introduce an event. The event is enabled if the rule can be
applied and its application modify the state of the system accordingly. A special
event, called actualization, that is enabled after each step of maximal parallelism,
is also needed in order to update the variables before the next computation step.

The initial model can then be refined by adding details about the state of the
computation. At the beginning of every step of maximal parallelism, the system
is considered to be in state Running. Another state, Other, is considered as an
intermediate state between two such steps. A halting configuration is marked by a
transition from state Running to another state, Halt. Finally, in order to keep the
number of configurations under control, we can assume that each component of a
configuration cannot exceed an established upper bound (denoted MAX) and also
that each rule can only be applied for at most a given number of times (denoted
SUP ). When either of these conditions is violated, we consider that the system
performs a transition from Running to a fourth state Crash. All these states are
implemented using a variable, called state, with four possible values: Running,
Other, Halt and Crash. Obviously, all the events in the original model have to
be refined - these now become transitions between states Running, and Other.
Furthermore, new events have to be introduced for transitions from Running to
Halt, Running to Crash, Halt to Halt and Crash to Crash. Obviously, the
state variable and the extra transitions could have been introduced directly in the
original model. However, the use of refinement allows a gradual, more manageable
and natural, construction of the model.

4 A simple example

We consider as first example a P system with one membrane and four rules: Π1 =
{V = {s, a, b, c}, []1, w1 = s,R = {r1 : s → ab, r2 : a → c, r3 : b → bc, r4 : b → c}}.

We build the corresponding Event-B model in two steps: first, we are interested
only of its evolution, then we refine it by introducing the variable state presented
before.

The first model is just a machine with six variables, all natural numbers
(sc, ac, ap, bc, bp, cp) and six events: the initialization event, four events (each of
them corresponding to a rule) and the actualization event.

For example, the event corresponding to the first rule and the actualization
event are as follows:

Event rule1
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when
grd1 : sc > 0

then
act1 : sc := sc − 1
act2 : ap := ap + 1
act3 : bp := bp + 1

end

and respectively,

Event actualization

when
grd1 : sc + ac + bc = 0
grd2 : ap + bp + cp > 0

then
act1 : ac := ap
act2 : bc := bp
act3 : ap := 0
act4 : bp := 0

end

For this model, 20 proof obligations are generated and automatically checked.
Using the associated model checker ProB, we verify our formally correct model
and we discover that, the sequence of events rule1, rule2, rule4 leads to the per-
manent enabling of the actualization event. In order to fix this problem, we refine
our model by introducing the variable state. Obviously, all events in the original
model need to be refined. For example, the refinement of the event rule1 is as
follows:

Event rule1
refines rule1

when
grd1 : n1 < SUP
grd2 : sc > 0
grd3 : ac + ap < MAX
grd4 : bc + bp < MAX

then
act1 : n1 := n1 + 1
act2 : sc := sc − 1
act3 : ap := ap + 1
act4 : bp := bp + 1
act5 : state := Other

end

We also introduce new events, corresponding to the transitions between the
states of the computation, such as:

Event RunToCrash
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when
grd1 : state = Running
grd2 : (s > 0 ∧ n1 = SUP) ∨ (ac > 0 ∧ n2 = SUP) ∨ (bc > 0 ∧ (n3 =

SUP ∨ n4 = SUP)) ∨ (ac = MAX ) ∨ (bc = MAX ) ∨ (cp = MAX )
then

act1 : state := Crash
end

and

Event RunToHalt

when
grd1 : state = Running
grd2 : sc + ac + bc = 0

then
act1 : state := Halt

end

In this case, there are 60 proof obligations generated, all automatically proven.
Using the model checking facilities available in the Rodin platform, we verify the
consistency of our model and we find no deadlocks or invariant violation.

Once a formally proven model of the P system is in place, we can use the
formalism to verify its properties or to generate tests for certain coverage criteria
[12]. The underlying idea of testing using model checkers is to formulate the cover-
age criterion as a temporal logic formula, negate it and interpret counterexamples
(returned by ProB) as test cases. For example, a counterexample for the (negated)
LTL formula G{not(n4 > 0) or state = Other} is a test case which covers rule4.

Some examples of properties, their truth values and counterexample returned
(for false properties) are given in Table 1.

Note that, in this table, the symbol “/ =” means “ 6=” and the values for the
two constants MAX and SUP were both considered to be 10.

5 Modeling an Ecosystem

We consider now a more complex example: a P system Π2 with two membranes
and electrical charges, which models a tritrophic ecosystem. Its alphabet is V =
{C, H,P, b, cycle1, cycle2, cycle3, cycle4, g, s}, where C stands for carnivores, H for
herbivores, P for plants, b for bones, g for garbage and s for volatile substances
that attracts carnivores. The initial multiset is P 100 in the first membrane and
H300, C10 and cycle1 in the second one.

The ecosystem evolves in four cycles:

• Cycle1: Reproduction of plants
– rule14: P 2[ ]2 → [P 3] some plants reproduce
– rule15: P 2[ ]2 → [P 2] other plants do not reproduce
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LTL Property Truth Value

G{ac ∈ {0, 1} or state = Other} True

F{cp > 2 & state/ = Other} False
rule1 rule2 rule4 RunToHalt

{cp = 0 or state = Other} True
U {cp = 2 & state/ = Other}

G{(state = Running ⇒ cp <= MAX) True
or (state = Other)}

G{not(n4 > 0) or state = Other} False
rule1 rule2 (rule3)8 rule4

F{state = Halt} False
rule1 rule2 (rule3)9 RunToCrash

G{((n2 > 0 & n3 > 0) => cp >= bc) True
or (state = Other)}

Table 1. Properties checked for Π1

– rule7: [cycle1 → cycle2]2 transition to cycle2
• Cycle2: Herbivores alimentation

– rule8: [HP ]2 → +[H2s]g some herbivores feed themselves and produce
other herbivores, a volatile substance that attract carnivore and some
garbage

– rule9: [HP ]2 → +[HP ]g other herbivores do not feed
– rule10: [cycle2]2 → +[cycle3]g transition to cycle3

• Cycle3: Carnivores alimentation
– rule11: +[CHs]2 → −[C2]g some carnivores feed themselves and produce

other carnivores and some garbage
– rule12: +[CHs]2 → −[CHs]g other carnivores do not feed
– rule13: +[cycle3]2 → [cycle4]g transition to cycle4

• Cycle4: Mortality and reinitialization
– rule1: −[P ]2 → [ ]P all the plants survive to the next cycle
– rule2: −[H]2 → [b]g some herbivores die
– rule3: −[H]2 → [H]g others survive to the next cycle
– rule4: −[C]2 → [b]g some carnivores die
– rule5: −[C]2 → [C]g others survive to the next cycle
– rule6: −[cycle4]2 → [cycle1]g reinitialization
– rule16: [g → λ]1 elimination of garbage

For clarity of presentation, in this case we build the model in one step, intro-
ducing from the beginning the variable state, but without the “crash” situation.
When a P system uses electrical charges, at each step of maximal parallelism, only
rules that have the same initial and final polarization can be applied. In order
to implement this requirement, we use two variables polarization2 and fp2 for
the initial, and, respectively, for the final polarization of the second membrane.
Besides the usual polarization values (plus, minus and zero), we introduce an in-
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termediate value, all, that we use as an initial value for fp2. In the actualization
event, fp2 is reset to the value all and polarization2 receives the value of fp2.

As an example, the event corresponding to rule 1 is presented below.

Event rule1

when
grd1 : p2c ≥ 1
grd2 : polarization2 = minus
grd3 : fp2 = all ∨ fp2 = zero

then
act1 : p2c := p2c − 1
act2 : p1p := p1p + 1
act3 : n1 := n1 + 1
act4 : fp2 := zero
act5 : state := Other

end

The model checker ProB can then be used to verify ecosystem properties.
Table 2 summarizes some of these properties, along with the result produced by
the model checker. For all the properties, we considered 5000 as the maximum
number of new states.

LTL property Truth Value

G{p2c > 10 or state = Other} False

F{c2c = 0 & state/ = Other} True

F{p2c = 0 & state/ = Other} True

F{p2c = 100 & state/ = Other} False

F{(cycle12c = 1 & state/ = Other) => g1c = 0} True

Table 2. Properties checked for the ecosystem Π2

If we manually execute the initialization event and we choose to see the state
space then the result obtained is as shown in Figure 1. Therefore, we have three
enabled events - rule14, rule15 and rule7 - and we can see what it happens if we
choose each of them.

Another option allows us to verify if the model contains deadlocks or invariant
violations. After 20136 new states explored in 93 seconds the coverage analysis
shows that the events RunToHalt and HaltToHalt are not covered.

6 Conclusions and future work

Event-B, Rodin and ProB are not just another modeling language, platform and
model checker. Based on rigorous mathematical foundation and allowing high-level
modeling, they are strongly supported by the industry.
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Fig. 1. The state space shown by ProB

In this paper we have presented a general framework for modeling P systems
using Event-B and applied the proposed approach on two examples.

Our future work will concentrate on modeling other types of P systems, refine-
ment, simplification, decomposition of models, as well as applying search based
techniques for test generation.
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