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1 Department of Languages and Systems, University of Sevilla, Spain
2 Department of Electrical Engineering, University of Sevilla, Spain

{ali,riquelme}@lsi.us.es, {jsantos,age,camel}@us.es

Abstract. This paper describes a time-series prediction method based
on the kNN technique. The proposed methodology is applied to the 24-
hour load forecasting problem. Also, based on recorded data, an alterna-
tive model is developed by means of a conventional dynamic regression
technique, where the parameters are estimated by solving a least squares
problem. Finally, results obtained from the application of both techniques
to the Spanish transmission system are compared in terms of maximum,
average and minimum forecasting errors.

1 Introduction

Accurate prediction of the future electricity demand constitutes a vital task for
the economic and secure operation of power systems. In the short, medium and
long terms, generation scheduling comprises a set of interrelated optimization
problems strongly relying on the accuracy of the forecasted load. The same hap-
pens in new competitive electricity markets, where the hourly bidding strategy
of each partner is significantly conditioned by the expected demand. Conse-
quently, it is crucial for the electric industry to develop appropriate forecasting
techniques.

Existing forecasting methods for the estimation of electric demand can be
broadly classified into two sets, namely: classical statistical methods [1, 2] and
automated learning techniques. Statistical methods aim at estimating the fu-
ture load from past values. The relationship between the load and other factors
(temperature, etc) are used to determine the underlying model of the load time
series. The main advantage of these methods lies in its simplicity. However, ow-
ing to the nonlinear nature of such a relationship, it is difficult to obtain accurate
enough and realistic models for classical methods.

In the last few years, machine learning paradigms such as Artificial Neural
Networks (ANN) [3–5] have been applied to one day-ahead load forecasting. The
ANNs are trained to learn the relationships between the input variables (past
demand, temperature, etc.) and historical load patterns. The main disadvantage
of the ANN is the required learning time.
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Recently, classification techniques based on the k nearest neighbors (kNN),
have been successfully applied in new environments outside traditional pattern
recognition such as medical diagnosis tools, game theory expert systems or time
series forecasting. Several papers have been published on the application of those
techniques to forecast the electricity market price [6, 7], providing competitive
results, but its application to the next-day load forecasting problem has not been
yet tested.

This paper describes a time-series prediction method based on the kNN tech-
nique. The proposed methodology is applied to the 24-hour load forecasting
problem, and the results obtained from its application to the Spanish case are
analyzed. Then, based on available data, an alternative model is built up by
a conventional dynamic regression technique. Finally, results obtained by both
techniques are compared in terms of maximum, average and minimum forecast-
ing errors.

2 Problem Statement

The one day-ahead load forecasting problem aims at predicting the load for the
twenty-four hours of the next day. To solve this problem two schemes can be
considered:

1. Iterated Scheme: This scheme forecasts the load for the next hour and the
value obtained is used for the prediction of subsequent hours. The process
is repeated until the 24-hour load forecasting is obtained. The iterated pre-
diction has the disadvantage that the errors get accumulated particularly
during the last hours of the prediction horizon.

2. Direct Scheme: Under this scheme, the load for the entire 24-hour period
is forecasted from past input data. The direct prediction does not take into
account the relationships between the load for one hour and the load for the
next hour.

Test results have shown in average the same accuracy for both schemes. Thus,
the direct scheme has been adopted.

2.1 Proposed Approach

In this section, a kNN approach [8] for next day hourly load forecasting is de-
scribed. kNN algorithms are techniques for pattern classification based on the
similarity of the individuals of a population. The members of a population are
surrounded of individuals which have similar properties. This simple idea is the
learning rule of the kNN classifier. Thus, the nearest neighbors decision rule as-
signs to an unclassified sample point the classification of the nearest of a set of
previously classified points. Unlike most statistical methods, which elaborate a
model from the information available in the data base, the kNN method con-
siders the training set as the model itself. A kNN algorithm is characterized by
issues such as number of neighbors, adopted distance, etc.
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In the kNN method proposed in this paper, each individual is defined by the
24 demand values corresponding to a whole day. Thus, the kNN classifier tries
to find the daily load curve which is “similar to” the load curve of previous days.

The basic algorithm for predicting the electric energy demand of a given day
d + 1 can be written as follows:

1. Calculate the distances between the load of day d, Dd, and that of preceding
points {Dd−1, Dd−2, ...}. Let v1,...,vk be the k nearest days to the day d,
sorted by descending distance.

2. The prediction is:

D̂d+1 =
1

α1 + ... + αk

l=k∑

l=1

αl · Dvl+1 (1)

where

αj =
dw(Dd, Dvk

) − dw(Dd, Dvj )
dw(Dd, Dvk

) − dw(Dd, Dv1)
(2)

Notice that 0 ≤ αj ≤ 1, i.e., the weight is null for the most distant day and
is equal to one for the nearest day.
The two former steps are repeated for every day of the forecasting horizon,
taking into account that true values replace forecasted ones for past days.

Therefore, the prediction aims at estimating the load for tomorrow from a
linear combination of the loads corresponding to those days that follow the k
nearest neighbors of today. The weights adopted for this averaging process reflect
the relative similarity of the respective neighbor with the present day.

If the k nearest neighbors of Dd are [Dv1 , ..., Dvk
], the set of points [Dv1+1, ...,

Dvk+1] will usually contain the k nearest neighbors of Dd+1, at least for noise-free
time series.

Figure 1 geometrically illustrates the idea behind the kNN classifier when
the considered number of neighbors is equal to one. Today’s hourly load and
tomorrow’s unknown load are represented by circumferences. The four black

Fig. 1. kNN Learning Rule.
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points are neighbors of today’s load, point r being the nearest neighbor. Then,
a possible estimation for tomorrow’s load is the load of the day r + 1.

The classical kNN algorithm would resort to the actual nearest neighbors
of day d + 1 for the prediction of Dd+1, but this is not possible because Dd+1

is unknown in advance. The kNN proposed in this paper is a modification by
which the k nearest neighbors of day d, whose demand is available, are adopted
instead.

Some important parameters defining the kNN classifier are:

1. Choice of a metric: A time series Y can be considered as a point in a n-
dimensional space. Given a sequence query, q, a sequence of Y , z, of the
same length as q is searched, such that the distance between both sequences
is minimum. The choice of the metric to measure the similarity between two
time series depends mainly on the specific features of the considered series.
The most common metric is the square of the Euclidean distance, although
other metrics can be used [9, 10].

2. Number of neighbors: Accuracy of the forecasted load can be influenced
by this parameter. In practice, the optimal value of k is usually small for
noise-free time series, since a small number of different k values needs to
be considered to find the optimal value. In this paper, k is determined by
minimizing the relative, absolute and square mean errors for the training
set.

2.2 Numerical Results

The kNN described in the previous section has been applied in several exper-
iments to obtain the forecast of Spanish electric energy demand. The period
January 2000-May 2001 has been used to determine the optimal number of
neighbors and the best metric to measure the similarity between two curves.

The period June-November 2001 has been subsequently chosen as a test set
to check the forecasting errors and to validate the proposed method.

Figures 2a) and 2b) show the influence of the number of neighbors on the
relative, absolute and square mean errors for the considered training set, when
the metric adopted to evaluate the similarity between a previous day and the
historical data, is the Euclidean and Manhattan distance, respectively.

From these figures, the following can be stated for the particular time series
under study:

1. The optimal number of neighbors is six using the Euclidean distance and
thirteen using the Manhattan distance. Consequently, this number depends
of the chosen distance.

2. This parameter is independent of the objective error function to minimize.

Test results have shown the same average error for the training set when
both distances are considered. Thus, the Manhattan distance is the only one
considered in the sequel.
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Fig. 2. Optimal No. of Neighbors with a) Euclidean distance, b) Manhattan Distance.

Figure 3a) shows the hourly average of both the actual and forecasted load
for the working days from June 2001 to November 2001. The mean forecasting
error, 2.3%, is of the same order as that of alternative techniques considered
earlier, like ANNs [3–5].

Figure 3b) presents the hourly average absolute error of the forecasted load
for the Autumn and Summer seasons. Note that the forecasting errors are larger
during valley hours, i.e., hours with lower demand (1am-5am). However, it is
more important to obtain a good prediction during peak hours (10am-2pm and
6pm-10pm) since the electric energy is more expensive at those periods.

Figure 4 presents the forecasted load on Monday August 6 and Thursday
July 17, which are the days leading to the largest and smallest average relative
errors respectively, along with the actual load for those days. It can be observed
that the worst day corresponds with the first Monday of August, when most
Spaniards start their Summer holidays.

Figure 5 presents the forecasted load for the two weeks leading to the largest
and smallest average errors, along with the actual load for those weeks. Those
weeks correspond with Tuesday September 11-Monday September 17 and Mon-
day October 22- Friday October 26, respectively. Note that the week with higher
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Fig. 3. a) Hourly average of forecasted and actual demand; b) Hourly average absolute
error of the forecasted values.

Table 1. Daily Errors corresponding to the best and worst weekly Predictions.

Daily errors (%) Weekly error (%)

October 22 - October 26 3.13 1.25 1.11 0.08 0.07 1.4

September 11 - September 17 5.88 6.73 1.18 1.13 4.55 3.9

prediction errors is the one when the terrorist assault to the New York twin tow-
ers took place. Errors corresponding to September 12 arise as a consequence of
the atypical behavior of the previous day.

The average errors for the five working days of the best and worst weeks
appear in Table 1. The weekly mean errors are 1.4% and 4%, respectively.

3 Dynamic Regression

In this section a Dynamic Regression (DR) model is developed for the prediction
of the hourly electricity demand. Under this approach, the demand at hour t,
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Fig. 4. a) Best Daily Prediction; b) Worst Daily Prediction.

Dt, is estimated from the demand at hours t − 1, t − 2,..., etc. First of all, a
correlation study is performed on Dt, Dt−1,... in order to determine which of
the past demand values are most influential on the present demand.

Figure 6a) presents the average correlation coefficient between the present
demand and past demand values for the period January 2000-May 2001. Notice
that this coefficient presents a periodicity corresponding to a day. The main
conclusion is that the highest correlation with the demand at a given hour takes
place at the same hour of previous days. Furthermore, such a correlation de-
creases as the number of past hours increases.

In view of the conclusions obtained from the correlation study, the following
model is proposed:

D̂t = a0Dt−1 + a1Dt−24 + a2Dt−48 + a3Dt−72 + a4Dt−96 + a5Dt−120 (3)

Experimental results suggest that it is not worth including extra terms like
Dt−23, Dt−25 in the model, as the average forecasting error for the tested period
remains unaffected.

The model parameters ai are obtained from the solution of the following least
squares problem:
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Fig. 5. a) Best weekly prediction; b) Worst weekly prediction.

∑

t

(Dt − D̂t)2 (4)

where D̂t is defined by (3).
Those parameters can be computed only once, from the training set, or they

can be updated daily.

3.1 Results

The regression model described above has been also applied to the load fore-
casting problem in Spain. Working days between January 2000 and May 2001
have been employed to determine the model parameters, yielding a0 = 0.31,
a1 = 0.37, a2 = 0.08, a3 = 0.01, a4 = −0.03 y a5 = 0.25. The small values of
a2, a3 and a4 suggest that, when predicting Dt, the most influential values are
Dt−1, Dt−24 and Dt−120, i.e., the previous hour, the same hour of the previous
day and the same hour and same day of the previous week respectively.

Figure 6b) shows the evolution of the model parameters when they are up-
dated every day for the period June-November 2001. It can be observed that
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Fig. 6. a) Correlation Coefficients; b) Evolution of parameters ai.

Table 2. Comparison of both methods.

S.D. Relative Error Absolute Error Max. Error Max. Error
Mean (%) Mean(MW) Daily (%) Hourly (%)

kNN 0.015 2.3 471 8.5 16.6

DR 0.019 2.82 572 9.2 19.3

these coefficients remain essentially constant, which means that no new demand
patterns are added to the data base each time a day is included.

Finally, table 2 presents the standard deviation, the average absolute and
relative forecasting errors, and the maximum daily and hourly errors obtained
from the application of both the kNN method and the DR model to the period
considered.

4 Conclusions

In this paper, a method based on the k Nearest Neighbors is proposed for the
prediction of time series. The method is applied to the Spanish short-term electric
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load forecasting problem and the resulting errors for a six-month period are
analyzed. Then a dynamic regression model whose parameters are obtained by
solving a least squares problem is developed for the same application. Comparing
the results provided by both approaches leads to the conclusion that the kNN
classifier is more accurate for the load forecasting problem than the conventional
regression method.
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