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Summary. Local search is currently one of the most used methods for finding solution
in real-life problems. In this paper we present an implementation of local search with
Membrane Computing techniques applied to the N -queens problem as a case study. A
CLIPS program inspired in the Membrane Computing design has been implemented and
several experiments have been performed.

1 Introduction

Searching is on the basis of many processes in Artificial Intelligence. The key
point is that many real-life problems can be settled as a space of states: a state
is the description of the world in a given instant (expressed in some language)
and two states are linked by a transition if the second state can be reached from
the previous one by applying one elementary operation. By using these concepts,
a directed graph where the nodes are the states and the edges are the actions is
considered. Given a starting state, a sequence of transitions to one of the final
states is searched.

By using this abstraction, searching methods have been deeply studied by
themselves, forgetting the real-world problem which they fit. The studies consider
aspects as the completeness (if the searching method is capable of finding a solution
if it exists), complexity in time and space, and optimality (if the found solution
is optimal in some sense). By considering the searching tree, where the nodes are
the states and the arcs are the transitions, classical search has focused on the
order in which the nodes of the tree should be explored. In this classical search
two approaches are possible: the former is blind search, where the search is guided
only by the topology of the tree and no information is available from the states;
the latter is called informed search and some information about the features of the
nodes is used to define a heuristics to decide the next node to explore.

Searching problems have been previously studied in the framework of Mem-
brane Computing. In [4], a first study on depth-first search on the framework of
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Membrane Computing was presented. In this paper we go on with the study of
searching methods in Membrane Computing by exploring local search.

The paper is organized as follows: First we recall some basic definitions on
local search. Then we remember the problem used as a case study: the N -queens
problem, previously studied in the framework of Membrane Computing in [3]. Next
we provide some guidelines of the implementation of local search our case study
and some experimental results. The paper finishes with some final remarks.

2 Local Search

Classical search algorithms explore the space of states systematically. This explo-
ration is made by keeping one or more paths in memory and by recording the
alternatives in each choice point. When a final state is found, the path, that is,
the sequence of transitions, is considered the solution of the problem. Nonethe-
less, in many problems, we are only interested in the found state, not properly
in the path of transitions. For example, in job-shop scheduling, vehicle routing or
telecommunications network optimization, we are only interested in the final state
(a concrete disposition of the objects in the world), not in the way in which this
state is achieved.

If the sequence of elementary transitions is not important, a good alternative
to classical searching algorithms is local search. This type of search operates using
a single state and its set of neighbors. It is not necessary to keep in memory how
the current state has been obtained.

Since these algorithms do not explore systematically the states, they do not
guarantee that a final state can be found, i.e., they are not complete. Nonetheless,
they have two advantages that make them interesting in many situations:

• Only a little piece of information is stored, so a very little memory (usually
constant) is used.

• These algorithms can often find a reasonable solution in extremely large space
of states where classical algorithms are unsuitable.

The basic strategy in local search is considering a current state and, if it is
not a final one, then to move to one of its neighbors. This movement is not made
randomly. In order to decide where to move, in local search a measure of goodness
is introduced. In this way, the movement is performed towards the best neighbor. It
is usual to represent the goodness of a state as its height in some geometrical space.
In this way, we can consider a landscape of states and the target of the searching
method is to arrive to the global maximum. This metaphor is useful to understand
some of the drawbacks of this method. Different situations as flat regions, where the
neighbors are as good as the current state, or local maximum where the neighbors
are worse than the current state, but it is not a global maximum. A deep study of
local search is out of the scope of this paper1.
1 Further information can be obtained in [7].
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In this paper we will only consider its basic algorithm: Given a set of states, a
movement operator and a measure to compare states
0.- We start with a state randomly chosen
1.- We check if the current state is a final one

1.1- If so, we finish. The system outputs the current state.
1.2- If not, we look for a movement which reaches a better state.

1.2.1.- If it exists, we randomly choose one of the possible movements.
The reached state becomes the current state and we back to 1.

1.2.2.- If it does not exist, we go back to 0

3 The N -queens Problem

Along this paper we will consider the N -queens problem as a case study. It is a
generalization of a classic puzzle known as the 8-queens puzzle. The original one is
attributed to the chess player Max Bezzel and it consists on putting eight queens
on an 8× 8 chessboard in such way that none of them is able to capture any other
using the standard movement of the queens in chess, i.e., only one queen can be
placed on each row, column and diagonal line.

In [3], a first solution to the N -queens problem in Membrane Computing was
shown. For that aim, a family of deterministic P systems with active membranes
was presented. In this family, the N -th element of the family solves the N -queens
problem and the last configuration encodes all the solutions of the problem.

In order to solve the N -queens problem, a truth assignment that satisfies a
formula in conjunctive normal form (CNF) is searched. This problem is exactly
SAT, so the solution presented in [3] uses a modified solution for SAT from [6].
Some experiments were presented by running the P systems with an updated
version of the P-lingua simulator [2]. The experiments were performed on a system
with an Intel Core2 Quad CPU (a single processor with 4 cores at 2,83Ghz), 8GB
of RAM and using a C++ simulator under the operating system Ubuntu Server
8.04. According to the representation in [3], the 3-queens problem is expressed by a
formula in CNF with 9 variables and 31 clauses. The input multiset has 65 elements
and the P system has 3185 rules. Along the computation, 29 = 512 elementary
membranes need to be considered in parallel. Since the simulation was carried out
on a uniprocessor system, these membranes were evaluated sequentially. It took 7
seconds to reach the halting configuration. It is the 117-th configuration and in this
configuration one object No appears in the environment. As expected, this means
that we cannot place three queens on a 3×3 chessboard satisfying the restriction
of the problem.

In the 4-queens problem, we try to place four queens on a 4×4 chessboard. Ac-
cording to the representation, the problem can be expressed by a formula in CNF
with 16 variables and 80 clauses. Along the computation, 216 = 65536 elementary
membranes were considered in the same configuration and the P system has 13622
rules. The simulation takes 20583 seconds (> 5 hours) to reach the halting con-
figuration. It is the 256-th configuration and in this configuration one object Yes
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Fig. 1. Five queens on a board

appears in the environment. This configuration has two elementary membranes
encoding the two solutions of the problem (see [3] for details).

In [4], a study of depth-first search in Membrane Computing was presented.
The case study was also the N -queens problem. An ad hoc CLIPS program was
written based on Membrane Computing design. Some experiments were performed
on a system with an Intel Pentium Dual CPU E2200 at 2,20 GHz, 3GB of RAM
and using CLIPS V6.241 under the operating system Windows Vista. Finding one
solution took 0,062 seconds for a 4 × 4 board and 15,944 seconds for a 20 × 20
board.

4 A P system Family for Local Search

In this section we give an sketch of the design of a P system family which solves the
N -queens problem by using local search, Π = {Π(N)}N∈N. Each P systems Π(N)
solves the N -queens problem in a non-deterministic way, according to the searching
method. The membrane structure does not change along the computation and we
use electrical charges on the membranes as in the model of active membranes.

One state is represented by a N × N chess board where N queens have been
placed. In order to limit the number of possible states, we will consider an impor-
tant restriction: we consider that there is only one queen in each column and in
each row. By using this restriction, we only need to check the diagonals in order
to know if a board is a solution to the problem or not.

These boards can be easily represented with P systems. For Π(N), we consider
a membrane structure which contains N elementary membranes and N objects yi,
i ∈ {1, . . . , N} in the skin. By using rules of type yi [ ]j → [yi]j the objects yi are
non-deterministically sent into the membranes and the object yi inside a membrane
with label j will be interpreted as a queen placed on the row i of the column j.
For example, the partial configuration [ [y1]1 [y5]2 [y3]3 [y4]4 [y2]5 ] is a membrane
representation of the board in Figure 1.

In order to know if one state is better than another, we need to consider a
measure. The natural measure is to associate to any board the number of collisions
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[8]: The number of collisions on a diagonal line is one less than the number of
queens on the line, if the line is not empty, and zero if the line is empty. The sum
of collisions on all diagonal lines is the total number of collisions between queens.
For example, if we denote by dp the descendant diagonal for squares (i, j) where
i+j = p and by uq the ascendant diagonal for squares (i, j) where i−j = q, then the
board from the Figure 1 has 3 collisions: 2 in u0 and 1 in d7. This basic definition
of collisions of a state can be refined of a Membrane Computing algorithm. As
we will see below, in order to compare two boards, it is not important the exact
amount of collisions when they are greater than 3.

Other key definitions in the algorithm are the concepts of neighbor and move-
ment. In this paper, a movement is the interchange of columns of two queens by
keeping the rows. In other words, if we have one queen at (i, j) and another in
(k, s), after the movement these queens are placed at (i, s) and (k, j). It is trivial
to check that, for each movement, if the original board does not have two queens
on the same column and row, then the final one does not have it. The definition
of neighbor depends on the definition of movement: the state s2 is a neighbor of
state s1 if it can be reached from s1 with one movement.

According with these definitions, the local search algorithm for the N -queens
problem can be settled as follows:

0.- We start with a state randomly chosen
1.- We check if the number of collisions of the current state is zero

1.1- If so, we finish. The halting configuration codifies the solution board.
1.2- If not, we look for a movement which reaches a state which decrease the

number of collisions.
1.2.1.- If it exists, we randomly choose one of the possible movements.

The reached state becomes the current state and we back to 1.
1.2.2.- If it does not exist, we go back to 0

At this point, three basic question arise from the design of Membrane Com-
puting: (1) how the number of collisions of a board is computed? (2) how a better
state is searched? and (3) how a movement is performed?

4.1 Computing Collisions

The representation of a board N ×N is made by using N elementary membranes
where the objects y1, . . . , yN are placed. These N elementary membranes, with
labels 1, . . . , N are not the unique elementary membranes in the membrane struc-
ture. As pointed above, in an N×N board, there are 2N−1 ascendant and 2N−1
descendant diagonals. We will denote the ascendant diagonals as u−N+1, . . . , uN−1,
where the index p in up denotes that the diagonal corresponds to the squares (i, j)
with i−j = p. Analogously, the descendant diagonals are denoted by d2, . . . , dN+N

where the index q in dq denotes that the diagonal corresponds to the squares (i, j)
with i + j = q.

Besides the N elementary membranes with labels 1, . . . , N for encoding the
board, we will also place 4N − 2 elementary membranes in the structure, with
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labels u−N+1, . . . , uN−1, d2, . . . , dN+N . These membranes will be used to compute
the collisions.

Bearing in mind the current board, encoded by membranes with an object [yi]j ,
we can use rules of type [yi]j → di+jui−j . These rules are triggered in parallel and
they produce as many objects dq (resp. up) as queens are placed on the diagonal
dq (resp. up).

Objects dq and up are sequentially sent into the elementary membranes labelled
by dq and up. In a first approach, one can consider a counter zi which evolves to
zi+1 inside each elementary membrane when an object dq or up is sent in. By
using this strategy, the index of i of zi denotes how may objects have crossed the
membrane, or in other words, how many queens are placed on the corresponding
diagonal.

This strategy has an important drawback. In the worst case, if all the queens
are placed on the same diagonal, at least N steps are necessary in order to count
the number of queens in each diagonal. In our design, this is not necessary. As we
will see, we only need no know if the number of queens in each diagonal is 0,1,2,
or more than 2. Due to the parallelism of the P systems, this can be checked in a
constant number of steps regardless the number of queens.

Technically, after a complex set of rules where the electrical charges are used to
control the flow of objects, each membrane dq sends to the skin a complex object
of type dq(DAq, DBq, DCq, DDq), where DAq, DBq, DCq, DDq ∈ {0, 1} codify on
the number of queens on the diagonal (for up the development is analogous, with
the notation up(UAp, UBp, UCp, UDp)). We consider four possibilities:

• dq(1, 0, 0, 0). The 1 in the first coordinate denotes that there is no queens
placed on the diagonal and the diagonal is ready to receive one queen after a
movement.

• dq(0, 1, 0, 0). The 1 in the second coordinate denotes that there is one queen
placed on the diagonal. This diagonal does not contain collisions but it should
not receive more queens.

• dq(0, 0, 1, 0). The 1 in the third coordinate denotes that there are two queens
placed on the diagonal. This diagonal has one collision which can be solved
with a unique appropriate movement.

• dq(0, 0, 0, 1). The 1 in the fourth diagonal denotes that there are more than
two queens placed on the diagonal. This diagonal has several collisions and it
will have at least one collision even if one movement is performed.

Bearing in mind if a diagonal is ready to receive queens (0 queens) or it needs
to send queens to another diagonal, we can prevent if a movement produces an im-
provement in the whole number of collisions before performing the movement. We
do not need to perform the movement and then to count the number of collisions
in order to know if the movement decreases the number of collisions.

Firstly, let us consider two queens placed on the squares (i, j) and (k, s) on
the same ascendant diagonal, i.e., i − j = k − s. We wonder if the movement of
interchanging the columns of two queens by keeping the rows will improve the
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total number of collisions. In other words, we wonder if removing the queens from
(i, j) and (k, s) putting them in (i, s) and (k, j) improves the board.

In order to answer this question we will consider:

• ui−j(0, 0, UCi−j , UDi−j): The ascendant diagonal ui−j has at least 2 queens,
so the two first coordinates are 0.

• di+j(0, DBi+j , DCi+j , DDi+j) and dk+s(0, DBk+s, DCk+s, DDk+s): The de-
scendent diagonals di+j and dk+s have at least 1 queen, so the we first coordi-
nate is 0.

It is easy to check that the reduction in the whole amount of collisions produced
by the removal of the queens from the squares (i, j) and (k, s) is

(2 · UCi−j) + (3 · UDi−j) + DBi+j + (2 ·DCi+j) + (3 ·DDi+j) + DBk+s +

(2 ·DCk+s) + (3 ·DDk+s) − 3

Analogously, in order to compute the augmentation in the number
of collisions produced by the placement of two queens in the squares
(i, s), (k, j) we will consider the objects di+s(DAi+s, DBi+s, DCi+s, DDi+s),
ui−s(UAi−s, UBi−s, UCi−s, UDi−s) and uk−j(UAk−j , UBk−j , UCk−j , UDk−j).

By using this notation, it is easy to check that the augmentation in the number
of collisions is 4− (DAi+s + UAi−s + UAk−j).

The movement represents an improvement in the general situation of the board
if the reduction in the number of collisions is greater than the augmentation. This
can be easily expressed with a simple formula depending on the parameters.

This is the key point in our Membrane Computing algorithm, since we do not
need to perform the movement and then to check is we have an improvement, we
can evaluate it a priori, by exploring the objects placed in the skin. Obviously, if
the squares share a descendant diagonal, the situation is analogous.

If the queens do not share diagonal, the study is analogous, but the obtained
formula by considering that we get a feasible movement if the reduction is greater
than the augmentation is slightly different.

From a technical point of view, we consider a finite set of rules with the fol-
lowing interpretation: If the corresponding set of objects

ui−j(UAi−j , UBi−j , UCi−j , UDi−j) di+j(DAi+j , DBi+j , DCi+j , DDi+j)
uk−s(UAk−s, UBk−s, UCk−s, UDk−s) dk+s(DAk+s, DBk+s, DCk+s, DDk+s)
ui−s(UAi−s, UBi−s, UCi−s, UDi−s) di+s(DAi+s, DBi+s, DCi+s, DDi+s)
uk−s(UAk−s, UBk−s, UCk−s, UDk−s) dk+j(DAk+j , DBk+j , DCk+j , DDk+j)

is placed in the skin, then the movement of queen from (i, j) and (k, s) to (i, s)
and (k, j) improves the number of collisions.

In the general case, there will be many possible applications of rules of this type.
The P system choose one of them in a non-deterministic way. The application of
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the rule introduces an object changeijks in the skin. After a complex set of rules,
this object produces a new configuration and the cycle starts again.

The design of the P system depends on N , the number of queens and it is full
of technical details. It uses cooperation, inhibitors and electrical charges in order
to control the flow of objects. In particular, a set of rules halts the P system if a
board with zero collisions is reached and another set of rules re-starts the P system
(produces a configuration equivalent to the initial one) if no more improvements
can be achieved from the current configuration.

Fig. 2. Starting from a configuration C0 with 4 collisions (up-left) we can reach C1 with
3 collisions (up-right) and then C2 with 2 collisions (bottom-left) and finally C3 with 0
collisions (bottom-right), which is a solution to the 5-queens problem.

Figure 2 shows a solution found with the corresponding P system for the 5-
queens problem. We start with a board with all the queens in the main ascendant
diagonal (up-left). The collisions in this diagonal (and in the whole board) is 4.
By changing the queens from the columns 2 and 5, we obtain the board shown
in Figure 1 with 3 collisions (up-right in Figure 2). In the next step, the queens
form columns 1 and 5 are changed, and we get a board with 2 collisions, produced
because the two main diagonals have two queens each (bottom-left). Finally, by
changing the queens is the columns 1 and 3, we get a board with no collisions that
represent a solution to the 5-queens problem (bottom-right).
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5 Experimental Results

An ad hoc CLIPS program was written inspired on this Membrane Computing
design. Some experiments were performed on a system with an Intel Pentium
Dual CPU E2200 at 2,20 GHz, 3GB of RAM and using CLIPS V6.241 under the
operating system Windows Vista.

Due to the random choosing of the initial configuration and the non-
determinism of the P system for choosing the movement, 20 experiments have
been performed for each number of queens N for N ∈ {10, 20, . . . , 200} in order to
get an informative parameter. We have considered the average of these 20 experi-
ments on the number of P system steps and the number of seconds. The following
table shows the result of the experiments.

Number of queens Average of steps Average of secs.
10 141.35 0.0171549
20 166.25 0.133275
30 270.9 0.717275
40 272.7 1.71325
50 382.4 4.75144
60 453.85 9.65071
70 495.45 16.9358
80 637.6 33.1815
90 625 47.3944
100 757.6 80.6878
110 745.75 113.635
120 841.75 157.937
130 891.25 216.141
140 983.7 311.71
150 979.75 381.414
160 1093 541.022
170 1145.5 683.763
180 1206.25 872.504
190 1272.256 1089.13
200 1365.25 1423.89

Notice, for example, that in the solution presented in [4], the solution for 20
queens was obtained after 15,944 seconds. The average time obtained with this
approach is 0.133275 seconds.

6 Final Remarks

Due to the high computational cost of classical methods, local search has became
an alternative for searching solution to real-life hard problems [1, 5].
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In this paper we present a first approach to the problem of local search by
using Membrane Computing and we have applied to the N-queens problem as a
case study. As future work, several possibilities arise: One of them is to improve
the design from a P system point of view, maybe considering new ingredients; a
second one is to consider new case studies closer to real-life problems; a third one
is to implement the design in parallel architectures and compare the results with
the obtained ones with an one-processor computer.
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4. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Depth-first search with P systems. In:
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